Research Article

Selected Extensions on Eneström-kakeya Theorem

R. K. Pavan Kumar, Pannala¹

¹Department of Mathematics, ChandigrahUniversity, Gharuan-Mohali, Punjab -140413, India. kamesh9.iit@gmail.com

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract: The theorem of Eneström-Kakeya is important within the hypothesis of dissemination of zeros ofpolynomials. In the literature, it can be found so many extensions on Eneström-Kakeya theorem by giving various relations between the coefficients of polynomial like increasing, decreasing, irregular order etc. This paper mainly deals with some extensions on the Abdul Aziz and B AZargar theorembygiving some relaxations to the hypothesis that the coefficients are real, positive and alternative coefficients must be in increasing order.

Key words: Eneström-Kakeya theorem, location of zeros of polynomials, bounds for zeros, coefficients of polynomials, irregular coefficients of polynomials.

1. Introduction and statement of results

Eneström-kakeya Theorem [7]: Given the real polynomial $f(z) = \sum_{k=0}^{n} a_k z^k$. If $a_0 \ge a_1 \ge a_2 \ge \cdots \ge a_{n-1} \ge a_n > 0$ then $f(z) \ne 0$ for |z| < 1.

The literature includes extensions, generalizations and refinements of Eneström-Kakeya theorem ([1-6]).

Theorem-A: If $p(z) = \sum_{k=0}^n a_k z^k$ is a polynomial with $a_n \neq 0$, such that $a_n \geq a_{n-2} \geq \cdots \geq a_1$ or $a_0 > 0$ and $a_{n-1} \geq a_{n-3} \geq \cdots \geq a_0$ or $a_1 > 0$ (according as n is odd or even) then all the zeros of p(z) lie in the disc $\left|z + \frac{a_{n-1}}{a_n}\right| \leq 1 + \frac{a_{n-1}}{a_n}$.

Theorem-A is given by Abdul Aziz and B.A.Zargar[1].

The hypothesis of the theorem-A is relaxed and obtained several extensions which are enumerated as follows.

2. Main results

Theorem-1: If $p(z) = \sum_{k=0}^n a_k z^k$ is a polynomial of degree n with complex coefficients such that $|a_n| \geq |a_{n-2}| \geq \cdots \geq |a_1|$ or $|a_0| \geq |a_{n-1}| \geq |a_{n-3}| \geq \cdots \geq |a_0|$ or $|a_1| \geq |a_{n-1}| \geq |a_{n-1}| \geq |a_{n-1}| \geq |a_{n-1}| \leq |a_{n-1}| \leq |a_{n-1}| \leq |a_{n-1}| \leq |a_{n-1}|$

Following extensions can be obtained with an assumption that the real parts of the coefficients are non-negative and satisfy the hypothesis of the theorem-A.

Theorem-2: If $p(z) = \sum_{k=0}^{n} a_k z^k$ with $a_n \neq 0$ such that $\alpha_n \geq \alpha_{n-2} \geq \cdots \geq \alpha_1$ or $\alpha_0 \geq 0$ $\{\alpha_{n-1} \geq \alpha_{n-3} \geq \cdots \geq \alpha_0 \text{ or } \alpha_1 \geq 0\}$ (according as n is odd or even) and $\alpha_n > 0$ where $\alpha_j = \alpha_j + i \beta_j$, j = 0 of j = 0 then a bound for zeros of j = 0 is j = 0.

Theorem-3:If $p(z) = \sum_{k=0}^n a_k z^k$ with $a_n \neq 0$ such that $\alpha_n \geq \alpha_{n-2} \geq \cdots \geq \alpha_1$ or $\alpha_0 \geq 0$ $\{according \ as \ n \ is \ odd \ or \ even\}$ and $\alpha_n > 0$ where $a_j = \alpha_j + i \ \beta_j, \ j = 0 \ 0 \ n$ then a sharp bound for the zeros of p(z) is $R^* \leq |z| \leq R$

Where

$$R = 1 + \frac{2\alpha_{n-1}}{\alpha_n} + \frac{2}{\alpha_n} \sum_{k=0}^n |\beta_k| \text{ and } R^* = \frac{|a_0|}{R^{n} \{2\alpha_n R + (R-1)|\beta_n| - (\alpha_0 + |\beta_0|)\}}.$$

One can observe that the theorem-3 is an improvement of the theorem-2.

