

Turkish Journal of Computer and Mathematics Education Vol.12 No.2 (2021), 2680-2691

 Research Article

2680

A novel framework for synthesizing nested queries in SQL from business requirements

language

Mathew George1, Dr. Rohini V2

1,2Department of Computer Science CHRIST, Bangalore

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract:Different methods and systems were proposed in the past for translating Natural Language (NL)

statements in to Structured Query Language (SQL) queries. Translating statements resultingin‘nested’queries

havealways been a challenge and was not effectively handled. This work proposes a framework for translating

requirement statementsresulting inthe construction of nested Queries. While translating nested scenarios; often

thereis a need to create sub-queriesthat execute inpipeline orin parallel or both operating together.Lambda

Calculus is found to be effective in representing the intermediate expressions and helps in performing the

transformations that are needed in translating specific predicates into SQL, but its inflexibility in combining

parallel computations is a constraint. To represent clauses that are in parallel or arein pipeline,and to perform the

required transformationson theintermediate expressions involving these,more advancedprogramming constructs

are needed.This work recommends the use of advanced language constructs and adoptsfunctional programming

techniques for performing the required transformation at the intermediate language level.

Keywords:Bags,Combinator, Initial Algebra, Orthogonal, Structural Recursion, Monad Comprehensions, Folds.

1. Introduction

Most of the earlier efforts in automating SQL creation from Data Requirement Statements were in

the formof Rewrite systems that provided a platform for intermediate representationand offered

astandard method for modelingcomputation [4].The choice of an adequate intermediate representation

is a major step in the overall translation and repair process. For creating nested SQLs we need an

intermediate programming paradigm that has the semantic simplicity of relational algebra, and the

expressive power of functional programming languages.Hence special emphasis is kept on the

intermediate language representation and the application of required transformation techniques in the

ambit of a complete translation framework. The type-based design based on initial algebras4 of a core

functional language is followed and intermediate representationsthatsuits the demands of nested query

generation is subsequently developed.Advanced type systems areneeded in the design of an

intermediate language for representing nested queries.Applying relational query processing rules alone

will notbe sufficientto represent and to perform transformations on these extended type systems.

For generating nested queries, it is imperative to define acalculus and a language that can represent

comprehension syntax and perform the required operations as relationalcalculus does to relational

query languages. Its main processing requirement is to perform structural recursion7 on bulk data types

like bags1 and sets. This intermediate programming paradigm should also be able to perform recursion

on bags of data traversing through different levels of a tree structure.The difference with regular

functional programming languages is that this language is built around a restricted form of structural

recursion.

In the NL to SQL translation domain, comprehensions8 and basic Combinators2togetherin effectcan

represent and meet the transformation requirements of the intermediate language.The comprehension

calculus providesthe means to canonically represent and effectively reason about complex predicates,

including quantifiers, and collection processing.Advanced programming constructs like Monad

Comprehensions10 and Folds11 can significantly ease our efforts in combining and translating nested

clauses that gets attached to the main SQL trunk. In fact, Monad Comprehensions and Folds are

implementations of structural recursion.The main argument of this article is that with the help of

advanced type systems and the application of functional programmingtechniques can provide the

adequate framework for the automatic derivation of SQLs from Data Requirement Specifications

The organization of the paper is asfollows:A Novel framework toThe next section discusses the

‘RELATED WORK’and the progress made by research communityin synthesizing nested queries.The

key technical contributionsand their inclusionin the transformation frameworkaregiven in

theOVERVIEWSection. Detailed concepts and their relevancefollowed bya theoretical walk

throughcan be seen in the section onCURRENT WORK. A motivating exampleand the steps for

translating a sample nested scenario,is given in the section named ‘A CASE STUDY’.The SCOPE

2681

A novel framework for synthesizingnested queries in SQL from business requirements language

2681

FOR FUTURE WORKand the CONCLUSIONS are described in the last two sections. A

BIBLIOGRAPHYof terms andthe details of literature referred can be found inthe REFERENCES section.

