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Abstract:Electroencephalogram (EEG)signals based brain-computer interfacing (BCI) is the current technology trends in the 

field of rehabilitation robotic. This study compared the performance of support vector machine (SVM), linear discriminant 

analysis (LDA) and multi-layer perceptron (MLP) classifier with the combination of eight different features as a feature 

vector. EEG data were acquired from 20 healthy human subjects with predefined protocols. After the EEG signals 

acquisition, it was pre-processed followed by feature extraction and classification by using SVM MLP and LDA classifiers. 

The results exhibited that the SVM method was the best approach with 98.8% classification accuracy followed by MLP 

classifier. Finally, the SVM classifier and Arduino Mega controller was employed for offline controlling of the gripper of the 

robotic arm prototype. The finding of this study may be useful for online controlling as well as multi-degree of freedom with 

multi-class EEG dataset. 
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1. Introduction 

Neural activities of the brain are shown in the form of EEG signals which are captured with the help of 

multiple-electrode EEG machines either over the cortex under the skull (inside the brain) or over the scalp[1]. 

The representation of EEG signal is done in the time domain whereas, few EEG measuring devices are available 

which can perform some signal processing steps to obtain frequency analysis along with imaging tools to 

visualize EEG topographies [2], [3]. 

 

Generally, EEG signals are considered as the projection of neural activities that usually gets attenuated by 

dura mater, leptomeninges, scalp, cerebrospinal fluid, and the galea[4]. It is difficult to understand and locate the 

rhythms of the brain [5]. So, the advanced technology and processing tools[6] must have the ability to isolate the 

desired waveforms from the EEG signals and then analyze it[7].EEG system comprises delicate electrodes, 

filters, needle-type registers and set of the differential amplifier[8]. The EEG signals can be graphically 

represented on the paper. It was observed that the signal must be in digital form for analysis and it requires the 

sampling, quantization, and encoding of the signal [9], [10]. The computerized system permits simulations, 

variable settings, sampling frequency and some advanced processing equipment [11], [12], [6]. 

 

So, the EEG signals are converted from analogue into the digital form by using analogue-to-digital converters 

(ADC)[13], [14]. EEG signal has a bandwidth of approximately 100 Hz. Hence, the minimum sampling 

frequency of 200 samples/sec is required for sampling the EEG signals[15].EEG signals undergo the process of 

quantization to preserve diagnostic information[16]. Each signal sample is represented by up to 16 bits for 

accurate recording[17]. This provides the required memory volume for epileptic seizure monitoring records and 

storing the signals massively[18]. Generally, the memory size for storing the EEG signal is much smaller than 

that used for storing the radiological images [19][20], [21]. 

 

This work computes the performance of the total eight features to classify the EEG signals for discriminating 

left hand and right-hand movements by using SVM, MLP and LDAclassifiers. The whole work is divided into 

four parts, the first one is the introduction part, and Second part presents the materials and methods while the 

third part describes the results and discussion. Finally, the conclusion of work is presented in section 4. 

 

2. MATERIALS AND METHODS 

 

1.1. EEG data acquisition 

EEG data were acquired from 20 healthy subjects at Bio-Medical Laboratory of NITTTR Chandigarh, 

India[22], [23]. After the raw EEG signal acquisition, EEG data was passed through a 4th order band-pass 

Butterworth filter (8Hz to the 30Hz range) for noise elimination[24]. Further, a notch filter of cut off frequency 

50 Hz was employed for power line interference. Ocular artifacts were rejected by spatial filtering based on ICA 

algorithm[25]. After these steps, suitable features are extracted with the help of the CSP method followed by 

dimension reduction by PCA[26]. Finally, the classification is done and accuracy is used for performance 

comparison [27]. Fig. 1 shows the complete experimental setup for EEG data recording from a healthy human 

subject. 
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Fig. 1 EEG data recording for left and right-hand movements 

 

2.2 EEG feature extraction 

 

Total eight features were extracted namely as AAR parameter,Barlow parameter, Hjorth parameter, Temporal 

and Spatial Complexity (TSC), Running Fractal Dimension (RFD), minimum energy, band power, andvariance. 