An extension can be obtained by including the increasing sequences between imaginary coefficients and further drop the restriction that the coefficients are non-negative in the hypothesis of the theorem-3.

Theorem-4:If
$$p(z) = \sum_{k=0}^{n} a_k z^k$$
 with $a_n \neq 0$ such that $a_n \geq a_{n-2} \geq \cdots \geq a_1$ or $a_1 \neq 0$ or $a_1 \neq 0$

where

$$\begin{split} R_1 &= \frac{|a_{n-1}|}{2} \left(\frac{1}{\alpha_n} - \frac{1}{M}\right) + \left\{\frac{|a_{n-1}|^2}{4} \left(\frac{1}{\alpha_n} - \frac{1}{M}\right)^2 + \frac{M}{\alpha_n}\right\}^{\frac{1}{2}} \\ R_2 &= \frac{-R_1^2 |a_1| (M_1 - |a_0|) + \left\{R_1^4 |a_1|^2 (M_1 - |a_0|)^2 + 4 |a_0| R_1^2 M_1^3\right\}^{\frac{1}{2}}}{2M_1^2} \end{split}$$

and

$$\begin{split} M \equiv \alpha_n + \alpha_{n-1} + \beta_n + \beta_{n-1} + (|\alpha_0| - \alpha_0) + (|\alpha_1| - \alpha_1) + (|\beta_0| - \beta_0) + (|\beta_1| - \beta_1) + |\alpha_{n-1}| + |\beta_{n-1}| \\ M_1 = R_1^{n+1} [(|\alpha_n| + |\beta_n|) R_1 + M - |\alpha_0| - |\beta_0|] \end{split}$$

An extension can be obtained by including both increasing and decreasing sequences between alternative coefficients in the hypothesis of the theorem-4.

$$\begin{aligned} & \textbf{Theorem-5:} \text{If } p(z) = \sum_{k=0}^{n} a_k z^k \text{ with } a_n \neq 0 \text{ such that } \\ & \alpha_n \geq \alpha_{n-2} \geq \cdots \geq \alpha_1 \text{ or } \alpha_0 \\ & \alpha_{n-1} \leq \alpha_{n-3} \leq \cdots \leq \alpha_0 \text{ or } \alpha_1 \\ & \beta_n \geq \beta_{n-2} \geq \cdots \geq \beta_1 \text{ or } \beta_0 \\ & \beta_{n-1} \leq \beta_{n-3} \leq \cdots \leq \beta_0 \text{ or } \beta_1 \end{aligned} \end{aligned}$$

$$(according \text{ as } n \text{ is odd or even}) \text{ and } \alpha_n > 0 \text{ where }$$

$$\alpha_j = \alpha_j + i \beta_j, \ j = 0 (1)n \text{ then all the zeros of } p(z) \text{ lie in the disc } |z| \leq \frac{M_2}{\alpha_n} \text{ where }$$

$$\alpha_n + (|\alpha_0| + |\beta_0| + \alpha_0 + \beta_0) + (|\alpha_1| + |\beta_1| - \alpha_1) + (|\alpha_{n-1}| + |\beta_{n-1}| - \alpha_{n-1} - \beta_{n-1}) + (\beta_n - \beta_1)$$

$$or$$

$$\alpha_n + (|\alpha_0| + |\beta_0| - \alpha_0) + (|\alpha_1| + |\beta_1| + \alpha_1 + \beta_1) + (|\alpha_{n-1}| + |\beta_{n-1}| - \alpha_{n-1} - \beta_{n-1}) + (\beta_n - \beta_0)$$
 according as n is odd or even

3. Lemmas

For proving the main results, the following lemmas have used. Lemma 1 owes itself to Govil and Rahman [3].

