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Abstract— Crowd Counting and estimation of density is really challenging and an important problem if we 

visually analyze the crowd. Crowd Monitoring and Analyzing Crowd behavior has been an important aspect for 

every research field. A lot of already existing approaches use techniques based on regression on heat 

maps(density) to count people present in from a single frame. These techniques however cannot restrain an 

individual walking and further cannot approximate the original distribution of pedestrian in the locality. Whereas, 

detection-based techniques detect and restrain walking men’s in the frame, but the efficiency of these techniques 

challenged when implemented in high-density crowd situations. To get the better of the limitations of above-

mentioned problem, we have used the (Congested Scene Recognition) Neural Network. By using this type of 

Neural network, we are able to visualize the detection and form density map according to produce accurate 

outputs for the given scene. The experimental outcomes of the successfully showcases the effectiveness of the 

approach used. 
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1. Introduction                                                                     

OW much time would it take us to count down the number of people in the crowd? It happens to the 

best of us and remains a frustrating experience. But what if a computer visual model could keep a count of 

people in a matter of milliseconds? 

 

This is what Semantic Segmentation [1] are capable of. While this is a simple example, there are multiple 

other applications of such algorithm. 

 

So how Semantic Segmentation works? It uses image processing: it is any form of processing of information 

where the input is an image, such as frames from video-clips. In this process the output are features which could 

give information to depict an image [2], [3]. This feature extracted is particularly useful in this scenario where 

the density of the crowd may be high. The extracted feature is basically region or a structure. And using those 

boundaries / regions we split out image into labelled pieces. And these labelled pieces when combined forms an 

object. So, when we are talking about an object, we first look for the required parameters that appear in the 

image in some order [4]. 

 

An Input image when aggregated alongside its filter bank produce a texton map as a result After clustering. 

We shall be using Deep Learning in Semantic Segmentation here. So the model shall basically establish a 

relationship between the pixels. 

1. Pixels having Same Color are more likely to have same label 

2. Nearby pixels are more likely to have same label 

3. The pixel amount pixels of “stem” are more likely to be leaves. 

However, when analyzing a congested scene or a scene which has high density of object surrounding, using 

semantic segmentation isn’t enough. This is where we make use of some preexisting models, such as: 

i. Approach based on Detection 

ii. Approach based on Regression 

iii. Approach based on Density approximation 

iv. CNN-based Approach 

v. Dilated Residual Network 

vi.  Congested Scene Recognition Network(CSRNet) 

 

A detailed explanation for each of these approaches is given below. Methods involving Neural Networks are 

often considered better because they have work upon training and testing [5]. As a result, these models tend to 

become better with time with more level of understanding for the same. Potential problems such as downscaling 

and decreasing resolution are also not an issue in such models [6], [7]. 

But they come with their own problems as well. Traditional approaches are more based on multi-scale 

architecture . There is no doubt in the fact that they provide high performance but the model they use also comes 

with two big disadvantages: Time for training is high and non-efficient branching based structure (e.g. Multi-

column CNN). 

H 
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Here, in this paper, we have used a deep network known as CSRNet for our application. It consists of 

convolutional layers for supporting element for incoming images with flexible images. 

 

2. Problem Description 
Big Events, Big Shows all attract Hugh Crowd. In such cases, counting the number of attendees can become 

overwhelmingly difficult. But keeping accurate records of the same is important as well. This helps the corporate 

to know which kind of events and products has the potential to attract more people and more potential 

customers[8]. 

 

There are other potential applications too. This model can be used to understand the traffic pattern in a 

locality and can be tinkered as needed. Therefore, this can be proven useful for Monitoring High-traffic area. 

But the potential problem here becomes the high-density crowd image. Extracting all the parameter from 

potentially a very small part in the image can be a very difficult job[7]. We require a model that is able to Extract 

all minimum required parameters from the image and at the same keep the original resolution of the image intact. 

Our model should also be capable of doing all these tasks in as little time as possible to keep the whole 

experience smooth. 

 

3 Literature survey 

Semantic Segmentation remains a challenge because due to the pixel-level accuracy with multi-scale 

contextual reasoning it requires. However in recent times High accuracy gains in this type of segmentation have 

been obtained, thanks to Convolutional network that is trained by backpropagation. Specifically, shows us that 

the convolutional network architecture we used for traditional image processing and classification could be used 

for dense predictions as well [9]–[11]. Modern day classification models for images integrate multi-scale 

contextual information. Pooling and subsampling for prediction is what makes it possible. But all these things 

have to happen alongside full-resolution output. And this clearly is a conflicting demand. Recent works guide us 

through two approaches for the same. First being, Repeated Up-convolution to bring back the original resolution 

of the image while carrying the result extracted from down sampled layer. Second approach being, developing a 

dilated convolutional network that combines multi-scale contextual information of the input image without any 

loss in resolution or analyzing the rescaled image. 

 

There are various approaches that can be taken for specifically out application, that is: 

i. Detection-Based Approach 

The solution to this problem was a detection-based approach using a retractable window, where it detected 

people and raised the count by 1. But this was not accurate as it seems because it required a well-trained network 

and feature extraction in a densely populated scene isn’t as easy as it seems[12]. So, to overcome this, 

Researchers started detecting particular body part instead of the whole body.  

ii. Regression-Based Approach 

Since Detection-based Approach wasn’t an ideal solution to a congested scene. This was when researchers 

tried to deploy approach based on regression to establish the relation among the extracted information in a 

cropped patch, and then calculate the count of the particulars. Other features are also used to generate low-level 

informatics [13]. Following the same approached models were proposed where Fourier Analysis and Scene 

Invariant Feature transform where made in use  

iii. Density estimation-based Approach 

A key feature in Image Extraction called Saliency was overlooked while using Regression-based solution. 