Variance is calculated with the window length 500 millisecond (ms) with 492 ms overlapping and the band 

power is calculated for alpha and beta region whereas signal to noise ratio is computed by using minimum 

energy approach. EEG data sequence complexity is measured by TSC.Higuchi’s algorithm is used for RFD 

calculation [28], Hjorth parameter, Barlow parameter, AAR parameter are calculated[29].Fig. 2 shows the four 

channels EEG signals recorded in temporal form from a healthy human subject. Table 1 shows the features 

utilized for EEG signal classification for discriminating the left and right-hand movements to control the robotic 

arm prototype. 

 
Fig. 2. Four-Channel EEG data recorded from the healthy human subject in temporal form 

Table 1. Mathematical Definitions of Features 

S

r. 

No. 

features definition 

1 Activity (A2) 

A2 =
1

T
∫ x(t)2dt

t

t−T

 

2 Mobility 
𝐷2 =

1

T
∫ (

dx(t)

dt
)

2

dt
t

t−T
 

, 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = √
𝐷2

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦
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3 

Complexity  

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = √

1
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dt
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t−T
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T
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4 

Mean Amplitude 

(MA) 𝑀𝐴 =
1

T
∫|x(t)|dt

t

t−T

 

5 Mean Frequency 

(MF) 𝑀𝐹 =
𝐸 |

𝑑𝑥(𝑡)

𝑑𝑡
|

𝐸|𝑥(𝑡)|
 

6 Spectral Purity Index 

(SPI) 𝑆𝑃𝐼 =
𝐸 |

𝑑𝑥(𝑡)

𝑑𝑡
|

2

𝐸 |
𝑑2𝑥(𝑡)

𝑑𝑡2 | 𝐸|𝑥(𝑡)|
 

7 6th orders AAR 

parameter 
𝑥𝑘 − 𝑎1,𝑘𝑥𝑘−1 − ⋯ 𝑎𝑝,𝑘𝑥𝑘−𝑝 =  𝜀𝑘 

8 variance 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑
(𝑥𝑖 − �̅�)

𝑛 − 1

𝑁

𝑖=1

 

 

2.3 Classifiers 

After extracting the features, a feature vector was formed to classify the EEG data whose dimension was 

reduced by PCA approach. In this study, SVM, MLP and LDAclassifier was compared to each other[30], [31], 

[32]. Threefold cross-validation technique was applied for achieving the classification accuracy[33]. In three-

fold cross-validation technique, the whole dataset was divided into three equal parts in which two parts were 

used for training the classifier whereas one part of data was utilized for testing purpose and no part of data was 

used for validation the classifiers[34], [35]. Fig. 3 shows the block diagram representation of the complete 

workflow. 

 

 

 

 

 

 

 

Fig 3. Complete block diagram of EEG signal classification model 

 

3. RESULTS 

 

In this study, the performance of the total of three classifiers namely SVM, MLP and LDA were compared 

with a total of eight features. Threefold cross-validation method was employed for computing the classification 

accuracy of all classifiers. Accuracy for 768 number of sample was taken to decide the final results for 

comparison purpose. Finally, the best classifier was chosen for controlling the two movements of the robotic arm 

(gripper open and close operations).Fig 4 shows the complete structure of MI-based movement controlling of 

robotic arm prototype.  

 
Fig. 4 Controlling of Assistive Devices Using MI-based EEG Signals 
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The classification accuracy of the LDA method was presented in Table 2 in which the error for class1 and 

class2 was 0% and 9.4% thereby indicating the good discrimination capability of approach. Initially when the 

number of samples for classification was 128 then the total error was 50% thereby indication 50% classification 

accuracy. Finally, it achieved a 91.6% overall accuracy.  

 

Table 2. Performanceof LDA classifier for EEG signals classification. 