Lemma 1: If
$$|arg.a_k - \beta| \le \alpha \le \frac{\pi}{2}$$
, $|arg.a_{k-1} - \beta| \le \alpha$ and $|a_k| \ge |a_{k-1}|$ then $|a_k - a_{k-1}| \le \{(|a_k| - |a_{k-1}|)cos\alpha + (|a_k| + |a_{k-1}|)sin\alpha\}$

One can observe that the extension of Schwarz's lemma is the following lemma 2.

Lemma 2: If h(z) is analytic on and inside the unit circle, $|h(z)| \le H$ on |z| = 1, f(0) = a where |a| < H then $|h(z)| \le H \frac{H|z| + |a|}{|a||z| + H}$ for |z| < 1.

Lemma 3: If
$$h(z)$$
 is analytic in $|z| < r$, $|h(z)| \le H$ on $|z| = r$, $h(0) = a$ where $|a| < H$ then $|h(z)| \le H \frac{H|z| + |a|r}{|a||z| + Hr}$ for $|z| \le r$.

Lemma 3 can be proved from lemma 2 easily.

Govil, et al. [4] are attributed to the following lemma 4.

Lemma 4: If h(z) is analytic in $|z| \le 1$, h(0) = c where |c| < 1, h'(0) = d, $|h(z)| \le 1$ on |z| = 1 then for $|z| \le 1, |h(z)| \le \frac{(1-|c|)|z|^2 + |d||z| + |c|(1-|c|)}{|c|(1-|c|)|z|^2 + |d||z| + (1-|c|)}$

Lemma 5: If h(z) is analytic in $|z| \le r$, h(0) = 0, h'(0) = b and $|h(z)| \le H$ for |z| = r then for $|z| \le r$, $|h(z)| \le \frac{H|z|}{r^2} \frac{H|z| + r^2 |b|}{H + |z||b|}$

Lemma 5 can be proved from lemma 4 easily.

Main results proofs

Theorem-1 proof:

$$Let g(z) = (1 - z^2)p(z)$$

$$= -a_n z^{n+2} - a_{n-1} z^{n+1} + \sum_{k=0}^{n-2} (a_{k+2} - a_k) z^{k+2} + a_1 z + a_0$$
$$|g(z)| \ge |z|^{n+1} |a_n z + a_{n-1}| - \left| \sum_{k=0}^{n-2} (a_{k+2} - a_k) z^{k+2} + a_1 z + a_0 \right|$$

For |z| > 1,

$$|g(z)| \ge |z|^{n+1} |a_n z + a_{n-1}| - |z|^n \left\{ \sum_{k=0}^{n-2} |(a_{k+2} - a_k)| + |a_1| + |a_0| \right\}$$

Using Lemma-1 we obtain

$$|g(z)| \ge |z|^{n+1} |a_n z + a_{n-1}| - |z|^n [\{ \sum_{k=0}^{n-2} (|a_{k+2}| - |a_k|) \cos \alpha \} + \{ \sum_{k=0}^{n-2} (|a_{k+2}| + |a_k|) \sin \alpha \} + |a_1| + |a_0|]$$

$$= |z|^{n+1} |a_n z + a_{n-1}|$$

$$- |z|^n \Big[\{ (\cos \alpha + \sin \alpha) (|a_n| + |a_{n-1}|) \} + 2 \sin \alpha \sum_{k=0}^{n-2} |a_k| \Big]$$

$$-\left\{ (\cos\alpha + \sin\alpha - 1)(|a_1| + |a_0|) \right\}$$

$$|g(z)| > 0$$
 if

$$\left|z + \left(\frac{a_{n-1}}{a_n}\right)\right| > \frac{\left[\{(\cos\alpha + \sin\alpha)(|a_n| + |a_{n-1}|)\} + 2\sin\alpha\sum_{k=0}^{n-2}|a_k| - \{(\cos\alpha + \sin\alpha - 1)(|a_1| + |a_0|)\}\right]}{|a_n|} \equiv M \text{ (say)}$$

$$M > \frac{|a_n| + |a_{n-1}| - |a_1| - |a_0| + |a_1| + |a_0|}{|a_n|} = 1 + \left|\frac{a_{n-1}}{a_n}\right| \ge 1$$