2. Relatedwork

Yaghmazadeh N. and Dillig I. (2017)proposed a typeand database content driven synthesize-repair

framework [1] for synthesizingSQLs from Natural language statements. Rewrite methods and

Inference Rules based transformationsarecentral to their work.The method suggested for synthesizing

nested queries isto repeat the same process used for generating themain query. The pipelining and

dynamic re-organization required whilecombining sub-queries cannot be brought outeasily through

rule based rewriting techniques or by simply repeating the process used for generating the main

query.In 2018, Hosu et. al, proposed a sketch-based two-step neural encoder model [12] known as

SEQ2SEQ for generating SQLs based on a user’s requirement specification in natural language. But

this needs to be extended for complex cases involving nested queries where operations based on nested

structures are inevitable. Grust T. and Scholl. M. H. (1999) suggested a type-based,core functional

language based on initial algebrasasintermediaterepresentation which can be transformedby applying

advanced functional programming techniques.

Earlier, algebraic approaches dominated the intermediate language representation of query

structures used in translation. SQL is predominantly designed from abstractions given by relational

algebra. A key observation is that relational algebra operates on setswhile SQL is primarily based on

bags [2] and the query algebra operators are in fact abstract representation of underlying

proceduresimplemented by the query engine.Query predicates were viewed as annotations to algebraic

operators and were not part of the translation or compilation phasebutwere treated later during

optimization phase.Hence adopting functional programming techniques becomes a necessity to bring

the flexibility and composition required for creating and integrating nested queries. Imparting

functional outlook to automatic creation of SQLs makes it disposed foran extensive collection of

program transformation techniques in the category of Bird-Meetan’s [7] formalism.

For translating SQLs into Object Code and to perform subsequent optimization,Grust T and Scholl

M. H (1999)[2] describes an intermediate language based on Combinators,extended further by

applying functional programming techniques like structural recursion andsubsequently implemented

through comprehensions.Their work deals with Query compilation and optimization and not on Query

Synthesis from Natural Language. But the techniques discussed are relevant and can be adapted

forSQL synthesis.Hence adopting functional programming techniques becomes a necessity to bring the

flexibility and composition required for creating and integrating nested queries.

3. Overview

In the NL to SQL translationscenario, translating relational algebraic expressions into SQL can be

impaired by the type system mismatches between them. This discrepancy between the intermediate

representation and query languagemakes the translation complex. Hence it is mandatory to bring

higher-order functional programming techniques invented by the functional programming

communitiesat the intermediate language levelto deal with this impedance mismatch.As the

intermediate language is functional in nature, functional programming techniques can be applied to the

expressions and components of the intermediate representation to transform it to produce the desired

structured Query representation.Functional abstraction at the intermediate language level facilitates

refactoring of query fragments into parameterized functions, enables the formation of nested

intermediate data structures for which no relational algebra equivalent be easily drawn.

This work followsthe type-based design of the intermediate language than the operation-based

design where query operators greatly influence the design.At the core of the functional programmingis

the capability to introduce new datatypes and to define functions that manipulate their

values.Referential transparency is an essential characteristic needed in transformational programming

and equational reasoning. This is particularly important in the DRS to SQL translation as every

relation can be defined as a type of the variables involved, though they belong to different contextsand

often need to operate on the same equational plane. Combinators can be used to preserve the type and

context of expressions. As long as typing rules are adhered, Combinators may be freely combined to

make expressions that represent nested clauses.

Mathew George, Dr. Rohini V

2682

Key Concepts

The key transformation techniquesdiscussed in this paper include:

1. How Structural Recursion and its implementation in the form of Comprehensions can be

effectively used to represent and implement sub-queries as a pipeline.

2. A more advanced functional programming construct-Monad Comprehension is proposed for

function abstraction and for rallying expressions in a pipeline whiletranslatingfrom theAbstract Query

Language into an equivalent SQL query.

3. Application of higher-order Combinators likefolds (foldr12) for abstract representation and as a

means to augmentrecursiveprocessing initiated through Fixed-point Combinators6.

System Architecture:This work takes over once an initial query sketchis generated (after relevant

entities were identified from DRS using semantic parsing and passed as input parameters to the

synthesis program), which needs to be repaired and extended further by employing the techniques

described in this paper. The tool Rex(the query synthesis program) introduced in our earlier work [12]

is extendedfurther by implementing the advanced techniques discussed here.

Figure 1: System Architecture

4. Current work

Road map:

The componentsof the core intermediate languageis defined first, followed by the transformations

need to be performed on the expressions created using this language for achieving the translation.The

entire workis centered onthe application of functional programming techniques and scaling itfurther by

using higher-order functions and their associated operations as when needed. The pipelining

techniques for effectively combining nested expressionsare described next. The benefit of usingMonad

Comprehensions and foldrsand theireffectiveness in chaining and pipelining different translation

components are keysto the implementation of the concepts proposed and applied subsequently.Finally,

a case study is presented to evaluatethe effectiveness of the translation.