No of 

Sample 

Error 

class1 (%) 

Error 

class 2 (%) 

Total 

error (%) 

Overall 

Accuracy 

(%) 

128 0.0    50.0 50 50.0 

256 22.5    21.9 44.4 55.6 

384 20.0 16.9 36.9 63.1 

512 21.3    20.6 41.9 59.1 

640 13.8    14.4 28.1 71.9 

768 0.0 9.4 9.4 91.6 

 

The classification results of the SVM classifier was presented in Table 3. The table shows the 98.8% 

classification accuracy. When EEG data samples were 128, accuracy was 50%. But when the number of samples 

increased gradually then it achieved the higher classification accuracy and at last 98.8% accuracy was achieved 

by SVM classifier. The performance of SVM classifier was found best as compared to other classifiers used in 

this work.  

 

Table 3.Performance of SVM classifier for EEG signals classification. 

No of 

Sample 

Error 

class1 (%) 

Error 

class 2 (%) 

Total 

error (%) 

Overall 

Accuracy 

(%) 

128 0.0    50.0 50.0 50.0 

256 1.5 46.9    48.4     51.6 

384 0.0    50.0    50.0     50.0 

512 0.0    50.0    50.0     50.0 

640 0.0    28.1    28.1     71.9 

768 0.0 1.2     1.2     98.8 

 

The classification performance of the MLP method was shown in Table 4. If the number of EEG data 

samples were 128 then accuracy was 50%. With 640 number of samples, accuracy increased up to 75% and 

finally, with 768 number of samples MLP classifier achieved 95% classification accuracy. MLP classifier was 

found second-best classifier with the eight feature combination in the form of feature vector whereas LDA was 

found the least performer. It is clear from the above discussion that SVM classifier was best with the given 

feature vector and utilized for controlling the robotic arm prototype.   

 

Table 4. Performanceof MLP classifier for EEG signals classification. 

No of Sample Total error 

(%) 

Overall 

Accuracy (%) 

128 50.0 50.0 

256 56.9 43.1 

384 44.4 55.6 

512 41.3 59.7 

640 25.0 75.0 

768 5.0 95.0 

 

 

4. CONCLUSION 

This work compared the performance of three classifiers namely SVM MLP and LDA with eight different 

features combination in the form of the feature vector. In this context, 20 healthy human EEG dataset was 

acquired and pre-processed before the features extraction process. Finally, all feature were combined in the form 
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of a feature vector and applied to all classifiers for comparison purpose. The results showed that SVM classifier 

was found best among all classifier with the given feature vector. Therefore SVM classifier was utilized for 

actuating the robotic arm prototype. Results also showed the successful controlling for gripper open and close 

operation with SVM classifier and Arduino Mega controller.In near future, the multimodal data-based technique 

can be used for simultaneous recognition of hand, leg and finger movement with modular control facilities in 

which EEG signals will be fused with EMG and EOG signals depending upon the user's requirement for 

developing the assistive technology.  

 

References 

 

1. M. Wang, J. Hu, and H. A. Abbass, “BrainPrint : EEG Biometric Identification based on Analyzing Brain 

Connectivity Graphs,” Pattern Recognit., vol. 300, no. 5, p. 107381, 2020. 

2. D. Bhati, M. Sharma, R. B. Pachori, and V. M. Gadre, “Time–frequency localized three-band biorthogonal 

wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG 

signal classification,” Digit. Signal Process. A Rev. J., vol. 62, pp. 259–273, 2017. 

3. O. W. Samuel, Y. Geng, X. Li, and G. Li, “Towards Efficient Decoding of Multiple Classes of Motor 

Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors,” J. Med. Syst., vol. 41, 

no. 12, 2017. 

4. E. Monge-Pereira, J. Ibañez-Pereda, I. M. Alguacil-Diego, J. I. Serrano, M. P. Spottorno-Rubio, and F. 

Molina-Rueda, “Use of Electroencephalography Brain-Computer Interface Systems as a Rehabilitative 

Approach for Upper Limb Function After a Stroke: A Systematic Review,” PM&R, vol. 9, no. 9, pp. 918–

932, 2017. 

5. H. Ji, J. Li, R. Lu, R. Gu, L. Cao, and X. Gong, “EEG Classification for Hybrid Brain-Computer Interface 

Using a Tensor Based Multiclass Multimodal Analysis Scheme,” Comput. Intell. Neurosci., vol. 2016, 

2016. 