And this in turn can cause inaccurate results. Duan [14]  proposed a solution to this problem by understanding 

the linear mapping in local as well as its subject density. Song [15] deployed Random Forest Regression 

technique to a non-linear map unlike Lempitsky. 

iv. Convolution Neural Network Approach 

This model is considered to be the best and most accurate model for congested regions. CNN refers to 

Convolutional Neural Network. In a CNN based model [16], [17]we built a regression model that is end-to-end. 

This is a hassle freeway. Rather than working on patches of cropped image, This uses the entire image as an 

input & generated a head count output directly. CSRNet, which we shall use, also deploys deep CNN for high-

level of extraction(feature) and generating highly accurate density maps. 

v. Dilated Residual Network 

The main motto after considering Detection-Base Approach was to not change the spatial resolution in the 

convolutional network, for image classifier to work. Although down sampling the image isn’t a bad option and it 

has been pretty successful as well, it can be proven harmful when detecting natural images. Natural images have 

high frequency count for objects and this if often important for understanding the scene [18]. It becomes difficult 

to understand the scene when the dominant object doesn’t stand-out in the processed image. And making matters 
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even worse, if in the course of transmitting the image from one channel to the other, a loss in signal can affect the 

image. And as a result, recovering is difficult during training period. But, if somehow the spatial resolution is 

maintained throughout, backpropagation can be useful to analyze and learn to preserve important information for 

the less apparent subjects present in image. The Resnet and DRN are shown in figure 1. 

 
Figure 1. ResNet vs DRN 

 

 A Dilated Residual Network [19], [20] outperforms the non-DRN without generating extra complexity to the 

model. The DRN has also been successful in removing the artifacts that was introduced by the dilation. And as a 

result, the performance of this model significantly increased. There is further increase in accuracy as compared to 

downstream applications. The figure below shows a comparison between traditional method and DRN 

respectively. 

 

vi.  Congested Scene Recognition Network (CSRNet) 

A Congested Scene Recognition Network [21], [22] also known as CSRNet is a data-driven DL method that 

is capable of understanding highly congested scenes and is capable of accurately count desired objects in the 

scene. This is mainly composed of two important and fundamental components: A Convolutional Neural 

Network for extraction(features) and for back-end, for backend operations. The MAE for CSRNet was observed 

to be 47% less than that of existing approaches. 

Limitations of Existing approaches 

 

Switch CNN [23] that was proposed by Deepak Babu Sam, uses a density level classifier to select different 

regressors for particular input patches. These both use Multi-column-based architecture. There is no doubt in the 

fact that they have developed a high performing design but then it also comes with two big disadvantages: Time 

for training is high and non-efficient branching based structure. Multi-column CNNs also come embedded with 

redundant structures. The next disadvantage for both the above-mentioned solution is the fact that it required 

density level classifier before sending pictures to MCNN[24]–[26]. 

 

4 Implementation 

We shall be using CSRNet here. CSRNet stands for Congested Scene Recognition Neural Network. This 

helps in capturing the low as well as high-level feature. It captures the high-level semantics needed for crowd 

counting. The Model proposed is a plug and play model making it easier to employ into potential 

applications[27], [28]. 

 

Using the Ground Truth Value, we generate an original image and density map as shown in figure 2 and 

figure 3. Ground truth value is the theoretical value which is collected on site/actual location which is further 

used to check the machines implemented results for accuracy against the real-world data. 
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Figure 2. Original Image 

 

 
Figure 3.  Density Map for the Original Image 

 

Now, after getting the crowded images from various locations/sites as an input and observed ground truth 

value using visual analysis, we train our Data Model using MATLAB to label data, so that after machine 

implementation, the results which we get can be compared with the ground truth values to get more accurate 

results as an output[29]. 

 

So, after studying and analyzing the scene in the image the output for the same shall look something like the 

figure given below. The given figure shows the visualization of the detection result. The green squares in the 

scene depicts the required objects for count. It can be observed that even in places where the count of people is 

high in a particular part in an image, analyzation is still successfully done. 

 

After the detection process is complete, a density map is designed for the some using the CNN regression 

network. The result for the same shall look something like in figure (v). The density map can be read in the same 

way you read a heatmap. The map turns red (hotter) where the density increases and turns blue (colder) where 

the density is less as shown in figure 4 and figure 5. 
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Figure 4. Density Map for the Original Image 

 

Figure 5. Density Map for the detected objects 

The Ground Truth Count for the scene shall look something like the figure 6 mentioned below. 

Figure 6. Density Map for the detected objects 

. 

2.   Results 

Original Count: 457 

 

To find the accuracy of the system we shall calculate the Mean Absolute Error [MEA]. Mean Absolute error 

basically tells us the variation in difference between two variables. The MEA for the proposed system is derived 

as shown in figure 7 and figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Original Input Image 
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Figure 8. Density Map to predict Count 

 

  MEAN ABSOLUTE ERROR: 

 

                                                             =15.9% 

 

 

 

Where, 

AP = Actual Population 

PP=Predicted Population 

n= number of training sets 

 

The Mean Absolute Error comes out to be 15.9% error or 84.1% accuracy. 

 

3.  Conclusion 

 

In this paper, we have successfully implemented a head counting model using CSRNet for a congested cr 

owded scene. We were able to generate highly accurate density map and connect them to the original image 

to estimate the crowd count[30]–[34]. Dilated Convolution Model was used as well to generate better results 

without losing information. This model can be extended to be used with trees and vehicles based on the training. 

This can be highly useful for detecting construction sites in a highly congested satellite map as well. 
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