Turkish Journal of Computer and Mathematics Education ~ Vol.12 No.2 (2021), 2823-2829
Research Article

Selected Extensions on Enestrom-kakeya Theorem

R. K. Pavan Kumar. Pannalal

1Department of Mathematics, ChandigrahUniversity, Gharuan-Mohali, Punjab -140413, India.
kamesh9.iit@gmail.com

Avrticle History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract: The theorem of Enestrdm-Kakeya is important within the hypothesis of dissemination of zeros ofpolynomials. In
the literature, it can be found so many extensions on Enestrom-Kakeya theorem by giving various relations between the
coefficients of polynomial like increasing, decreasing, irregular order etc.This paper mainly deals with some extensions on
the Abdul Aziz and B AZargar theorembygiving some relaxations to the hypothesis that the coefficients are real, positive and
alternative coefficients must be in increasing order.
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1. Introduction and statement of results

Enestrom-kakeya Theorem [7]: Given the real polynomial f(z) = Yr_, a,z*.
Ifa() 2 al 2 az 2 A 2 an_1 2 aTI. > Othen f(Z) * 0f0|’|Z| < 1

The literature includes extensions, generalizations and refinements of Enestrom-Kakeya theorem ([1-6]).

Theorem-A: If p(z) = Xi_, a,z" is a polynomialwith a,, # 0, such that
A, =2 0ap_p=--20a, or ag>0
an_1 2 an_3 2 ot 2 ao or a1 > 0

disc|z+% <14t

n an

} (according as n is odd or even) then all the zeros of p(z) lie in the

Theorem-A is given by Abdul Aziz and B.A.Zargar[1].
The hypothesis of the theorem-A is relaxed and obtained several extensions which are enumerated as follows.
2. Main results
Theorem-1: Ifp(z) = Y-, a,z" is a polynomial of degree n with complex coefficients such that
lan| = lay-| = -+ = |a;| or |ao|

lan_1l = lan_s| = -+ = lao| or |a,|
real 8, for k = 0(1)n then the bound to the location of zeros ofp(z) is|z + %

} (according as n is odd or even) and |arg.a; — B| < a < g for some

<

[{(cosa+sina)(|an|+|an_1|)—{(cosa+sina—1)(|a1|+|a0|)}+25ina22;§|ak|}]
lanl
Following extensions can be obtained with an assumption that the real parts of the coefficients are non-
negative and satisfy the hypothesis of the theorem-A.

Theorem-2:1f p(z) = Y-, axz*with a,, # 0 such that
An = Ap_p = =a; or ag =0
an_l 2 an_3 2 tee 2 ao or a1 2 0
0(1)n then a bound for zeros of p(z) is|z| < 1+ ZO;L‘I + fZﬁ:olﬁkl-
n n

} (according as nis odd or even) and a,, > O where a; = a; + i 5}, j =

Theorem-3:1f p(z) = Y-, axz*with a,, # 0 such that

A = Qp = 2ay or ag=0
Ap_ 1 = Ay 3=20qg or a; =0
0(1)n then a sharp bound for the zeros of p(2)isR* < |z| < R

} (according as n is odd or even) and a, > Owhere a; = a; + i f;, j =

Where
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2an— 2 * laol
R=1+=tp 2y nd R* = .
+ an +anz’<-°|ﬁ"|ad R™M2anR+(R-1)|Bnl—(ao+BoD)}

One can observe that the theorem-3 is animprovement of the theorem-2.

An extension can be obtained by including the increasing sequences between imaginary coefficients and
further drop the restriction that the coefficients are non-negativein the hypothesis of the theorem-3.

Theorem-4:1f p(z) = Yr_, axz*with a,, # Osuch that
Uy Z Ay = 2 Q1 0T Q
Apqg = QA3 =" = Ay O Ay
Bn = Pn-z = =Py or Py
Bn-1ZPnz = =Py or fy
a; = a; +if;, j = 0(1)n then all the zeros of p(z) lie in the annular ring R, < |z| < R,

(according as nis odd or even) and a,, > 0 where

where
1
anql/1 1 an?71  1\* M)?
R1=| n 1I<___>+ |2y <___> M
2 a, M 4 a, M a,
1
R, — —Rfla;|(M; — laol) + {R{la, |>(My — lagD? + 4 |as|RE M7 )2
2 2M?
and

M =ay +an_q + Bn + Bp-1 + (Il — o) + (las| — 1) + (IBo] = Bo) + (IB1l = B1) + lan—1| + |Bn-1l
My = R [(lan| + 1BnDRy + M — lag| — 1Bol]

An extension can be obtained by including both increasing and decreasing sequences between alternative
coefficients in the hypothesis of the theorem-4.