Significance of Structural Recursion

Recursion is the usual programming idiom for repeated execution on potentially infinite data

tending towards termination on finite state machines. Structural recursion is a restricted form of

recursion, that is declarative in nature and the form of the program follows the structure of the data

[5].Programs written with structural recursion using a finite set of objects made from dynamic data

types has the expressiveness of the relational algebra and can even scale up [3]. Structural recursion

makes it possible to express the requirements of iteration, aggregation, and quantification which are at

the core of any database query language and is suitable for relatively complex nested SQLs creation

scenarios.

Structural recursion is defined as a top-down, recursive function, much like tree traversing which

evaluates the data top-down.Structural recursion is found in almost all the tree traversals.A desirable

property for query languages is to restrict recursionof unordered regular trees to preserve their finiteness

property.In contrast to general recursion, structural recursion always terminates.Structural recursion

2683

A novel framework for synthesizingnested queries in SQL from business requirements language

2683

can be organized into two identical waysbut working in different directions, a)as a recursive function

for data organized in different levels of a tree without revisiting traversed nodes to avoid infinite loops

(thatcaters to multilevel nesting), b)as a bulk evaluation which processes the entire data in parallel

using relational algebra operators for building parallel sub-queries that are attached to the main SQL

trunk in their respective levels[11].

Nested queries have a natural correspondence to structural recursion.The DRS to SQL

transformation program should take bags of input data, process it, move it out of bagsbyplacingthem

into sets, by managing a flexible type system across while traversing different levels of the

tree.Structural recursion allows the implementation of better algorithms for the same functionality that

can be achieved through other programming techniquesfound around first class functions.

Lambda Calculus combined with Comprehensions

Functional languages are usually based on lambda calculus5and supported by a solid equational

theory that are eventually compiled and interpreted. A complete functional language is not needed to

represent queries at an intermediate language level; instead, a small set of Combinators would suffice.

Theoretically, complex queries can be formed from functional composition of higher order

Combinators. Even though Combinatorswould suffice to represent closed predicates, the sublanguage

with Combinators needs to be extended with functional programming techniques like comprehensions

to combine and pipeline different components into a sequel. Also, while executing, interim results

need to be communicated across operators because the functions implementing them are fashionedto

take their own specific inputs and passes intermediate results.

The Combinator sub-language, can be extend by applying the syntactic sugar - comprehensions

which providesbetter abstraction of the query intermediate representation. As DRS is more declarative

in nature than imperative, adopting Comprehensions have proven a very convenient construct in the

creation of SQL kind of declarative query statements [12, 13]. As Comprehensions create data

structures from iterators and combines loops and conditional tests in a compact way, they can be

employed as an effective intermediary construct while translating DRS to SQL. Just like query

languages, comprehensions are provided with variables, variable bindings and allows nesting of

predicates arbitrarily without propagating side effects of any predicates involved. Hence

comprehensions and basic Combinators typically complete the intermediate language [2].

Combinators may be orthogonally3 combined and freelyrearranged as they are independent of each

other due to their very nature. Combinators can be combined across query operators as well, since

there are no interdependencies between operators.Internally, the Combinators are implemented with

the help of indices.However, at execution time, Combinator algebrasexposes its own limitation:

especially when temporary results are communicated between operators andsince these are designed

separatelyto consume their own inputs, producestheir intermediate results bringing out the necessityfor

meticulous combining to produce a resultant output. Comprehensions come to the rescue in such

situations. Comprehensions connect related predicates with ease and are predisposed for query

predicate transformations. Without the use of comprehensions this would have needed application of

complicated sets of rewriting rules.

Monad Comprehensions

Monads10 provide a framework for bundling / structuring the semantic representation of features

such as state, exceptions and continuations[8]. Monad Comprehensionsare recommended for use at the

intermediate language level to bundlerelated components and features, byarraying themin a pipeline to

ensure connectivity and continuity between constituent parts.Different types of query nesting correspond to

nested representations of Monad Comprehensions.