6. M. Kaur and V. Wasson, “ROI Based Medical Image Compression for Telemedicine Application,” in 

Procedia Computer Science, 2015, vol. 70, pp. 579–585. 

7. J. Minguillon, M. A. Lopez-Gordo, and F. Pelayo, “Trends in EEG-BCI for daily-life: Requirements for 

artifact removal,” Biomed. Signal Process. Control, vol. 31, pp. 407–418, 2017. 

8. N. Hooda, R. Das, and N. Kumar, “Fusion of EEG and EMG signals for classification of unilateral foot 

movements,” Biomed. Signal Process. Control, vol. 60, p. 101990, 2020. 

9. Y. Narayan, V. Ahlawat, and S. Kumar, “Pattern recognition of sEMG signals using DWT based feature 

and SVM Classifier,” Int. J. Adv. Sci. Technol., vol. 29, no. 10, pp. 2243–2256, 2020. 

10. Y. Narayan, D. Kumar, and S. Kumar, “Comparative analysis of sEMG signal classification using different 

K-NN algorithms,” Int. J. Adv. Sci. Technol., vol. 29, no. 10, pp. 2257–2266, 2020. 

11. L. Minati, N. Yoshimura, and Y. Koike, “Hybrid Control of a Vision-Guided Robot Arm by EOG, EMG, 

EEG Biosignals and Head Movement Acquired via a Consumer-Grade Wearable Device,” IEEE Access, 

vol. 4, no. 8, pp. 9528–9541, 2016. 

12. Y. Narayan, R. M. Singh, L. Mathew, and S. Chatterji, “Surface EMG Signal Classification Using 

Ensemble Algorithm, PCA and DWT for Robot Control,” in International Conference on Advanced 

Informatics for Computing Research. Springer, Singapore, 2019, vol. 10, pp. 424–434. 

13. L. W. Ko, S. S. K. Ranga, O. Komarov, and C. C. Chen, “Development of Single-Channel Hybrid BCI 

System Using Motor Imagery and SSVEP,” J. Healthc. Eng., vol. 2017, 2017. 

14. Y. Narayan, L. Mathew, and S. Chatterji, “SEMG signal classification with novel feature extraction using 

different machine learning approaches,” J. Intell. Fuzzy Syst., vol. 35, no. 5, pp. 5099–5109, 2018. 

15. B. Kim, L. Kim, Y. H. Kim, and S. K. Yoo, “Cross-association analysis of EEG and EMG signals 

according to movement intention state,” Cogn. Syst. Res., vol. 44, pp. 1–9, 2017. 

16. R. Zarei, J. He, S. Siuly, and Y. Zhang, “A PCA aided cross-covariance scheme for discriminative feature 

extraction from EEG signals,” Comput. Methods Programs Biomed., vol. 146, pp. 47–57, 2017. 

17. A. Al-Ani, I. Koprinska, and G. Naik, “Dynamically identifying relevant EEG channels by utilizing 

channels classification behaviour,” Expert Syst. Appl., vol. 83, pp. 273–282, 2017. 

18. A. Arunkumar et al., “Classification of focal and non focal EEG using entropies,” Pattern Recognit. Lett., 

vol. 94, pp. 112–117, 2017. 

19.  D. R. Toledo, G. M. Manzano, J. A. Barela, and A. F. Kohn, “Cortical correlates of response time 

slowing in older adults: ERP and ERD/ERS analyses during passive ankle movement,” Clin. Neurophysiol., 

vol. 127, no. 1, pp. 655–663, 2016. 

20. B. Goyal, A. Dogra, S. Agrawal, B. S. Sohi, and A. Sharma, “Image denoising review: From classical to 

state-of-the-art approaches,” Inf. FUSION, vol. 55, pp. 220–244, Mar. 2020. 

21. N. Mittal, U. Singh, and B. S. Sohi, “A novel energy efficient stable clustering approach for wireless sensor 

networks,” Wirel. Pers. Commun., vol. 95, no. 3, pp. 2947–2971, 2017. 