Theorem-5:1f p(z) = Y#_, a,z*with a,, # 0 such that
Ap = Ap_p = ° = 01 OT U
dp-_1 < an_3 <.-< Qg Or aq
BnZ Bn—zz =Py or By
Bn-1 < Bn-3z < < Py or By "
a; = a; +if;, j = 0(1)n then all the zeros of p(z) lie in the disc |z| < a—zwhere
an + (laol + [Bol + ag + Bo) + (lay| + [B1] — ar) + ({an_1| + |Bn-i|l — @ney = Bue1) + (Bn — B1)
or
an + (laol + [Bol — ao) + (lay| + [B1] + @y + B1) + (lan—1| + |Baci| — @n_1 = Bno1) + (B — Bo)
accordning as n is odd or even

(according as nis odd or even) and a,, > 0 where

M2:

3. Lemmas

For proving the main results, the following lemmas have used. Lemma 1 owes itself to Govil and Rahman

3.

Lemmal: If larg.a, — Bl < a < g, larg.a,_; — Bl < a and |a;| = |a,_4| then
lax — ar—1| < {(lax| — lax-1Dcosa + (lax| + |ax_11)sina}

One can observe that the extension of Schwarz‘s lemma is the following lemma 2.

Lemma 2: If h(z) is analytic on and inside the unit circle, |2(z)| < Hon |z| = 1, f(0) = a where |a| < H

Hlz|+|a|
then |[h(2)| < H iz H for |z| < 1.

Lemma 3: If h(z) isanalyticin |z| <r, |h(z)| < Hon |z| =1, h(0) = a where |a| < H then
Ih(2)| < HEZZHA tor 12 < 7.
|al|z|+Hr

Lemma 3 can be proved from lemma 2 easily.

Govil, et al. [4] are attributed to the following lemma 4.
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Lemma 4: If h (2) is analytic in |z| < 1,/4(0) = ¢ where |c| < 1,h'(0) = d, |h(z)| < 1on|z| = 1 then for

(1=l |z[2+]d]|z]+]c|(1—|c])
<1 < .
Izl < 1, 1h(@] < e e+ azieD

Lemma 5: If h(z) is analytic in |z] < r, h(0) = 0,/'(0) = b and |h(2)| < H for |z| = r then for |z| < 7,
|h(Z)| < @leHr2 |b|
— r2  H+l|z||b|

Lemma 5 can be proved from lemma 4 easily.

4. Main results proofs

Theorem-1 proof:
Letg(2) = (1 — z)p(2)

n-2

= —a,z""? —q,_z""t + Z(ak+2 —a )z + az+ a,

k=0
n-2

Z(ak+2 - @)z + a,z + a,
k=0

lg@| = 1zI" Hayz + ay-4| -

For |z| > 1,

n-2
19| = 121" a7 + an | - |z|n[2|(ak+z — @)l + lai] + |ao|]
k=0
Using Lemma-1 we obtain

19| 2 12" anz + ap—s| = 12" [{ZRZE (k2| — laxDeosa} + {ERZ5(Iaks2] + lar)sina} + |as+lal]
= |zI""anz + ap-|

n-2
— |z|™ [{(COS(X + sina)(|la,| + |a,_. D} + ZSinaZIakI

k=0
— {(cosa + sina — 1)(Ja | + Iaol)}l
lg(2)| > 0if
. . n-2 _ . _
|Z + (a;l_l) > [{(cosa+smzx)(|an|+Ian_ll)}+25ma|§k|:0|ak| {(cosa+sina 1)(|a1|+|ao|)}] =M (say)
n n
a,| +la,—1| — |la{| — lag| + |a{| + |a, a,_
M>|n| lan_1| = lag| — laol + lay| |o|=1+ 1l o g
la| n
Let1<M<R
Where R = |z+ (M) < |z| + [Pt
an
ap-1

|z| =R —

>1+R-M>1

n
Hence g(z) does not vanish for

| 4 (an_1> S [{(cosa + sina)(lan| + |an_1D} + 2sina ¥i=glax| — {(cosa + sina — 1)(las| + la,[)}]
Z

an lan|

Therefore, those roots of g(z)for whichthe modulus is greater than one be located in

[{(cosa + sina)(|a,| + |an_1 D} + 2sina ¥pzz|a| — {(cosa + sina — 1)(|a,| + |asD}]

[+ (52| <
y |ay |
Theorem-2 proof:
Letg(z) = (1 - z*)p(2)
= —a,z""? + Q(2) where Q(2) = —a_1z"*"' + XiZi(ars2 — @)z + a1z + g