While Combinators facilitate abstraction of query operators and predicates,Monad comprehensions

facilitate a calculus-style intermediate language.Calculus sub-expressions with the appropriate

Combinators are similar to relational calculus but have better expressiveness. Apart from providing the

needed syntactic sugaring, Monad Comprehensionsprovide all the benefits of a calculus-based query

representation [10]. Moreover, due to its functional nature, program transformation techniques

developed by the functional programming and the relateddata modelcommunities can be applied on

thisintermediate language[2]. The type-based foundation and uniform representation of our

intermediate language (IL) allows us to adopt functions (over values of an initial algebraic data type τ) ,

Mathew George, Dr. Rohini V

2684

and structural recursion constructs like foldr provides the fundamental way to combine SQL

predicates.

An intermediate language could also benefit much from higher-order function abstraction

techniques like foldrin recombining the outputs of recursively processing constituent parts, by

consistently replacing the structural components of a data structure with functions and valuesto

construct a return valueeventually.Foldr enables the implementation of the algebraic data type constructors as

well as structural recursion as a single programming unit.

A typical form of a generic fold function is:

fold f z xs

where:

f is a higher-order function taking two arguments, an accumulator and an element of the list xs. It is

applied recursively to each element of xs.

z is the initial value of the accumulator and an argument of the function f.

xs is a collection (in fact queries map between the constructors of different collection types).

Figure2: Representation of foldr

Figure3: Foldrimplementation

Heree1, e2, e3represents sub-query expressions and [] represents a list object

The head expression e(selet-from part) of an SQL statement is defined as:

e→| v (variables) | c (constants)

p|q = predicate; f = aggregate function; s = subquery; t = term

xs = table1; ys= table2; zs table3 | collection

x = field1; y = field2

[] = Unknown table | Empty List

[]τ | (:)τ = Constructors

σ = selection

τ = algebraic data type over a relationranged by the below expression. Let l range over a set of labels

τ ::=list | set | bag | unit | int | boo1 | string | real | τ→τ

2685

A novel framework for synthesizingnested queries in SQL from business requirements language

2685

The domain of a type τitselfcan be deemed as an algebra.

Figure 4:Intermediate Language Definition

The select-from-where block can be represented in the intermediate query language. The

intermediate mapping constructQ is represented as:

Q (select e from e1 as x1,…., en as xn where p) = [Q e | x1 ← Q e1 … en as xn← Q en, Q p]bag(the

xi’sappear free in e and p).

Aquery clause e may be compiled independently from sub-queries ei occurring in it. During the

translation of e the ei are treated as free variables that may be instantiated later to complete the

translation.

In the comprehension [e | q1,…,qn]τ the predicates qi are either generators13v←qor filters

(expressions resulting in type bool). A generator qi = v←q sequentially bindsvariable v to elements of

its range q; v is bound in qi+1, …, qn and e. The bindingof v is propagated until a filter evaluates to

False under the binding. The result of evaluating e is collected in the list construction (:)τ.

mapTf s = [f x | x ← s] T

filterTp s = [x | x ←s, p x] T

crossTσs t=[(x, y) | x ←s, y← t] T

joinTσp f st =[fx y) | x ←s, y← t, p x y] T

semi-joinTσp s t = [x | x ←s, [p x y] | y← t]exists

anti-joinTσp s t = [x | x ←s, [¬p x y | y← t]all] T

nest-joinTσp f s t = [[fx y | y ← t, p x y]σ | x←s] T

maxTf s= [fx | x ← s]max (max ∈{ min, exists, all, sum})

Figure 5: Algebraic Combinators (Monad Comprehensionbased definitions)

5. A case study

Prepare the SQL for the following DRS statement: “Retrieveleave details of all employeesbasedon

theirlatestemployment records”.

 Fig6: DB Table Relationship

Functional programs are constructed by knitting smaller programs together, using an intermediate

list to communicate between the constituent parts. Lists are often used to glue separate components of

a program together [9]. The key finding here is that Combinator based query predicates operate pretty

much with listful programs. A listful program expresses acomplex list manipulation by composition of

generic Combinators, each generating an intermediate result list, which needs subsequent filtering.

Relational calculus can be deemed as a specialization of the Monad Comprehension calculus restricted over

sets.The comprehension [x | x ←xs, p x]τis similar to the relational selection σp.xs but more generalised to

represent any data type of τ and can be shown as:

Mathew George, Dr. Rohini V

2686

[x | x ←xs, p x]τ≃σp.xs

The nested comprehension is represented as:

[f x |x←xs, [gx=h y | y←ys, py]exists]set

Translates to:

select distinct f x

from xs as x

where g x in (select h y

from ys as y

where p y)

 Implemented as:

select distinct e.employee_id

 from Employees ewhere e.id in (select e.id

 from Leave_Details

where a.employee_id = e.id);

The select-from-where combination is identical to a comprehension: the `from` clause corresponds to a

sequence of generators12, and the predicates in the where clause corresponds to filters. Finally, the select clause

represents the comprehension’s head expression. Use of the distinct modifier would transform a bag into a set as

the result monad9 [2].Moreover, nested SQLs operate in a streaming (or pipelined) mode.SQL execution

benefits from streaming since objects are addressed and loaded from the persistent storage only once.