Let $1 \le M < R$

Where
$$R = \left|z + \left(\frac{a_{n-1}}{a_n}\right)\right| \le |z| + \left|\frac{a_{n-1}}{a_n}\right|$$

$$|z| \ge R - \left|\frac{a_{n-1}}{a_n}\right| \ge 1 + R - M > 1$$

Hence g(z) does not vanish for

Hence
$$g(z)$$
 does not vanish for $\left|z + \left(\frac{a_{n-1}}{a_n}\right)\right| > \frac{\left[\left\{(\cos\alpha + \sin\alpha)(|a_n| + |a_{n-1}|)\right\} + 2\sin\alpha\sum_{k=0}^{n-2}|a_k| - \left\{(\cos\alpha + \sin\alpha - 1)(|a_1| + |a_0|)\right\}\right]}{|a_n|}$

$$\left|z + \left(\frac{a_{n-1}}{a_n}\right)\right| > \frac{\left|\{(\cos\alpha + \sin\alpha)(|a_n| + |a_{n-1}|)\} + 2\sin\alpha\sum_{k=0}^{n}|a_k| - \{(\cos\alpha + \sin\alpha - 1)(|a_1| + |a_0|)\}\right|}{|a_n|}$$
Therefore, those roots of $g(z)$ for whichthe modulus is greater than one be located in
$$\left|z + \left(\frac{a_{n-1}}{a_n}\right)\right| \leq \frac{\left[\{(\cos\alpha + \sin\alpha)(|a_n| + |a_{n-1}|)\} + 2\sin\alpha\sum_{k=0}^{n-2}|a_k| - \{(\cos\alpha + \sin\alpha - 1)(|a_1| + |a_0|)\}\right]}{|a_n|}$$

Theorem-2 proof:

Let
$$g(z) = (1 - z^2)p(z)$$

= $-a_n z^{n+2} + Q(z)$ where $Q(z) = -a_{n-1} z^{n+1} + \sum_{k=0}^{n-2} (a_{k+2} - a_k) z^{k+2} + a_1 z + a_0$
For $|z| = 1$,

$$|Q(z)| \le |a_0| + |a_1| + |a_{n-1}| + \sum_{k=2}^{n} |a_k - a_{k-2}|$$

$$\begin{split} |Q(z)| & \leq \alpha_0 + |\beta_0| + \alpha_1 + |\beta_1| + \alpha_{n-1} + |\beta_{n-1}| + \sum_{k=2}^n (\alpha_k - \alpha_{k-2}) + \sum_{k=2}^n (|\beta_k| + |\beta_{k-2}|) \\ & = \alpha_n + 2\alpha_{n-1} - |\beta_n| + 2\sum_{k=0}^n |\beta_k| \\ & \leq \alpha_n + 2\alpha_{n-1} + 2\sum_{k=0}^n |\beta_k| \end{split}$$

Hence also

$$\left|z^{n+1}Q\left(\frac{1}{z}\right)\right| \le \alpha_n + 2\alpha_{n-1} + 2\sum_{k=0}^n |\beta_k|$$

For |z| = 1, by the maximum modulus principle holds inside the unit circle as well.

If R > 1then $\frac{1}{R}e^{-i\theta}$ be located in the unit circle for all real θ , which implies

$$\left|Q\left(Re^{i\theta}\right)\right| \le \left\{\alpha_n + 2\alpha_{n-1} + 2\sum_{k=0}^n |\beta_k|\right\} R^{n+1}$$
 for every $R \ge 1$ and θ real.

