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Abstract: The electro encephalo gram (EEG) signals classification playsa major role in developing assistive 

rehabilitation devices for physically disabled performs. In this context, EEG data were acquired from 20 healthy 

humans followed by the pre-processing and feature extraction process. After extracting the 12-time domain 

features, two well-known classifiers namely K-nearest neighbor (KNN) and multi-layer perceptron (MLP) were 

employed. The fivefold cross-validation approach was utilized for dividing data into training and testing purpose. 

The results indicated that the performance of MLP classifier was found better than the KNN classifier. MLP 

classifier achieved 95% classifier accuracy which is the best. The outcome of this study would be very useful for 

online development of EEG classification model as well as designing the EEG based wheelchair.  
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1. Introduction 

 

The BCI system consists of four different units: (a) signal acquisition unit, (b) signal processing and 

classification unit which extracts the features of brain signals and converts those feature into device commands, 

(c) an output device and (d) an operating mechanism for guiding operation [1]. The implementation of such BCI 

system is based on four basic techniques (i) P300, (ii) slow cortical potentials, (iii) steady-state visually evoked 

potentials (SSVEP), and (iv) motor imagery (MI)[2]. Among these techniques, only two BCI techniques namely 

SSVEP and MI have been mainly utilized for controlling the orthoses, exoskeleton, and neuroprostheses[3]. The 

SSVEP technique requires the external stimuli for generating the evoked potentials and thereby producing a 

higher rate of false-positive detections in long resting periods whereas MI-based BCI does not need any external 

stimulus but depends on the subject concentration [4]. In MI-based BCI, subject thinks either right or left-hand 

movement and this motor imagery activity of brain signal is recognized and recorded by the BCI system[5]. 

Although, the MI-based method has limited classification accuracy and results in poor reliability of the 

system[6][7].  

 

Zip disks, hard drives, CDs and optical disks are needed for storing the recordings[8]. The format of EEG 

data vary from one EEG machine to another and these formats can be converted into spreadsheets by using the 

software like MATLAB[9], [10]. The electrodes need to work properly to record high quality and accurate 

data[11]. Various kinds of electrodes are used in the EEG recording system like Needle electrodes, Disposable ( 

pre-gelled and gel fewer types) electrodes, Saline-based electrodes, Headbands and electrode caps, Reusable disc 

electrodes (gold, stainless steel, silver or tin)[12].  

 

Any form of communication or control needs muscles and peripheral nerves[13], [14]. The process starts 

with the intention of the user [13]. This intention gives a spark to a complex process that activates some areas of 

the brain and hence, signals are transmitted to the muscles via the peripheral nervous system which resulted into 

the production of the desired movement for the control or communication task [15]. This process leads to 

generate an action known as efferent output or motor output. Efferent output communicates the impulses to the 

peripheral nervous system from the central nervous system and then to the effectors (muscles)[16]. Afferent is 

the opposite of efferent. In other words, it can be said that it conveys a message to the central nervous system 

from sensory receptors[17], [18]. The efferent (motor) pathway is necessary for controlling the motion while the 

afferent (sensory) pathway is necessary for dexterous tasks like playing the piano or violin or typing and learning 

motor skills [19], [20].  

 

This paper is distributed into four parts, the first part is the introduction which provides the information 

related to the classification of EEG signals. The second part explores the materials and method including the 

EEG acquisition, feature extraction and classification technique. The third part discusses the results obtained 

from MATLAB© 2020 simulation whereas the fourth part demonstrates the conclusion of work followed with 

future directions. 

 

2. Materials and methods 

1.1. EEG data acquisition and pre-processing 

20 healthy human subjects participated in two recording sessions in which they imagined 20 right-hand 

movements and 20 left-hand movements per session[21]. The subjects were asked to sit in a comfortable 
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armchair with a distance of 150 cm in front of the computer monitor[22]. Subjects were provided with all 

necessary instruction for data recordings like the concept of MI and BCI setup, full-body relaxation and no 

movements during data acquisition[23].Fig. 1 shows the experimental accessories in which g.LADYbird active 

electrodes (g.GAMMAcap) are placed on the scalp of a subject for EEG data recording. 

 

 
Fig. 1. Experiment accessories used during the EEG signals recording  

 

analogue-to-digital converters (ADC) was employed for converting analogue EEG signals in the digital 

form[24].  The minimum of 200 samples/sec sampling frequency was required for maintaining the all 

appropriate information of EEG signal having the bandwidth 100 Hz[25].After the pre-processing steps, feature 

extraction was done by employing the CSP technique, EOG artifacts were removed by the ICA method whereas 

dimension reduction was performed by the PCA technique[26]. 