Functional composition will be the most preferred way forbuildingnested queries.Structural

recursion (and an implementation of it in the form of foldr) provides the principal way for

implementing functional abstractionover values of an initial algebraic data type τ. The Combinators

may be re-expressed by foldr directly [2]. The foldr-based program schememay then be used as a

template to derive an actual typically imperative storage access program due to the simple linear

recursion scheme represented by foldr [2].

nestjoinτσp f s t = foldrτ(λxxs.(foldrσ(λyys. if existsσ (p

 y) t then y :τyselse ys) [] σ) :τxs t) []τs

As translation schemecan translate Monad Comprehensions into nested foldrexpressions,which on

executingthequeries constructed from these expressions, the query engine will tagfor nested-loop

processing and executes. During the SQL creation process the sub-queries can be treated as free

variables that may be progressively instantiated and inserted or appended to complete the SQL

generation.

nestjoinτσp f s t = [foldrτ(λe_id employees.(foldrσ(λld_idleave_details s. if existsσmax(e1_id) then

max(e1_id)):τemployees t)]bagemp_rcd_subquery(s)[]τ

The emp_rcd_subquery predicate:

s= λx y:p y &&q x y

→

p =[]τa.employee_id = (foldrσ(λe1.id) employees1(λe1_id employees1 t. if existsσe1.id=e.id then max(e1.id):τ)

&&

q = []τe2.empl_rcd = (λe2_id employees2 s.if existsσe2.id = e1.idand e2.eff_status=‘Active’ then

max(e2.empl_rcd):τ)[]τ

byappending nested emp_rcd_subquery predicate q.

Fig7: Intermediate representation of Employee-LeaveDetails for the latest employee_record in the

database

Monad comprehensions and Combinators, the two different forms of syntactic sugar, put together

to the basic recursion Combinatorfoldr, established connecting links in the intermediate representation

for nested queries to be picked by the target query build program to subsequently create the needed

SQL.

2687

A novel framework for synthesizingnested queries in SQL from business requirements language

2687

Initial Sketch generation:

To provide an example of nested queries, suppose that a user wants to retrieve the latest

employment record based, leave details. We can express this query as:

ΠEmp_id, Name, emp_rcd, Designation, leave_code, from_date (Leave_Details)(σe_id =Πmax(e_id, (Employees) andσemp_rcd=Πmax

(emp_rcd,)(Employees))

It is a relatively easy task to map the intermediate algebraic representation of the form σ-π-⋈ into a

select-from-whereclause without nested sub-queries. The only challenge in this case is to consult the

database schema and get the path to reach the target table traversing the intermediate tables in the

relationship tree. Here, we start from the Employee table and eventually JOIN the Leave_Detailstable

(the target table in this case) traversing through the employee Department, Leave_Types tables to get a

bag of rows corresponding to the leaves availed by the Employees.

SELECT (?[E.employee_id], ?[E.empl_rcd], ?[E.eff_status], ?[E.Designation],

?[D.Department_name], ?[LT.leave_type], ?[LD.start_date], ?[LD.end_date])

FROM ?? [rex_employees] E

JOIN ?? [rex_departments] D ON E.department_id = D.id

JOIN ?? [rex_leave_details] LD ON LD.employee_id = E.id

JOIN ?? [rex_leave_type] LT ON LD.leave_code = LT.id

WHERE E.id = (Select max(E1.id) from rex_employees E1) WHERE E1.id = E.id)

This query is a suitableinitial one as the required nested clauses are not added in the WHERE

clause for filtering out the actual set of theActive, latest Effective Dated rowsafter removing

duplicates. Running this on the Rex database fetches alot more than the actual number of rows

expected from the Leave_Details table. Hence added the sub-query predicates discussed before to

create the below resultant query.

