
 

Turkish Journal of Computer and Mathematics Education       Vol.12 No.2 (2021), 2680-2691 

                                                                                                                            Research Article                                              

2680  

 

A novel framework for synthesizing nested queries in SQL from business requirements 

language 

 

Mathew George1, Dr. Rohini V2 

 

1,2Department of Computer Science CHRIST, Bangalore

 

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021 
 

Abstract:Different methods and systems were proposed in the past for translating Natural Language (NL) 

statements in to Structured Query Language (SQL) queries. Translating statements resultingin‘nested’queries 

havealways been a challenge and was not effectively handled. This work proposes a framework for translating 

requirement statementsresulting inthe construction of nested Queries. While translating nested scenarios; often 

thereis a need to create sub-queriesthat execute inpipeline orin parallel or both operating together.Lambda 

Calculus is found to be effective in representing the intermediate expressions and helps in performing the 

transformations that are needed in translating specific predicates into SQL, but its inflexibility in combining 

parallel computations is a constraint. To represent clauses that are in parallel or arein pipeline,and to perform the 

required transformationson theintermediate expressions involving these,more advancedprogramming constructs 

are needed.This work recommends the use of advanced language constructs and adoptsfunctional programming 

techniques for performing the required transformation at the intermediate language level. 

 

Keywords:Bags,Combinator, Initial Algebra, Orthogonal, Structural Recursion, Monad Comprehensions, Folds. 

 

1. Introduction 

 

Most of the earlier efforts in automating SQL creation from Data Requirement Statements were in 

the formof Rewrite systems that provided a platform for intermediate representationand offered 

astandard method for modelingcomputation [4].The choice of an adequate intermediate representation 

is a major step in the overall translation and repair process. For creating nested SQLs we need an 

intermediate programming paradigm that has the semantic simplicity of relational algebra, and the 

expressive power of functional programming languages.Hence special emphasis is kept on the 

intermediate language representation and the application of required transformation techniques in the 

ambit of a complete translation framework. The type-based design based on initial algebras4 of a core 

functional language is followed and intermediate representationsthatsuits the demands of nested query 

generation is subsequently developed.Advanced type systems areneeded in the design of an 

intermediate language for representing nested queries.Applying relational query processing rules alone 

will notbe sufficientto represent and to perform transformations on these extended type systems. 

 

For generating nested queries, it is imperative to define acalculus and a language that can represent 

comprehension syntax and perform the required operations as relationalcalculus does to relational 

query languages. Its main processing requirement is to perform structural recursion7 on bulk data types 

like bags1 and sets. This intermediate programming paradigm should also be able to perform recursion 

on bags of data traversing through different levels of a tree structure.The difference with regular 

functional programming languages is that this language is built around a restricted form of structural 

recursion. 

In the NL to SQL translation domain, comprehensions8 and basic Combinators2togetherin effectcan 

represent and meet the transformation requirements of the intermediate language.The comprehension 

calculus providesthe means to canonically represent and effectively reason about complex predicates, 

including quantifiers, and collection processing.Advanced programming constructs like Monad 

Comprehensions10 and Folds11 can significantly ease our efforts in combining and translating nested 

clauses that gets attached to the main SQL trunk. In fact, Monad Comprehensions and Folds are 

implementations of structural recursion.The main argument of this article is that with the help of 

advanced type systems and the application of functional programmingtechniques can provide the 

adequate framework for the automatic derivation of SQLs from Data Requirement Specifications 

 

The organization of the paper is asfollows:A Novel framework toThe next section discusses the 

‘RELATED WORK’and the progress made by research communityin synthesizing nested queries.The 

key technical contributionsand their inclusionin the transformation frameworkaregiven in 

theOVERVIEWSection. Detailed concepts and their relevancefollowed bya theoretical walk 

throughcan be seen in the section onCURRENT WORK. A motivating exampleand the steps for 

translating a sample nested scenario,is given in the section named ‘A CASE STUDY’.The SCOPE 
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FOR FUTURE WORKand the CONCLUSIONS are described in the last two sections. A 

BIBLIOGRAPHYof terms andthe details of literature referred can be found inthe REFERENCES section. 