Thus for |z| = R > 1

$$|g(Re^{i\theta})| \ge |a_n|R^{n+2} - |Q(Re^{i\theta})|$$

$$\ge |a_n|R^{n+2} - \left\{\alpha_n + 2\alpha_{n-1} + 2\sum_{k=0}^{n} |\beta_k|\right\}R^{n+1}$$

$$\ge \alpha_n R^{n+2} - \left\{\alpha_n + 2\alpha_{n-1} + 2\sum_{k=0}^{n} |\beta_k|\right\}R^{n+1}$$

$$|g(Re^{i\theta})| > 0 \text{ if } R > \frac{\{\alpha_n + 2\alpha_{n-1} + 2\sum_{k=0}^n |\beta_k|\}}{\alpha_n}.$$

Theorem-3 proof:

Let
$$g(z) = (1 - z^2)p(z)$$

= $a_0 + f(z)$ where $f(z) = -a_n z^{n+2} - a_{n-1} z^{n+1} + \sum_{k=2}^{n} (a_k - a_{k-2}) z^k + a_1 z$
Let $M(r) = \max_{|z|=r} |f(z)|$

Then
$$M(R) \ge |a_0|$$
 where $R = \frac{\{\alpha_n + 2\alpha_{n-1} + 2\sum_{k=0}^{n} |\beta_k|\}}{}$

Clearly, $|f(z)| \le |a_n| |z|^{n+2} + |a_{n-1}| |z|^{n+1} + \sum_{k=2}^{n} |a_k - a_{k-2}| |z|^k + |a_1| |z|$ and $R \ge 1$. Hence,

$$\begin{split} M(R) &= \max_{|z|=R} |f(z)| \leq |a_n| R^{n+2} + |a_{n-1}| R^{n+1} + |a_1| R + \sum_{k=2}^n |a_k - a_{k-2}| R^k \\ &\leq |a_n| R^{n+2} + |a_{n-1}| R^{n+1} + |a_1| R + R^n \{ \sum_{k=2}^n |a_k - a_{k-2}| \} \\ &\leq |a_n| R^{n+2} + R^{n+1} \left\{ |a_{n-1}| + |a_1| + \sum_{k=2}^n |a_k - a_{k-2}| \right\} \\ &\leq (\alpha_n + |\beta_n|) R^{n+2} + R^{n+1} \{ \alpha_n + 2\alpha_{n-1} - \alpha_0 - |\beta_0| - |\beta_n| + 2\sum_{k=0}^n |\beta_k| \} \\ &= R^{n+1} \{ 2\alpha_n R + (R-1) |\beta_n| - (\alpha_0 + |\beta_0|) \} \equiv M \end{split}$$

Since f(0) = 0, hence for $|z| \le R$ we have by Schwarz's lemma,

Since
$$f(0) = 0$$
, hence for $|z| \le R$ we have by Schwarz's lemma,
$$|f(z)| \le \frac{M|z|}{R}$$
 For $|z| \le R$, $|g(z)| \ge |a_0| - |z|R^n\{2\alpha_nR + (R-1)|\beta_n| - (\alpha_0 + |\beta_0|)\}$ $|g(z)| > 0$ if $|z| < \frac{|a_0|}{R^n\{2\alpha_nR + (R-1)|\beta_n| - (\alpha_0 + |\beta_0|)\}}$ Since $\frac{2\alpha_nR + (R-1)|\beta_n| - (\alpha_0 + |\beta_0|)}{|a_0|} > 0$ Then $\frac{|a_0|}{R^n\{2\alpha_nR + (R-1)|\beta_n| - (\alpha_0 + |\beta_0|)\}} < R$.

Theorem-4 proof:

Let
$$g(z) = (1 - z^2)p(z)$$

 $= -a_n z^{n+2} + Q(z)$ where $Q(z) = -a_{n-1} z^{n+1} + \sum_{k=2}^{n} (a_k - a_{k-2}) z^k + a_1 z + a_0$
Let $T(z) = z^{n+1} Q\left(\frac{1}{z}\right) = -a_{n-1} + \sum_{k=2}^{n} (a_k - a_{k-2}) z^{n-k+1} + a_1 z^n + a_0 z^{n+1}$

For |z| = 1, we have

$$|T(z)| \le |a_0| + |a_1| + |a_{n-1}| + \sum_{k=2}^{n} |a_k - a_{k-2}| \le M$$

where

 $M \equiv \alpha_n + \alpha_{n-1} + \beta_n + \beta_{n-1} + (|\alpha_0| - \alpha_0) + (|\alpha_1| - \alpha_1) + (|\beta_0| - \beta_0) + (|\beta_1| - \beta_1) + |\alpha_{n-1}| + |\beta_{n-1}|$ By the maximum modulus principle, it holds inside the unit circle as well.