SELECT (?[E.employee_id], ?[E.empl_rcd], ?[E.eff_status], ?[E.Designation],

?[D.Department_name], ?[LT.leave_type], ?[LD.start_date], ?[LD.end_date])

FROM ??[rex_employees] E

JOIN ?? [rex_departments] D ON E.department_id = D.id

JOIN ?? [rex_leave_details] LD ON LD.employee_id = E.id

JOIN ?? [rex_leave_type] LT ON LD.leave_code = LT.id

WHERE E.id = (Select max (E1.id) from rex_employees E1) WHERE E1.id = E.id)AND

E1.empl_rcd = (Select max(RCD.empl_rcd) FROM rex_employees RCD WHERE

RCD.employee_id = E1.employee_id);

This turns out fetch the intended outcome (Figd).The addition of the new nested Sub-

Query,E1.empl_rcd = (Select max(RCD.empl_rcd) FROM rex_employees RCD WHERE

RCD.employee_id = E1.employee_id);in the final SQL enabled the removal of old Employee records

form the rows returned earlier.

Figure 7: Simplified schema of an HRMS ERP database

 {entity} PK (D_id)

P * D_id Integer

Department_idInteger

 Department_nameVARCHAR(100)

Departments (D)

 {entity} PK LD_id)

P * LD_id Integer

 Employee_id Integer

 F Leave_Code VARCHAR

S t art_date Date
E n d _ d a t e Date

 Leave Details (LD)

 {entity} PK (LT_id)

P * LT_id Integer

Leave_CodeInteger

Leave_Type VARCHAR

 Leave Types (LT)

 {entity} PK (E_id)

 P * E_jd Integer

 Employee_id Integer

 Employee_name VARCHAR(100)

F Department_id Integer

 Empl_rcd Integer

 Status VARCHAR

Employees (E)

Mathew George, Dr. Rohini V

2688

Figure 8: The resultant nested SQL

EXAMPLE1: Consider the “Employee” and “Leave_

Details”tables given below,where column names with

suffix “_fk" indicateforeign keys.

Eid Name
em

p_rcd

Designatio

n

Eff_statu

s

Departm

ent

Dept_id

101 Matt 1 Manager Inactive Math 90

101 Matt 2 Professor Active CS 60

114 Joe 1 Trainee Inactive Math 90

114 Joe 2 Surgeon Active Medical 80

115 Rose 1 Professor Active Math 90

Fig a) Employees table representation

Eid

_fk

emp_

rcd Leave_Type From_dt To_dt

101 1 Casual 02-Aug-2020 03-Aug-2020

101 2 Accumulated 26-Aug-2020 27-Aug-2020

114 1 Casual 10-May-2020 10-May-2020

114 2 Restricted 27-Aug-2020 28-Aug-2020

115 1 Special 02-Aug-2020 03-Aug-2020

Fig b)Leave_Details table representation

Π(Leave_DetailsEid-fkEidEmployees) returns the combineddetails of the Employees-Leaves-Data:

Eid

_fk

Eff_s

tatus

Em

p_rcd

Designation Depa

rtment

Leav

e Code

From_dt

101 I 1 Manager Math CL 02-Aug-2020

101 A 2 Professor CS AL 26-Aug-2020

114 I 1 Trainee Math CL 10-May-2020

114 A 2 Surgeon Medi

cal

RH

27-Aug-2020

115 A 1 Professor Math SL 02-Aug-2020

 Fig c)Query Output with max(emp_id)Sub-Query

Here, Πgmax(emp_rcd)(Employees) fetches the latest

employee_record of the Employees:

Eid
Nam

e

Eff

_Status

Em

p_rcd

Designatio

n

Dept

_id

Leav

e Code
From_dt

101 Matt A 2
 Professor

CS CL
26-Aug-

2020

114 Joe A 2 Surgeon
Medi

cal
RH

27-Aug-

2020

115 Rose A 1 Professor Math SL
02-Aug-

2020

Fig d)Final Outputwith max(emp_rcd)Sub-Query

For the tables inFig a & b, the final query retrievedone row eachforEmp_ids 101, 114 and

115.Note that for Emp_id=101 and 114, who had2emp_rcds, the nested sub-query has filtered out the

latest one with status=Active(A) belonging to Department_id= ‘CS’

2689

A novel framework for synthesizingnested queries in SQL from business requirements language

2689

6. Results and discussions

The Experimental Database Configuration of REX is as given below.