 

2. Relatedwork 

 

Yaghmazadeh N. and Dillig I. (2017)proposed a typeand database content driven synthesize-repair 

framework [1] for synthesizingSQLs from Natural language statements. Rewrite methods and 

Inference Rules based transformationsarecentral to their work.The method suggested for synthesizing 

nested queries isto repeat the same process used for generating themain query. The pipelining and 

dynamic re-organization required whilecombining sub-queries cannot be brought outeasily through 

rule based rewriting techniques or by simply repeating the process used for generating the main 

query.In 2018, Hosu et. al, proposed a sketch-based two-step neural encoder model [12] known as 

SEQ2SEQ for generating SQLs based on a user’s requirement specification in natural language. But 

this needs to be extended for complex cases involving nested queries where operations based on nested 

structures are inevitable. Grust T. and Scholl. M. H. (1999) suggested a type-based,core functional 

language based on initial algebrasasintermediaterepresentation which can be transformedby applying 

advanced functional programming techniques. 

 

Earlier, algebraic approaches dominated the intermediate language representation of query 

structures used in translation. SQL is predominantly designed from abstractions given by relational 

algebra. A key observation is that relational algebra operates on setswhile SQL is primarily based on 

bags [2] and the query algebra operators are in fact abstract representation of underlying 

proceduresimplemented by the query engine.Query predicates were viewed as annotations to algebraic 

operators and were not part of the translation or compilation phasebutwere treated later during 

optimization phase.Hence adopting functional programming techniques becomes a necessity to bring 

the flexibility and composition required for creating and integrating nested queries. Imparting 

functional outlook to automatic creation of SQLs makes it disposed foran extensive collection of 

program transformation techniques in the category of Bird-Meetan’s [7] formalism. 

 

For translating SQLs into Object Code and to perform subsequent optimization,Grust T and Scholl 

M. H (1999)[2] describes an intermediate language based on Combinators,extended further by 

applying functional programming techniques like structural recursion andsubsequently implemented 

through comprehensions.Their work deals with Query compilation and optimization and not on Query 

Synthesis from Natural Language. But the techniques discussed are relevant and can be adapted 

forSQL synthesis.Hence adopting functional programming techniques becomes a necessity to bring the 

flexibility and composition required for creating and integrating nested queries. 

 

3. Overview 

 

In the NL to SQL translationscenario, translating relational algebraic expressions into SQL can be 

impaired by the type system mismatches between them. This discrepancy between the intermediate 

representation and query languagemakes the translation complex. Hence it is mandatory to bring 

higher-order functional programming techniques invented by the functional programming 

communitiesat the intermediate language levelto deal with this impedance mismatch.As the 

intermediate language is functional in nature, functional programming techniques can be applied to the 

expressions and components of the intermediate representation to transform it to produce the desired 

structured Query representation.Functional abstraction at the intermediate language level facilitates 

refactoring of query fragments into parameterized functions, enables the formation of nested 

intermediate data structures for which no relational algebra equivalent be easily drawn. 

 

This work followsthe type-based design of the intermediate language than the operation-based 

design where query operators greatly influence the design.At the core of the functional programmingis 

the capability to introduce new datatypes and to define functions that manipulate their 

values.Referential transparency is an essential characteristic needed in transformational programming 

and equational reasoning. This is particularly important in the DRS to SQL translation as every 

relation can be defined as a type of the variables involved, though they belong to different contextsand 

often need to operate on the same equational plane. Combinators can be used to preserve the type and 

context of expressions. As long as typing rules are adhered, Combinators may be freely combined to 

make expressions that represent nested clauses. 
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Key Concepts 

The key transformation techniquesdiscussed in this paper include: 

1. How Structural Recursion and its implementation in the form of Comprehensions can be 

effectively used to represent and implement sub-queries as a pipeline. 

2. A more advanced functional programming construct-Monad Comprehension is proposed for 

function abstraction and for rallying expressions in a pipeline whiletranslatingfrom theAbstract Query 

Language into an equivalent SQL query. 

3. Application of higher-order Combinators likefolds (foldr12) for abstract representation and as a 

means to augmentrecursiveprocessing initiated through Fixed-point Combinators6. 