If R > 1 then $\frac{1}{R}e^{-i\theta}$ be located in the unit circle for all real θ , which implies

 $|Q(Re^{i\theta})| \le M R^{n+1}$ for every real $R \ge 1$ and real θ .

Thus for |z| = R > 1

$$|g(Re^{i\theta})| \ge |a_n|R^{n+2} - |Q(Re^{i\theta})| \ge \alpha_n R^{n+2} - M R^{n+1}$$

$$|g(Re^{i\theta})| > 0$$
 if

$$R > \frac{M}{\alpha_n}$$

$$=1+\left\{\frac{\alpha_{n-1}+\beta_n+\beta_{n-1}+(|\alpha_0|-\alpha_0)+(|\alpha_1|-\alpha_1)+(|\beta_0|-\beta_0)+(|\beta_1|-\beta_1)+|\alpha_{n-1}|+|\beta_{n-1}|}{\alpha_n}\right\}$$

Hence the concept of maximum modulus, $|T(0)| = |a_{n-1}| < M$

By lemma-2 on the function T(z) we obtain for $|z| \le$

$$|T(z)| \le M \frac{M|z| + |a_{n-1}|}{|a_{n-1}||z| + M}$$

This implies that

$$\left|z^{n+1}Q\left(\frac{1}{z}\right)\right| \le M \frac{M|z| + |a_{n-1}|}{|a_{n-1}||z| + M}$$

If R > 1, $\frac{1}{R}e^{-i\theta}$ be located in the unit circle for all real θ , which implies

$$|Q(Re^{i\theta})| \le M R^{n+1} \frac{M + |a_{n-1}|R}{|a_{n-1}| + M R}$$

Thus for |z| = R > 1

$$\begin{split} \left| g \big(R e^{i \theta} \big) \right| &\geq |a_n| R^{n+2} - \left| Q \big(R e^{i \theta} \big) \right| \geq \alpha_n R^{n+2} - M \, R^{n+1} \frac{M + |a_{n-1}| R}{|a_{n-1}| + M \, R} \\ &= \frac{R^{n+1}}{MR + |a_{n-1}|} [M \, \alpha_n R^2 - |a_{n-1}| (M - \alpha_n) R - M^2] \end{split}$$

$$> 0 \text{ if } R > \frac{|a_{n-1}|}{2} \left(\frac{1}{\alpha_n} - \frac{1}{M}\right) + \left\{\frac{|a_{n-1}|^2}{4} \left(\frac{1}{\alpha_n} - \frac{1}{M}\right)^2 + \frac{M}{\alpha_n}\right\}^{\frac{1}{2}} \equiv R_1$$

Therefore g(z) have all the zeros of located in $|z| \le R_1$ where $R_1 > 1$.

It means that all zeros of p(z) are located in $|z| \le R_1$.

Subsequently, it can be showed that no zeros of p(z) are located in $|z| < R_2$.

$$g(z) = a_0 + f(z) = a_0 + a_1 z + \sum_{k=2}^{n} (a_k - a_{k-2}) z^k - a_{n-1} z^{n+1} - a_n z^{n+2}$$

Let $M(R_1) = \max_{|z|=R_1} |f(z)|$

Since $R_1 \ge 1$, $f(1) = -a_0$ we have $M(R_1) \ge |a_0|$

Clearly $|f(z)| \le |a_n||z|^{n+2} + \sum_{k=2}^n |a_k - a_{k-2}||z|^k + |a_1||z| + |a_{n-1}||z|^{n+1}$ And hence $M(R_1) \le |a_n|R_1^{n+2} + \sum_{k=2}^n |a_k - a_{k-2}|R_1^k + |a_1|R_1 + |a_{n-1}|R_1^{n+1}$

$$\leq |a_n|R_1^{n+2} + R_1^{n+1} \left\{ |a_1| + |a_{n-1}| + \sum_{k=2}^n |a_k - a_{k-2}| \right\}$$