Data

base

Type

Data

base

Nam

e

Size #Ta

bles

#Colu

mns

Postgr

es

REX 120

MB

12 117

Table 1: Experimental Database Instance

Mode

l

Name

Opera

ting

System

Proces

sing

Speed

R

AM

Proce

ssor

HP15

s-

fr2005tu

Windo

ws 10

2.4

GHz

8

GB

Intel

i5 - 4

Cores

Table 2: Experimental Server Configuration

Que

ry

Type

Inp

ut

DRS

Count

Suc

cess

Averag

e

Time(With

out FP

Constructs

)

Averag

e

Time(With

FP

Constructs

)

Nes

ted

4 4 475

msecs

315

msecs

Table 3: Results Summary

The SQLs generated by the REX framework were executed against the REX database instance a)

first without the Functional Programming constructsb) then with the Functional Programming

constructs(using Monad comprehension and Foldr) discussed in this work.By incorporating the

Functional Programming constructs the speed of execution improved by 33%.

7. Future work

Further research can be performed to establish the Turing machine compliance of the intermediate

Language described in this work. We can go a step further by applying Lambda Context calculus to

ensure the effectiveness of translation. Techniques for SQL optimization by applying techniques at

intermediate level can be pursued.The correspondence between finite form of structural recursion and

relational algebra makes it possible to apply optimization techniques directly into the language.

Further research can be conducted to verify if application of qualifier exchange rule provides the

means to reorder filters and joins so that query rewrite is managed with the help of indices.

8. Conclusions

This work extended the earlier approaches for automatic query creation by adopting advanced

concepts from the functional programming domain.An intermediate language centred on structural

recursion is constructedfor performing the required transformation operations and for representing data

structures used in processing the data spanning across different levels of a tree.Adoption of structural

recursion is the most significant design choice in the intermediate representation as it supports type-

based design,represents algebraic and extended data types, providedaninitial skeleton on which

transformations can be performed and supports nesting.This work also described how onworking with

nested intermediate structures, Monad comprehensions provided the necessary syntactic sugar and was

helpful in combining a wide range of translation constructs, such as transformation rules and state

management, exception handling or managing input-output to eventually return the desired SQL

query.The recursion Combinatorfoldreffectively combined monad comprehensions and Combinators,

providing the necessary platform for merging fixed and varying components of the intermediate

Mathew George, Dr. Rohini V

2690

representation.The peculiarity of the notion of monads is that it comes with just enough internal

structure to represent the query calculus. The resulting monad comprehension calculus eventually

leads to a form of query representation that corresponds to the core structure inherent in a query.The

single uniform formal framework designed for translating NL to SQL effectively combined all stages

of the query synthesis process and produced deeply nested queries. The translation framework

eventually had a programthat combined all these techniques which eventually transformed requirement

statementsinto nested SQLs.

9. Bibliography

1Bags:Collection of data where repetition of elements is allowed (unlike sets).
2Combinator:A Combinator is a λ-calculus expression to represent primitive functions which has

no free variables. A Combinator represents closed expressions (no free variables) of a language and

corresponds to axioms of a deductive system.
3Orthogonal design: (or Othogonality) in programming language design is the ability to use

various language features in arbitrary combinations in such a way that independent concepts are kept

independent and not mixed together to avoid complexity. It ensures that modifying the technical effect

produced by a component of a system does not create or cascade side effects to other components of

the system
4Initial Algebra:Algebra of abstract data types and their constructors plus the rules and functions

associated with these data types.
5Lambda Calculus: (also denotedas λ-calculus) is a formal system in mathematical logic to

express computation based on function abstraction and application by variable binding and

substitution. It is a universal model of computation and can simulate any Turing machine.
6Fixed-point Combinator: Fixed-point Combinators are used for implementing loops in Lambda

calculus. They are also used to implement recursion without calling the function name recursively but

by applying the function to itself with a new set of values for its bound variables every time when it is

(re)applied.
7Structural Recursion:Programming paradigm that enables to perform recursion on objects made

from user defined data types.Recursion ondynamic data structures such as Lists and Trees where data

to be treated are defined in recursive terms.Structural recursion over lists has been known under the

function namesfold or reduce.
8Comprehensions: Comprehensionsoffer a concise wayof creating a data structure from one or

more iterators. Comprehensions make it easier to combine loops and conditional statements with less

verbose syntax.

9Monad: Monads provide aframework to combine a wide variety of programming paradigms, such as

managing state, exceptions, or input-output.It has a return operator that creates values, and a bind operator

to link the actions in the pipeline; and its definition follows a set of axioms called monadlaws, all these

are mandatory for the composition of actions in the pipeline to work properly. The final result is the

outcome of the entire unit.