 

System Architecture:This work takes over once an initial query sketchis generated (after relevant 

entities were identified from DRS using semantic parsing and passed as input parameters to the 

synthesis program), which needs to be repaired and extended further by employing the techniques 

described in this paper. The tool Rex(the query synthesis program) introduced in our earlier work [12] 

is extendedfurther by implementing the advanced techniques discussed here. 

 

 
Figure 1:  System Architecture 

 

 

4. Current work 

 

Road map: 

The componentsof the core intermediate languageis defined first, followed by the transformations 

need to be performed on the expressions created using this language for achieving the translation.The 

entire workis centered onthe application of functional programming techniques and scaling itfurther by 

using higher-order functions and their associated operations as when needed. The pipelining 

techniques for effectively combining nested expressionsare described next. The benefit of usingMonad 

Comprehensions and foldrsand theireffectiveness in chaining and pipelining different translation 

components are keysto the implementation of the concepts proposed and applied subsequently.Finally, 

a case study is presented to evaluatethe effectiveness of the translation. 

 

 

Significance of Structural Recursion 

 

Recursion is the usual programming idiom for repeated execution on potentially infinite data 

tending towards termination on finite state machines. Structural recursion is a restricted form of 

recursion, that is declarative in nature and the form of the program follows the structure of the data 

[5].Programs written with structural recursion using a finite set of objects made from dynamic data 

types has the expressiveness of the relational algebra and can even scale up [3]. Structural recursion 

makes it possible to express the requirements of iteration, aggregation, and quantification which are at 

the core of any database query language and is suitable for relatively complex nested SQLs creation 

scenarios. 

 

Structural recursion is defined as a top-down, recursive function, much like tree traversing which 

evaluates the data top-down.Structural recursion is found in almost all the tree traversals.A desirable 

property for query languages is to restrict recursionof unordered regular trees to preserve their finiteness 

property.In contrast to general recursion, structural recursion always terminates.Structural recursion 
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can be organized into two identical waysbut working in different directions, a)as a recursive function 

for data organized in different levels of a tree without revisiting traversed nodes to avoid infinite loops 

(thatcaters to multilevel nesting), b)as a bulk evaluation which processes the entire data in parallel 

using relational algebra operators for building parallel sub-queries that are attached to the main SQL 

trunk in their respective levels[11]. 

Nested queries have a natural correspondence to structural recursion.The DRS to SQL 

transformation program should take bags of input data, process it, move it out of bagsbyplacingthem 

into sets, by managing a flexible type system across while traversing different levels of the 

tree.Structural recursion allows the implementation of better algorithms for the same functionality that 

can be achieved through other programming techniquesfound around first class functions. 

 

Lambda Calculus combined with Comprehensions 

 

Functional languages are usually based on lambda calculus5and supported by a solid equational 

theory that are eventually compiled and interpreted. A complete functional language is not needed to 

represent queries at an intermediate language level; instead, a small set of Combinators would suffice. 

Theoretically, complex queries can be formed from functional composition of higher order 

Combinators.  Even though Combinatorswould suffice to represent closed predicates, the sublanguage 

with Combinators needs to be extended with functional programming techniques like comprehensions 

to combine and pipeline different components into a sequel. Also, while executing, interim results 

need to be communicated across operators because the functions implementing them are fashionedto 

take their own specific inputs and passes intermediate results. 

 

The Combinator sub-language, can be extend by applying the syntactic sugar - comprehensions 

which providesbetter abstraction of the query intermediate representation. As DRS is more declarative 

in nature than imperative, adopting Comprehensions have proven a very convenient construct in the 

creation of SQL kind of declarative query statements [12, 13]. As Comprehensions create data 

structures from iterators and combines loops and conditional tests in a compact way, they can be 

employed as an effective intermediary construct while translating DRS to SQL. Just like query 

languages, comprehensions are provided with variables, variable bindings and allows nesting of 

predicates arbitrarily without propagating side effects of any predicates involved. Hence 

comprehensions and basic Combinators typically complete the intermediate language [2]. 