 $\leq R_1^{n+1}[(|\alpha_n| + |\beta_n|)R_1 + M - |\alpha_0| - |\beta_0|] \equiv M_1 \text{ (say)}$

Further because f(0) = 0, $f'(0) = a_1$ we have by lemma-5

$$|f(z)| \le \frac{M_1|z|}{R_1^2} \frac{M_1|z| + |R_1^z|a_1|}{M_1 + |a_1||z|}$$
 for $|z| \le R_1$

Turner occases
$$f(0) = 0$$
, $f(0) = u_1$ we have by remines
$$|f(z)| \le \frac{M_1 |z|}{R_1^2} \frac{M_1 |z| + |R_1^2|a_1|}{M_1 + |a_1||z|} \text{ for } |z| \le R_1$$

$$|g(z)| \ge |a_0| - \frac{M_1 |z|}{R_1^2} \frac{M_1 |z| + |R_1^2|a_1|}{M_1 + |a_1||z|} = \frac{-1}{R_1^2 (M_1 + |z||a_1|)} [|z|^2 M_1^2 + R_1^2 |a_1||z| (M_1 - |a_0|R_1^2 M_1)]$$

$$|g(z)| > 0 \text{ if } |z| < \frac{-R_1^2|a_1|(M_1-|a_0|) + \left\{R_1^4|a_1|^2(M_1-|a_0|)^2 + 4\,|a_0|R_1^2M_1^3\right\}^{\frac{1}{2}}}{2M_1^2} \equiv R_2 \text{ (say) where } R_2 \le R_1.$$

Theorem-5 proof:

Let
$$g(z) = (1-z^2)p(z)$$

= $-a_n z^{n+2} + Q(z)$ where $Q(z) = -a_{n-1} z^{n+1} + \sum_{k=2}^n (a_k - a_{k-2}) z^k + a_1 z + a_0$
For $|z| = 1$ we have $|Q(z)| \le M_2$

where
$$M_{2} = \begin{cases} \alpha_{n} + (|\alpha_{0}| + |\beta_{0}| + \alpha_{0} + \beta_{0}) + (|\alpha_{1}| + |\beta_{1}| - \alpha_{1}) + (|\alpha_{n-1}| + |\beta_{n-1}| - \alpha_{n-1} - \beta_{n-1}) + (\beta_{n} - \beta_{1}) \\ or \\ \alpha_{n} + (|\alpha_{0}| + |\beta_{0}| - \alpha_{0}) + (|\alpha_{1}| + |\beta_{1}| + \alpha_{1} + \beta_{1}) + (|\alpha_{n-1}| + |\beta_{n-1}| - \alpha_{n-1} - \beta_{n-1}) + (\beta_{n} - \beta_{0}) \\ & \text{according as n is odd or even} \end{cases}$$

By the maximum modulus principle it holds inside the unit circle as well.

If R > 1 then $\frac{1}{R}e^{-i\theta}$ be located in the unit circle for all real θ and follows that

 $|Q(Re^{i\theta})| \le M_2 R^{n+1}$ for every $R \ge 1$ and real θ .

Thus for |z| = R > 1

Thus for
$$|z| = R > 1$$

$$g|(Re^{i\theta})| \ge |a_n|R^{n+2} - |Q(Re^{i\theta})| \ge \alpha_n R^{n+2} - M_2 R^{n+1}$$

$$|g(Re^{i\theta})| > 0 \text{ if } R > \frac{M_2}{\alpha_n} \text{ where } R > 1.$$

If α_0 , α_1 , $\alpha_{n-1} \ge 0$ and β_0 , β_1 , $\beta_{n-1} \ge 0$ in theorem-5 then