 

2.2 EEG feature extraction 

Feature extraction is an essential process for better classification results. To achieve a good performance of 

the classifier, one must utilize the robust feature set[27]. Fig. 2 represents an EEG acquisitionsetup which has an 

EEG cap with active electrodes that transfer signals to the bio-signal amplifier [28]. It also consists of a computer 

that processes the data and runs the BCI application[29]. The bio-signal amplifier converts the signal from 

analogue to digital form for further processing and utilization[30]. Table 1 shows the 12 different time-domain 

features utilized in this work for evaluating the performance of MLP and KNN classifier. 

 
Fig. 3 EEG acquisition setup for EEG data recording from a healthy human subject 

Table 1. Mathematical Definitions of Features 

Sr. 

No. 
Name of the Feature Equation 

1 
Integrated Absolute Value 

(IAV) 
𝐼𝐴𝑉 = ∑|𝑋𝑖|

𝑁

𝑖=1

 

2 
Mean Absolute Value (MAV) 𝑀𝐴𝑉 =

1

𝑁
∑|𝑋𝑖|

𝑁

𝑖=1
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3 
Simple Square Integral (SSI) 𝑆𝑆𝐼 = ∑(𝑋𝑖)

2

𝑁

𝑖=1

 

4 
Variance (VAR) 𝑉𝐴𝑅 =

1

𝑁 − 1
∑(𝑋𝑖)

2

𝑁

𝑖=1

 

5 

Root Mean Square (RMS) 𝑅𝑀𝑆 =  √
1

𝑁
∑ 𝑋𝑖

2

𝑁

𝑖=1

 

6 
LOG Detector (LD) 𝐿𝑂𝐺 =  𝑒

√
1

𝑁
∑ 𝑋𝑖

2𝑁
𝑖=1  

7 
Waveform Length (WL) 𝑊𝐿 =  ∑|𝑋𝑖+1 − 𝑋𝑖|

𝑁−1

𝑖=1

 

 

8 
Average Amplitude Change 

(AAC) 
𝐴𝐴𝐶 =  

1

𝑁
∑|𝑋𝑖+1 − 𝑋𝑖|

𝑁−1

𝑖=1

 

 

9 
Zero Crossing (ZC) 

𝑍𝐶 =  ∑[𝑠𝑔𝑛(𝑋𝑖 ∗ 𝑋𝑖+1) ∩ |𝑋𝑖 − 𝑋𝑖+1| ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑]

𝑁−1

𝑖=1

 

𝑠𝑔𝑛(𝑋) =  {
1   𝑖𝑓𝑋 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

10 
Standard Deviation (SD) 𝑆𝐷 = √

1

𝑁 − 1
∑ 𝑥𝑛

𝑁

𝑛=1

 

 

11 Kurtosis (KUT) ∑
𝐸(𝑥0 − 𝜇)4

𝜎4

𝑁

𝑛=1

 

 

12 
Slope Sign Change (SSC) 

𝑆𝑆𝐶 =  ∑[ 𝑓[(𝑋𝑖 − 𝑋𝑖−1) ∗ (𝑋𝑖 − 𝑋𝑖−1)]

𝑁−1

𝑖=2

 

𝑓(𝑋) =  {
1   𝑖𝑓𝑋 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

2.3. Classifiers 

Classification is the process in which different items or objects are identified, distinguished and then 

comprehended [31].  In simple words, it is a process of division of various items or objects into groups based on 

some similarities or properties[32], [33], [34]. In this study,MLP and KNN classifier were compared to each 

other with three different sessions EEG dataset [35]. Individual features were applied in the form of input to the 

classifier and their classification accuracies were noted down for comparison purpose. Fivefold cross-validation 

method was adopted for classification accuracy computation. 

 

3. Results and discussion 

In this work, two classifiers namely KNN and MLP classifier were compared using 12 time-domain features 

in terms of classification accuracy. The classification accuracy can be defined as the ratio of the true samples to 

the total number of samples. 20 healthy human subjects participated in three sessions of EEG data recording at 

Bio-Medical Laboratory of NITTTR Chandigarh, India.Individual features accuracy were compared using KNN 

and MLP classifier in all three sessions with corresponding standard deviation. MATLAB© 2020 were exploited 

for obtaining the simulation results of classifiers. Fivefold cross-validation method was employed for dividing 

the whole EEG dataset into training and testing purpose. In the Fivefold cross-validation method, whole EEG 

dataset was divided into five equal parts and one part was utilized for testing while four parts were utilized for 

training the classifier.   