 

Combinators may be orthogonally3 combined and freelyrearranged as they are independent of each 

other due to their very nature. Combinators can be combined across query operators as well, since 

there are no interdependencies between operators.Internally, the Combinators are implemented with 

the help of indices.However, at execution time, Combinator algebrasexposes its own limitation: 

especially when temporary results are communicated between operators andsince these are designed 

separatelyto consume their own inputs, producestheir intermediate results bringing out the necessityfor 

meticulous combining to produce a resultant output. Comprehensions come to the rescue in such 

situations. Comprehensions connect related predicates with ease and are predisposed for query 

predicate transformations.  Without the use of comprehensions this would have needed application of 

complicated sets of rewriting rules. 

 

Monad Comprehensions 

 

Monads10 provide a framework for bundling / structuring the semantic representation of features 

such as state, exceptions and continuations[8]. Monad Comprehensionsare recommended for use at the 

intermediate language level to bundlerelated components and features, byarraying themin a pipeline to 

ensure connectivity and continuity between constituent parts.Different types of query nesting correspond to 

nested representations of Monad Comprehensions. 

 

While Combinators facilitate abstraction of query operators and predicates,Monad comprehensions 

facilitate a calculus-style intermediate language.Calculus sub-expressions with the appropriate 

Combinators are similar to relational calculus but have better expressiveness. Apart from providing the 

needed syntactic sugaring, Monad Comprehensionsprovide all the benefits of a calculus-based query 

representation [10]. Moreover, due to its functional nature, program transformation techniques 

developed by the functional programming and the relateddata modelcommunities can be applied on 

thisintermediate language[2]. The type-based foundation and uniform representation of our 

intermediate language (IL) allows us to adopt functions (over values of an initial algebraic data type τ) , 
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and structural recursion constructs like foldr provides the fundamental way to combine SQL 

predicates. 

 

An intermediate language could also benefit much from higher-order function abstraction 

techniques like foldrin recombining the outputs of recursively processing constituent parts, by 

consistently replacing the structural components of a data structure with functions and valuesto 

construct a return valueeventually.Foldr enables the implementation of the algebraic data type constructors as 

well as structural recursion as a single programming unit. 

 

A typical form of a generic fold function is:  

fold f z xs 

 

where: 

f is a higher-order function taking two arguments, an accumulator and an element of the list xs. It is 

applied recursively to each element of xs. 

z is the initial value of the accumulator and an argument of the function f. 

xs is a collection (in fact queries map between the constructors of different collection types). 

 
Figure2: Representation of foldr 

 
Figure3: Foldrimplementation 

 

Heree1, e2, e3represents sub-query expressions and [] represents a list object 

 

 

The head expression e(selet-from part) of an SQL statement is defined as: 

e→| v (variables) | c (constants)  

p|q = predicate; f = aggregate function; s = subquery; t = term 

xs = table1; ys=  table2; zs table3 | collection 

x = field1; y = field2 

[] = Unknown table | Empty List 

[]τ | (:)τ = Constructors 

σ = selection 

τ = algebraic data type over a relationranged by the below expression. Let l range over a set of labels 

τ ::=list | set | bag | unit | int | boo1 | string | real | τ→τ 
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The domain of a type τitselfcan be deemed as an algebra. 

 

Figure 4:Intermediate Language Definition 

 

The select-from-where block can be represented in the intermediate query language. The 

intermediate mapping constructQ is represented as: 

Q (select e from e1 as x1,…., en as xn where p) = [Q e | x1 ←  Q e1 …  en as xn← Q en, Q p]bag(the 

xi’sappear free in e and p).  

Aquery clause e may be compiled independently from sub-queries ei occurring in it. During the 

translation of e the ei are treated as free variables that may be instantiated later to complete the 

translation. 

In the comprehension [e | q1,…,qn]τ the predicates qi are either generators13v←qor filters 

(expressions resulting in type bool). A generator qi = v←q sequentially bindsvariable v to elements of 

its range q; v is bound in qi+1, …, qn and e. The bindingof v is propagated until a filter evaluates to 

False under the binding. The result of evaluating e is collected in the list construction (:)τ. 