Corollary-5.1: If $p(z) = \sum_{k=0}^{n} a_k z^k$ with $a_n \neq 0$ such that

Coronary-S.1: If
$$\beta(z) = \sum_{k=0} \alpha_k z^k$$
 with $\alpha_n \neq 0$ such that $\alpha_n \geq \alpha_{n-2} \geq \cdots \geq \alpha_1$ or $\alpha_0 \geq 0$ $0 \leq \alpha_{n-1} \leq \alpha_{n-3} \leq \cdots \leq \alpha_0$ or α_1 $\beta_n \geq \beta_{n-2} \geq \cdots \geq \beta_1$ or $\beta_0 \geq 0$ $0 \leq \beta_{n-1} \leq \beta_{n-3} \leq \cdots \leq \beta_0$ or β_1 where $\alpha_j = \alpha_j + i \beta_j$, $j = 0(1)n$ then all the zeros of $p(z)$ lie in the disc

$$|z| \le \begin{cases} \frac{\alpha_n + \beta_n + 2(\alpha_0 + \beta_0)}{\alpha_n} \\ or \\ \frac{\alpha_n + \beta_n + 2(\alpha_1 + \beta_1)}{\alpha_n} \end{cases}$$
 (according as n is odd or even)

If all the coefficients of the polynomial are real in theorem-5 then

Corollary-5.2: If $p(z) = \sum_{k=0}^{n} a_k z^k$ is a polynomial of degree n such that $a_n \ge a_{n-2} \ge \cdots \ge a_1$ or $a_0 \ a_{n-1} \le a_{n-3} \le \cdots \le a_0$ or a_1 (according as n is odd or even) and $a_n > 0$ then all the roots of p(z) lie in the disc

$$|z| \le \begin{cases} 1 + \frac{(|a_0| + a_0) + (|a_1| - a_1) + (|a_{n-1}| - a_{n-1})}{a_n} \\ 1 + \frac{(|a_0| - a_0) + (|a_1| + a_1) + (|a_{n-1}| - a_{n-1})}{a_n} \end{cases}$$
 (according as n is odd or even)

If all the coefficients of the polynomial are real and non-negative in theorem-5 then

$$\begin{aligned} & \textbf{Corollary-5.3:} \text{ If } p(z) = \sum_{k=0}^n a_k z^k \text{with } a_n \neq 0 \text{ such that} \\ & a_n \geq a_{n-2} \geq \cdots \geq a_1 \text{ or } a_0 \geq 0 \\ & 0 \leq a_{n-1} \leq a_{n-3} \leq \cdots \leq a_0 \text{ or } a_1 \end{aligned} \} \quad (according \text{ as } n \text{ is odd or even}) \text{ and } a_n > 0 \text{ then all the roots of} \\ & p(z) \text{ lie in the disc } |z| \leq \begin{cases} 1 + \frac{2a_0}{a_n} \\ 1 + \frac{2a_1}{a_n} \end{cases} \quad (according \text{ as } n \text{ is odd or even})$$

References

- 1. Aziz, A., &Zargar, B. A. (1996). Some extensions of Enestrom-Kakeya theorem. GlasnikMatematicki, 31, 239-244.
- 2. Dewan, K. K., &Bidkham, M. (1993). On the Eneström-Kakeya theorem. Journal of mathematical analysis and applications, 180(1), 29-36.
- 3. Govil, N. K., & Rahman, Q. I. (1968). On the Eneström-Kakeya theorem. Tohoku Mathematical Journal, Second Series, 20(2), 126-136.
- 4. Govil, N. K., Rahman, Q. I., &Schmeisser, G. (1979). On the derivative of a polynomial. Illinois Journal of Mathematics, 23(2), 319-329.
- 5. Gardner, R. B., &Govil, N. K. (1994): On the Location of the Zeros of a Polynomial. Journal of Approximation Theory, 78(2), 286-292.
- 6. Gardner, R., &Govil, N. (1997). Some generalizations of the Eneström-Kakeya theorem. Acta Mathematica Hungarica, 74(1-2), 125-134.
- 7. Marden, M. (1966). Geometry of Polynomials, Providence, RI. American Mathematical Society.