For |z| =1,

n
10 < laol +lay| + lan_al + ) lay = @]
k=2
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QG| < o + 1Bol + &y + 1Byl + @y + 1Bca| + ) (@ = @) + ) (Bl + [e-al)
k=2 k=2
=a,+2a, 4 — |ﬁn| + 22|ﬁk|
k=0

n
< a, +2a, . + 2Z|5k|
k=0

Hence also

n
1
zZ"1Q <;>| <a,+2a,_;+2 Z|ﬁk|
k=0

For |z| = 1, by the maximum modulus principle holds inside the unit circle as well.
IfR > 1then%e‘“’be located in the unit circle for all real 6,which implies
|Q(Re®®)| < {a, + 2a,_1 + 2 X2 olBk I3R! for every R > 1 and @ real.
Thusfor|z| =R > 1
|l9(Re®)| = lan|R™? — |Q(Re™))]
n

= |an|Rn+2 - {a’n + 20,4 +2 |ﬁk|}Rn+1
k=0

n
> a,R"*? — {an + 20, 1 +2 ZLB,(I}R"“

k=0
|g(Rei6)| >0ifR > {an+2an—1+2 Zz=o|ﬁk|}.

an

Theorem-3 proof:

Letg(z) = (1 — z*)p(2)

=ay+ f(z) where f(2) = —a,z""?% —a,_1z"" + Xr(ar — ax_,)z" + a;z
Let M(r) = max If ()|

n
Then M(R) = |a,| where R = (n+20n=1+2Yic=olFil]

an
Clearly, |[f(2)| < lanllz|™? + |ap_1112|""* + XRoslar — ax—z] |2|¥ + |aq||z] and R = 1.
Hence,

n
M(R) = max [f ()] < 1an|R™ + la, 1 |R™" + [ay|R + ) [0y = @y, IR*
k=2

n
< 1@l R™? + lay o [R™1 + oy R + RO | = @y}
k=2

n
< la,[R™ + R {|an_1| Hlar+ ) la, - ak_zl}
k=2
< (@ + [BuDR™? + R™ Hay, + 201 — g — |Bol=1By] + 2 X=ol B}
= R {2a,R + (R — D|Bnl = (ag + B} =M

Since f(0) = 0, hence for |z| < R we have by Schwarz’s lemma,
M |z|
ol <—=

For |z| <R, |g(2)| = |ao| — |z|R™{2a,R + (R — 1)|Bn| — (ao + oD}

: laol
lg(@) > 01 |zl < e R =t 5D
2R+ (R=1) Bl (a0t 1Bol)
o >0
0

laol
Then R.
¢ R™{2anR+(R—1)|Bn|-(ao+|Bo} <

Since

Theorem-4 proof:
Letg(z) = (1 — z*)p(2)
= —a,z""? + Q(z) where Q(2) = —an_1z""t + Yr (ar — ar_2)zF + a1z + a,

Let T(z) = z"*1Q G) = —a,_ + X0, (ar — ar_p)z" " + a 2™ + agz" !
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For |z| = 1, we have

n
T < laol + 1@l + ans] + Y lay = @yl < M
k=2
where
M= ay + @y + B + By + (lao] — @p) + (sl = a1) + (UBol = Bo) + (IB1] = B1) + lnsl + 1B
By the maximum modulus principle, it holds inside the unit circle as well.
IfR>1 then%e“'gbe located in the unit circle for all real 8,which implies

|Q(Re®)| < M R™** for every real R > 1 and real 6.
Thusfor |z| =R > 1
|g(Rei9)| > |an|Rn+2 _ |Q(Rel9)| > aan+2 — M R

|g(Re®)| > 0 if
R >—

an
14 {an-1 + Bn + Bn1 + (lag| — ao) + (lay| — ay) + (I1Bo| = Bo) + (IBs| = B1) + lan-q| + Iﬁn-ll}

aTL

Hence the concept of maximum modulus, |T(0)| = |a,_1| < M
By lemma-2 on the function T'(z) we obtain for |z| < 1,

M |Z| + |an—1|
T <M-—FF
R PR [P
This implies that
g <}>| < MM |z| + |an_4|
z lan-1llz] + M
IfR>1, %e‘“’be located in the unit circle for all real 8, which implies
. M+ |a,_4|R
|Q(Relg)| < MRTI.+17
a1+ MR
Thusfor|z| =R > 1
. . M+ |a,_4|R
R 0| > Rn+2 _ R i0)| > Rn+2 -M Rn+1 n
|g( e )l = |an| » |Q( e )l = Qn |an—1| + MR
Rn
= W[M anR? = |ap_1|(M — ap)R — M?]
n-1
1
. lan-al (1 1 lan—al?> (1 1)\2 | M2 _
>0ifR >T(a—g)+{7(a—ﬁ) +Z} =R,

Therefore g(z)have all the zeros of located in |z| < R, where R; > 1.