 

mapTf s = [f x | x ← s] T 

filterTp s = [x | x ←s, p x] T 

crossTσs t=[(x, y) | x ←s, y← t] T 

joinTσp f st  =[fx y) | x ←s, y← t, p x y] T 

semi-joinTσp s t = [x | x ←s, [p x y] | y← t]exists 

anti-joinTσp s t = [x | x ←s, [¬p x y | y← t]all] T 

nest-joinTσp f s t = [ [fx y | y ← t, p x y]σ | x←s]  T 

maxTf s= [ fx | x ← s]max (max ∈{ min, exists, all, sum}) 

 

Figure 5: Algebraic Combinators (Monad Comprehensionbased definitions) 

 

5. A case study 

 

Prepare the SQL for the following DRS statement: “Retrieveleave details of all employeesbasedon 

theirlatestemployment records”. 

 
        Fig6: DB Table Relationship 

 

Functional programs are constructed by knitting smaller programs together, using an intermediate 

list to communicate between the constituent parts. Lists are often used to glue separate components of 

a program together [9]. The key finding here is that Combinator based query predicates operate pretty 

much with listful programs. A listful program expresses acomplex list manipulation by composition of 

generic Combinators, each generating an intermediate result list, which needs subsequent filtering. 

Relational calculus can be deemed as a specialization of the Monad Comprehension calculus restricted over 

sets.The comprehension [x | x ←xs, p x]τis similar to the relational selection σp.xs but more generalised to 

represent any data type of τ and can be shown as: 
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[x | x ←xs, p x]τ≃σp.xs 

 

The nested comprehension is represented as: 

 

[f x |x←xs, [gx=h y | y←ys, py]exists]set 

 

Translates to: 

select distinct f x 

from xs as x 

where g x in (select h y 

from ys as y 

where p y) 

 

 Implemented as: 

 

select distinct e.employee_id 

 from Employees ewhere e.id in (select e.id 

 from Leave_Details 

where a.employee_id = e.id); 

The select-from-where combination is identical to a comprehension: the `from` clause corresponds to a 

sequence of generators12, and the predicates in the where clause corresponds to filters. Finally, the select clause 

represents the comprehension’s head expression. Use of the distinct modifier would transform a bag into a set as 

the result monad9 [2].Moreover, nested SQLs operate in a streaming (or pipelined) mode.SQL execution 

benefits from streaming since objects are addressed and loaded from the persistent storage only once. 

Functional composition will be the most preferred way forbuildingnested queries.Structural 

recursion (and an implementation of it in the form of foldr) provides the principal way for 

implementing functional abstractionover values of an initial algebraic data type τ. The Combinators 

may be re-expressed by foldr directly [2]. The foldr-based program schememay then be used as a 

template to derive an actual typically imperative storage access program due to the simple linear 

recursion scheme represented by foldr [2]. 

nestjoinτσp f s t = foldrτ(λxxs.(foldrσ(λyys. if existsσ (p 

 y) t then y :τyselse ys) [] σ) :τxs t ) []τs 

 

As translation schemecan translate Monad Comprehensions into nested foldrexpressions,which on 

executingthequeries constructed from these expressions, the query engine will tagfor nested-loop 

processing and executes. During the SQL creation process the sub-queries can be treated as free 

variables that may be progressively instantiated and inserted or appended to complete the SQL 

generation. 

 

nestjoinτσp f s t = [foldrτ(λe_id employees.(foldrσ(λld_idleave_details s. if existsσmax(e1_id) then 

max(e1_id)):τemployees t )]bagemp_rcd_subquery(s)[]τ 

The emp_rcd_subquery predicate: 

s= λx y:p y &&q x y 

→ 

p =[]τa.employee_id = (foldrσ(λe1.id) employees1(λe1_id employees1 t. if existsσe1.id=e.id then max(e1.id):τ)  

&& 

q = []τe2.empl_rcd = (λe2_id employees2 s.if existsσe2.id = e1.idand e2.eff_status=‘Active’ then 

max(e2.empl_rcd):τ)[]τ 

 

byappending nested emp_rcd_subquery predicate q. 