Yogendra Narayan 

 

3344 
  

22. Babita, P. Kumari, Y. Narayan, and L. Mathew, “Binary movement classification of sEMG signal using 

linear SVM and Wavelet Packet Transform,” in 1st IEEE International Conference on Power Electronics, 

Intelligent Control and Energy Systems, ICPEICES 2016, 2017. 

23. Y. Narayan, L. Mathew, and S. Chatterji, “sEMG signal classification using Discrete Wavelet Transform 

and Decision Tree classifier,” Int. J. Control Theory Appl., vol. 10, no. 6, pp. 511–517, 2017. 

24. P. Virdi, Y. Narayan, P. Kumari, and L. Mathew, “Discrete Wavelet Packet based Elbow Movement 

classification using Fine Gaussian SVM,” in 1st IEEE International Conference on Power Electronics, 

Intelligent Control and Energy Systems, ICPEICES 2016, 2017, pp. 1–5. 

25. O. W. Samuel, X. Li, Y. Geng, P. Feng, and S. Chen, “Motor Imagery Classification of Upper Limb 

Movements Based on Spectral Domain Features of EEG Patterns,” Eng. Med. Biol. Soc. (EMBC), 39th 

Annu. Int. Conf. IEEE, pp. 2976–2979, 2017. 

26. S. Aliakbaryhosseinabadi, E. N. Kamavuako, N. Jiang, D. Farina, and N. Mrachacz-Kersting, 

“Classification of EEG signals to identify variations in attention during motor task execution,” J. Neurosci. 

Methods, vol. 284, pp. 27–34, 2017. 

27. C. Vidaurre, C. Klauer, T. Schauer, A. Ramos-Murguialday, and K. R. Müller, “EEG-based BCI for the 

linear control of an upper-limb neuroprosthesis,” Med. Eng. Phys., vol. 38, no. 11, pp. 1195–1204, 2016. 

28. J. Virkkala and S. Himanen, “Fractal dimension of EEG in sleep onset,” Proc. 3rd Eur. …, no. Table 1, pp. 

5–8, 2002. 

29. A. K. Mukhopadhyay and S. Samui, “An experimental study on upper limb position invariant EMG signal 

classification based on deep neural network,” Biomed. Signal Process. Control, vol. 55, no. 5, pp. 1–8, 

2020. 

30. X. Yu, P. Chum, and K. B. Sim, “Analysis the effect of PCA for feature reduction in non-stationary EEG 

based motor imagery of BCI system,” Optik (Stuttg)., vol. 125, no. 3, pp. 1498–1502, 2014. 

31. J. U. Chu, I. Moon, and M. S. Mun, “A real-time EMG pattern recognition system based on linear-

nonlinear feature projection for a multifunction myoelectric hand,” IEEE Trans. Biomed. Eng., vol. 53, no. 

11, pp. 2232–2239, 2006. 

32. A. Phinyomark, H. Hu, P. Phukpattaranont, and C. Limsakul, “Application of linear discriminant analysis 

in dimensionality reduction for hand motion classification,” Meas. Sci. Rev., vol. 12, no. 3, pp. 82–89, 

2012. 

33. Babita, P. Kumari, Y. Narayan, and L. Mathew, “Binary movement classification of sEMG signal using 

linear SVM and Wavelet Packet Transform,” in 1st IEEE International Conference on Power Electronics, 

Intelligent Control and Energy Systems, ICPEICES 2016, 2016, pp. 2–5. 

34. P. Kumari, Y. Narayan, V. Ahlawat, and L. Mathew, “Advance approach towards elbow movement 

classification using discrete wavelet transform and quadratic support vector machine,” in Communication 

and Computing Systems © 2017 Taylor & Francis Group, London, ISBN 978-1-138-02952-1 Advance, 

2017, pp. 839–844. 

35. C. Garg, Y. Narayan, and L. Mathew, “Development of a software module for feature extraction and 

classification of EMG signals,” in 2015 Communication, Control and Intelligent Systems (CCIS), 2015, vol. 

1, pp. 250–254. 

 

 

 

 