It means that all zeros ofp(z)are located in |z| < R;.

Subsequently, it can be showed that no zeros ofp(z)are located in|z| < R,.
n

n+1 __ n+2

9@)=ay+f(2) =ay+a;z+ (ax — ak—z)Zk —Qap_1Z anz

k=2
Let M(R,) = max If (@)
z|=Rq
Since R, = 1,f(1) = —a, we have M(R;) = |a,|
Clearly |f (2)] < layllz|™*? + XRoslar — ax—zllz|* + lagl|z] + |an_|]2|"**
And hence M(R;) < |a,|RT** + Xi_,la, — A2 RY + |as|Ry + |ay_q R

n
< lan |R*? + RY*1 {|a1| Hlag gl + ) lay = ak_z|}
k=2
< R H(anl + BrDRy + M — |ao| = 18ol] = M, (say)
Further because f(0) = 0, f'(0) = a, we have by lemma-5

My |z| M)z|+|R%|a,|
< -1 <
If (@) < 2 Mytlallz] for |z| < R,

M, |z| My|z| + |Rf|a,]| -1
Lg(z)lZlaOl_ 2 =732
Rf M+ |allzl R{(M; + |z|l|ay])

1
2 4 271,312
—Rflas|(M1~lagD+{RTlas|* (M1 —lagD?+4 |ao|RTMF}2 _

2M? -

[I1zI*M? + RElay |1z|(My — lao|REM;]

lg2)| > 0if|z| < R, (say) where R, < R;.
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Theorem-5 proof:

Letg(z) = (1 — z*)p(2)

= —a,z""? + Q(z) where Q(2) = —an_1z"" + ¥ ,(ax — ar_z)z¥ + a;z + a,
For |z| = 1 we have

Q(2)| < M,
where
an + (lagl + 1Bol + ag + Bo) + (lay| + 81l — ay) + (lap_1| + |Bn—al — @nq = 1) + (B — B1)
or
M, =

an + (|a’o| + |BO| - 050) + (lall + |.81| + a; + Bl) + (lan—ll + |Bn—1| e .Bn—l) + (.Bn - ,Bo)
accordning as n is odd or even
Hence also for |z| = 1, |z”+1 Q G)| < M,.
By the maximum modulus principle it holds inside the unit circle as well.
If R > 1then %e‘iebe located inthe unit circle for all real 8 and follows that
|Q(Re®)| < M,R™** for every R > 1 and real 6.
Thusfor|z| =R > 1
g|(Rei6)| > |an|Rn+2 _ |Q(Rei6)| > (1an+2 _ Man+1
|g(Re™®)| > 0if R > =2 where R > 1.

Ifay, a1, a1 = 0and By, B1, Bn—1 = 0 in theorem-5 then

Corollary-5.1: If p(z) = ¥}, axz*with a,, # Osuch that
A2 Uy =2ay 0r ag =0
0<a,1<a,3<-=<q or aq . ,
B> By ==y o By =0 (according as n is odd or even) and a,, > 0
0<PBp1=Pun3z<-<Poorp
where a; = a; +if;, j = 0(1)n then all the zeros of p(z) lie in the disc
an + ,Bn + 2(0(0 + ,30)
a’ﬂ
lz| < or (according as n is odd or even)
an + ﬁn + 2(“1 + ﬁl)
an

If all the coefficients of the polynomial are real in theorem-5 then

Corollary-5.2: If p(z) = ¥}, a,z* is a polynomial of degree n such that
ap = Ap_p =+ 2 0ay OF Qg

Gy <@y < <ay or (11} (according as nis odd or even) and a,, > 0 then all the roots of p(2)

lie in the disc
14 (lagl + ap) + (las| — a;) + (lap—1] — ay—1)
an . .
<
lz] < . (laol = ap) + (ag + ay) + (ayy| — ay_) (according as nis odd or even)
an

If all the coefficients of the polynomial are real and non-negative in theorem-5 then

Corollary-5.3: If p(z) = ¥}, a,z*with a,, # Osuch that
ap=ayn o, ==a; or ag =0
0<a,.1<a,3<<ayor a

} (according as n is odd or even) and a,, > 0 then all the roots of
1+22

an
2aq

p(2) liein the disc |z] < (according as nis odd or even)

1+

an
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