 

Fig7: Intermediate representation of Employee-LeaveDetails for the latest employee_record in the 

database 

 

Monad comprehensions and Combinators, the two different forms of syntactic sugar, put together 

to the basic recursion Combinatorfoldr, established connecting links in the intermediate representation 

for nested queries to be picked by the target query build program to subsequently create the needed 

SQL. 
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Initial Sketch generation: 

To provide an example of nested queries, suppose that a user wants to retrieve the latest 

employment record based, leave details. We can express this query as: 

ΠEmp_id, Name, emp_rcd, Designation, leave_code, from_date (Leave_Details)(σe_id =Πmax(e_id, (Employees) andσemp_rcd=Πmax 

(emp_rcd,)(Employees)) 

 

It is a relatively easy task to map the intermediate algebraic representation of the form σ-π-⋈ into a 

select-from-whereclause without nested sub-queries. The only challenge in this case is to consult the 

database schema and get the path to reach the target table traversing the intermediate tables in the 

relationship tree. Here, we start from the Employee table and eventually JOIN the Leave_Detailstable 

(the target table in this case) traversing through the employee Department, Leave_Types tables to get a 

bag of  rows corresponding to the leaves availed by the Employees. 

 

SELECT (?[E.employee_id], ?[E.empl_rcd], ?[E.eff_status], ?[E.Designation], 

?[D.Department_name], ?[LT.leave_type], ?[LD.start_date], ?[LD.end_date]) 

FROM ?? [rex_employees] E 

JOIN ?? [rex_departments] D ON E.department_id = D.id 

JOIN ?? [rex_leave_details] LD ON LD.employee_id = E.id 

JOIN ?? [rex_leave_type] LT ON LD.leave_code = LT.id 

WHERE E.id = (Select max(E1.id) from rex_employees E1) WHERE E1.id = E.id) 

 

This query is a suitableinitial one as the required nested clauses are not added in the WHERE 

clause for filtering out the actual set of theActive, latest Effective Dated rowsafter removing 

duplicates. Running this on the Rex database fetches alot more than the actual number of rows 

expected from the Leave_Details table. Hence added the sub-query predicates discussed before to 

create the below resultant query. 

 

SELECT (?[E.employee_id], ?[E.empl_rcd], ?[E.eff_status], ?[E.Designation], 

?[D.Department_name], ?[LT.leave_type], ?[LD.start_date], ?[LD.end_date]) 

FROM ??[rex_employees] E 

JOIN ?? [rex_departments] D ON E.department_id = D.id 

JOIN ?? [rex_leave_details] LD ON LD.employee_id = E.id 

JOIN ?? [rex_leave_type] LT ON LD.leave_code = LT.id 

WHERE E.id = (Select max (E1.id) from rex_employees E1) WHERE E1.id = E.id)AND 

E1.empl_rcd = (Select max(RCD.empl_rcd) FROM rex_employees RCD WHERE 

RCD.employee_id = E1.employee_id); 

This turns out fetch the intended outcome (Figd).The addition of the new nested Sub-

Query,E1.empl_rcd = (Select max(RCD.empl_rcd) FROM rex_employees RCD WHERE 

RCD.employee_id = E1.employee_id);in the final SQL enabled the removal of old Employee records 

form the rows returned earlier.

 

 
Figure 7: Simplified schema of an HRMS ERP database 

      {entity} PK (D_id) 

P * D_id  Integer 

Department_idInteger 

 Department_nameVARCHAR(100)  

 

Departments (D) 

     {entity} PK LD_id) 

P * LD_id Integer 

        Employee_id    Integer 

 F    Leave_Code      VARCHAR 

S t art_date Date 
E n d _ d a t e        Date 

           Leave Details (LD) 

     {entity} PK (LT_id) 

P * LT_id  Integer 

Leave_CodeInteger 

Leave_Type  VARCHAR 

 

           Leave Types (LT) 

      {entity} PK (E_id) 

  P * E_jd Integer 

  Employee_id        Integer 

  Employee_name VARCHAR(100) 

F Department_id    Integer 

  Empl_rcd                Integer 

  Status VARCHAR 

Employees (E) 
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Figure 8: The resultant nested SQL 

EXAMPLE1: Consider the “Employee” and “Leave_ 

Details”tables given below,where column names with  

suffix “_fk" indicateforeign keys. 