 

 

Table 2 showed the results in term of classification accuracy during session 1 by using MLP and KNN 

classifier. Standard deviation was computed per subject. The results showed that the top five best features were 

RMS, MAV, LD, SSI and VAR with the accuracy of 66.8±4.6%, 65.6±5.5 %, 64.9±5.1%, 58.5±3.6% and 

57.7±3.4% with MLP classifier respectively. The least five features namely SD, KUT, SSC, IAV and AAC 
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performed lower as compared to all features. The least performance features could be avoided for better results 

or replaced by other useful features 

 

Table 2. Performance of KNN and MLP classifier for session 1 to discriminate left and right-hand movement 

Feature 

Rank 

Feat

ures 

KNN (% 

ACC+SD) 

MLP (% 

ACC+SD) 

1 RM

S 

63.3±4.5 66.8±4.6 

2 MA

V 

62.5±4.7 65.6±5.5 

3 LD 61.6±3.6 64.9±5.1 

4 SSI 55.8±3.4 58.5±3.6 

5 VA

R 

54.3±3.2 57.7±3.4 

6 WL 51.4±6.0 54.5±6.2 

7 ZC 48.9±2.5 51.6±3.1 

8 SD 40.8±5.1 44.4±5.4 

9 KU

T 

38.6±9.1 41.7±10.3 

10 SSC 36.5±2.4 39.6±3.2 

11 IAV 31.5±3.7 34.4±3.8 

12 AA

C 

25.2±2.4 31.6±2.0 

 

The performance of second session EEG dataset was demonstrated by Table 3 for MLP and KNN 

classifier.RMS feature was found best feature followed by MAV, LD, SSI and VAR whereas lowest-performing 

features were found as SD, KUT, SSC, IAV and AAC. Best performing feature was always suggested whereas 

lowest-performing features should be avoided while forming the final feature vector. The performance of MLP 

classifier was found better than the KNN classifier for classifying the left and right-hand motor-imagery EEG 

dataset. 

 

Table 3. Performance of KNN and MLP classifier for session 2 to discriminate left and right-hand movement 

Feature 

Rank 

Feat

ures 

KNN (% 

ACC+SD) 

MLP (% 

ACC+SD) 

1 RM

S 

63.5±4.1 66.5±4.8 

2 MA

V 

62.8±4.4 65.2±5.6 

3 LD 61.7±3.8 64.5±5.5 

4 SSI 55.9±3.2 58.2±3.3 

5 VA

R 

54.5±3.6 57.4±3.2 

6 WL 51.7±5.5 54.2±6.6 

7 ZC 48.8±2.8 51.8±3.7 

8 SD 40.7±4.5 44.8±5.7 

9 KU

T 

38.5±8.8 40.5±9.3 

10 SSC 36.5±2.6 36.9±2.7 

11 IAV 31.8±3.4 34.1±3.1 

12 AA

C 

25.4±2.6 31.7±2.8 

 

Similarly, the performance of the third session EEG dataset was demonstrated in Table 4. Again the RMS 

feature was found best feature followed by MAV, LD, SSI and VAR whereas lowest-performing features were 

found as SD, KUT, SSC, IAV and AAC. It was clear from Table 2 to Table 4 that performance of MLP classifier 

was found better than the KNN classifier for classifying the left and right-hand motor-imagery EEG dataset. 

MLP classifier achieved 95% classification accuracy when all features combined in the form of the feature 

vector. So, MLP classifier was the best classification method and suggested for developing the online model for 

classifying the EEG dataset. 
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Table 4.Performance of KNN and MLP classifier for session 3 to discriminate left and right-hand movement 

Feature 

Rank 

Feat

ures 

KNN (% 

ACC+SD) 

MLP (% 

ACC+SD) 

1 RM

S 

64.6±4.3 67.4±4.7 

2 MA

V 

63.7±4.6 66.5±5.5 

3 LD 62.6±3.7 65.8±5.4 

4 SSI 56.8±3.4 59.6±3.2 

5 VA

R 

55.7±3.8 58.4±3.1 

6 WL 53.2±5.6 55.2±6.5 

7 ZC 49.7±2.2 53.3±3.6 

8 SD 43.4±4.4 45.6±5.9 

9 KU

T 

40.4±8.5 42.8±9.2 

10 SSC 38.8±2.5 40.7±2.6 

11 IAV 33.9±3.7 35.8±3.4 

12 AA

C 

27.5±2.3 33.1±2.6 

 

4. Conclusion 

This work reported the comparative analysis of 12-time domain features by employing the MLP and KNN 

classifier in term of classification accuracy. 20 healthy human subjects were participated in three EEG data 

recording sessions in they imagine right and left-hand movements. After data acquisition, pre-processing and 

feature extraction was done followed by the classification. Results showed that the performance of MLP 

classifier was better than the KNN classifier and top five best features were RMS, MAV, LD, SSI and VAR 

whereas top lest performing features were SD, KUT, SSC, IAV and AAC. Further, the classification accuracy 

could be improved if more robust and novel features were utilized for forming the final feature vector. The 

finding of this study would be useful for online EEG classification model development towards the rehabilitation 

robotic designing.  
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