10Monad Comprehensions:In computer science Monad and Monad Comprehension are inter-

changeably used.

11Fold:In functional programming, fold refers to the use of a given combining operation,

recombine the results of recursively processing its constituent parts, building up a return value.

12Foldr:Foldr stands for fold-right while operating.
13

Generator:A generator is a sequence creation object and often the source of data for iterators and

allows iteration through potentiallyhuge sequences without creating and storing the entire sequence in

memoryat once. It is different from a normal function whichhas no memory of previous calls and

always starts at its first line with the same state. But generators keeps track of where it was the last

timeit was called and returns the next value.

References

1. N.Yaghmazadeh and Y.Wangand I. Dillig, and T. Dillig, “Type and Content-Driven Synthesis of SQL

Queries from Natural Language,” Computer Science - Databases, Computer Science –Programming

Languages, eid = arXiv:1702.01168, Feb 2017. Available: https://arxiv.org/abs/1702.01168.

2. Muxamediyeva, D. K. "Properties of self similar solutions of reaction-diffusion systems of quasilinear

equations." International Journal of Mechanical and production engineering research and development

2691

A novel framework for synthesizingnested queries in SQL from business requirements language

2691

(IJMPERD) 8.N (2018).

3. T. Grust and M. H. Scholl, “How to comprehend queries functionally,” J. Intell. Inf. Syst., vol. 12, no.

2, pp. 191–218, 1999.

4. V. Breazu-Tannen, P. Buneman, and S. Naqvi, “Structural recursion as a query language,”DBPL3 Proc.

third Int. Work. Database Program. Lang. bulk types persistent data, no. August, pp. 9–19, 1992.

5. M. Bognar, “Contexts in Lambda Calculus,” Vrije Univ.Amsterdam, Thesis, pp. 1–236, 2002.

6. P. Buneman, M. Fernandez, and D. Suciu, “UnQL: A

7. Querylanguage and algebra for semi-structured data based onstructural recursion,” VLDB J., vol. 9, no.

1, pp. 76–10, 2000.

8. DEVI, MEENU, S. R. Verma, and M. P. Singh. "An efficient method of bounded solution of a system

of differential equations using linear legendre multi-wavelets." Int. J. Math. Comp. App. Res 4 (2014):

2249-8060.

9. B. Carpenter. Type-logical semantics. MIT press, 1997.

10. R.S.Bird (1987). An Introduction to the Theory of Lists In M. Broy(Ed.), Logic of Programming and

Calculi of Design. NATO ASI Series. Springer Verlag, vol. 36,p. 5–42.

11. KRYUCHKOV, VASSILIY, et al. "Investigation of dynamic motion processes of modernized uav

using mathematical model of numerical simulation." International Journal of Mechanical and

Production Engineering Research and Development 10.2 (2020): 535-554.

12. P. Wadler, “Comprehending Monads,” Math. Struct. Comput. Sci., vol. 2, no. June 1990, pp. 1–38,

1970.

13. Gill, J. Launchbury, and S. L. P. Jones, “Short cut to deforestation,” no. Section 4, pp. 223–232, 1993.

14. Islam, MdAsraful, and Payer Ahmed. "Prediction of the Population of Bangladesh Using Logistic

Model." International Journal of Applied Mathematics & Statistical Sciences (IJAMSS) 6.6 (2017): 37-

50.

15. P. van Leeuwen, “λ-Calculus Syntax’s Definition and Completeness As Graph Database Querying

Language.pdf.” Semantic Scholar, pp. 1–8, 2018.

16. Jain, A. B. H. I. N. A. V., and M. O. N. I. K. A. Mittal. "Haar wavelet based computationally efficient

optimization of linear time varying systems." International Journal of Electrical and Electronics

Engineering (IJEEE) 3.3 (2014): 11-20.

17. P. Buneman, M. Fernandez, and D. Suciu, “UnQL: A query language and algebra for semistructured

data based on structural recursion,” VLDB J., vol. 9, no. 1, pp. 76–110, 2000.

18. HosuI., IacobR., BradF., Ruseti, S. and RebedeaT. (2018). “Natural Language Interface for Databases

Using a Dual-Encoder Model”. Proc. 27th Int. Conf.Comput. Linguist., pp. 514–524.

19. P.Selinger(2013), “Lecture Notes on the Lambda Calculus”,Department of Mathematics and

Statistics,Dalhousie University, Halifax, Canada.