 

Eid Name 
em

p_rcd 

Designatio

n 

Eff_statu

s 

Departm

ent 

Dept_id 

101 Matt 1 Manager Inactive Math 90 

101 Matt 2 Professor Active CS 60 

114 Joe 1 Trainee Inactive Math 90 

114 Joe 2 Surgeon Active Medical 80 

115 Rose 1 Professor Active Math 90 

Fig a) Employees table representation 

 

Eid

_fk 

emp_

rcd Leave_Type From_dt To_dt 

101 1 Casual 02-Aug-2020 03-Aug-2020 

101 2 Accumulated 26-Aug-2020 27-Aug-2020 

114 1 Casual 10-May-2020 10-May-2020 

114 2 Restricted 27-Aug-2020 28-Aug-2020 

115 1 Special 02-Aug-2020 03-Aug-2020 

Fig b)Leave_Details table representation 

 

Π(Leave_DetailsEid-fkEidEmployees) returns the combineddetails of the Employees-Leaves-Data: 

 

Eid

_fk 

Eff_s

tatus 

Em

p_rcd 

Designation Depa

rtment 

Leav

e Code 

From_dt 

101 I 1 Manager Math CL 02-Aug-2020 

101 A 2 Professor CS AL 26-Aug-2020 

114 I 1 Trainee Math CL 10-May-2020 

114 A 2 Surgeon Medi

cal 

RH 

27-Aug-2020 

115 A 1 Professor Math SL 02-Aug-2020 

 Fig c)Query Output with max(emp_id)Sub-Query 

 

Here, Πgmax(emp_rcd)(Employees) fetches the latest 

employee_record of the Employees: 

 

Eid 
Nam

e 

Eff

_Status 

Em

p_rcd 

Designatio

n 

Dept

_id 

Leav

e Code 
From_dt 

101 Matt A 2 
 Professor 

CS CL 
26-Aug-

2020 

114 Joe A 2 Surgeon 
Medi

cal 
RH 

27-Aug-

2020 

115 Rose A 1 Professor Math SL 
02-Aug-

2020 

Fig d)Final Outputwith max(emp_rcd)Sub-Query 

 

For the tables inFig a & b, the final query retrievedone row eachforEmp_ids 101, 114 and 

115.Note that for Emp_id=101 and 114, who had2emp_rcds, the nested sub-query has filtered out the 

latest one with status=Active(A) belonging to Department_id= ‘CS’ 
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6. Results and discussions 

 

 

The Experimental Database Configuration of REX is as given below. 

 

Data

base 

Type 

Data

base 

Nam

e 

Size #Ta

bles 

#Colu

mns 

Postgr

es 

REX 120

MB 

12 117 

Table 1: Experimental Database Instance 

 

Mode

l 

Name 

Opera

ting 

System 

Proces

sing 

Speed 

R

AM 

Proce

ssor 

HP15

s-

fr2005tu 

Windo

ws 10 

2.4 

GHz 

8 

GB 

Intel 

i5 - 4 

Cores 

Table 2: Experimental Server Configuration 

 

Que

ry 

Type 

Inp

ut 

DRS 

Count 

Suc

cess 

Averag

e 

Time(With

out FP 

Constructs

) 

Averag

e 

Time(With 

FP 

Constructs

) 

Nes

ted 

4 4 475 

msecs 

315 

msecs 

Table 3: Results Summary 

 

The SQLs generated by the REX framework were executed against the REX database instance a) 

first without the Functional Programming constructsb) then with the Functional Programming 

constructs(using Monad comprehension and Foldr) discussed in this work.By incorporating the 

Functional Programming constructs the speed of execution improved by 33%. 

  

7. Future work 

 

Further research can be performed to establish the Turing machine compliance of the intermediate 

Language described in this work. We can go a step further by applying Lambda Context calculus to 

ensure the effectiveness of translation. Techniques for SQL optimization by applying techniques at 

intermediate level can be pursued.The correspondence between finite form of structural recursion and 

relational algebra makes it possible to apply optimization techniques directly into the language. 

Further research can be conducted to verify if application of qualifier exchange rule provides the 

means to reorder filters and joins so that query rewrite is managed with the help of indices. 

 

8. Conclusions 

 

This work extended the earlier approaches for automatic query creation by adopting advanced 

concepts from the functional programming domain.An intermediate language centred on structural 

recursion is constructedfor performing the required transformation operations and for representing data 

structures used in processing the data spanning across different levels of a tree.Adoption of structural 

recursion is the most significant design choice in the intermediate representation as it supports type-

based design,represents algebraic and extended data types, providedaninitial skeleton on which 

transformations can be performed and supports nesting.This work also described how onworking with 

nested intermediate structures, Monad comprehensions provided the necessary syntactic sugar and was 

helpful in combining a wide range of translation constructs, such as transformation rules and state 

management, exception handling or managing input-output to eventually return the desired SQL 

query.The recursion Combinatorfoldreffectively combined monad comprehensions and Combinators, 

providing the necessary platform for merging fixed and varying components of the intermediate 
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representation.The peculiarity of the notion of monads is that it comes with just enough internal 

structure to represent the query calculus. The resulting monad comprehension calculus eventually 

leads to a form of query representation that corresponds to the core structure inherent in a query.The 

single uniform formal framework designed for translating NL to SQL effectively combined all stages 

of the query synthesis process and produced deeply nested queries. The translation framework 

eventually had a programthat combined all these techniques which eventually transformed requirement 

statementsinto nested SQLs. 

 

9. Bibliography 

1Bags:Collection of data where repetition of elements is allowed (unlike sets). 
2Combinator:A Combinator is a λ-calculus expression to represent primitive functions which has 

no free variables. A Combinator represents closed expressions (no free variables) of a language and 

corresponds to axioms of a deductive system. 
3Orthogonal design: (or Othogonality) in programming language design is the ability to use 

various language features in arbitrary combinations in such a way that independent concepts are kept 

independent and not mixed together to avoid complexity. It ensures that modifying the technical effect 

produced by a component of a system does not create or cascade side effects to other components of 

the system 
4Initial Algebra:Algebra of abstract data types and their constructors plus the rules and functions 

associated with these data types. 
5Lambda Calculus: (also denotedas λ-calculus) is a formal system in mathematical logic to 

express computation based on function abstraction and application by variable binding and 

substitution. It is a universal model of computation and can simulate any Turing machine. 
6Fixed-point Combinator: Fixed-point Combinators are used for implementing loops in Lambda 

calculus. They are also used to implement recursion without calling the function name recursively but 

by applying the function to itself with a new set of values for its bound variables every time when it is 

(re)applied. 
7Structural Recursion:Programming paradigm that enables to perform recursion on objects made 

from user defined data types.Recursion ondynamic data structures such as Lists and Trees where data 

to be treated are defined in recursive terms.Structural recursion over lists has been known under the 

function namesfold or reduce. 
8Comprehensions: Comprehensionsoffer a concise wayof creating a data structure from one or 

more iterators. Comprehensions make it easier to combine loops and conditional statements with less 

verbose syntax. 

9Monad: Monads provide aframework to combine a wide variety of programming paradigms, such as 

managing state, exceptions, or input-output.It has a return operator that creates values, and a bind operator 

to link the actions in the pipeline; and its definition follows a set of axioms called monadlaws, all these 

are mandatory for the composition of actions in the pipeline to work properly. The final result is the 

outcome of the entire unit. 

10Monad Comprehensions:In computer science Monad and Monad Comprehension are inter-

changeably used. 

11Fold:In functional programming, fold refers to the use of a given combining operation, 

recombine the results of recursively processing its constituent parts, building up a return value. 

12Foldr:Foldr stands for fold-right while operating. 
13

Generator:A generator is a sequence creation object and often the source of data for iterators and 

allows iteration through potentiallyhuge sequences without creating and storing the entire sequence in 

memoryat once. It is different from a normal function whichhas no memory of previous calls and 

always starts at its first line with the same state. But generators keeps track of where it was the last 

timeit was called and returns the next value. 
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