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Abstract: We present the real-world public sentiment expressed on Twitter using the proposed conceptual 
model (CM) to visualize the communication service providers (CSP) reputation during the Covid-19 pandemic 

in Malaysia from March 18 until August 18, 2020. The CM is a guideline that entails public tweets directly or 

indirectly mentioned to the three biggest CSP in Malaysia: Celcom, Maxis, and Digi. A text classifier model 

optimized for short snippets like tweets is developed to make bilingual sentiment analysis possible. The two 

languages explored are Bahasa Malaysia and English since they are the two most spoken languages in Malaysia. 

The classifier model is trained and tested on a huge multidomain dataset pre-labeled with the labels “0” and “1”, 

which resemble “positive” and “negative”, respectively. We used the Naïve Bayes (NB) technique as the core of 

the classifier model. Functionality testing has done to ensure no significant error that will render the application 

useless, and the accuracy testing score of 89% is considered quite impressive. We came out with the 

visualization through the word clouds and presented -56%, -42%, and -43% of Net Brand Reputation for 

Celcom, Maxis, and Digi. 
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Introduction 

 

Currently, social media has become extraordinarily popular among people of all ages. Millions of social 

media users use social media network sites to express their emotions and opinions and disclose their daily lives 

[1]. Twitter is a social media or micro-blogging platform available as a website and mobile application that lets 

its registered users to share short messages called tweets anytime, from their smartphone, tablet, or computer [2]. 

According to the Malaysian Communications and Multimedia Commission (MCMC)’s Internet Users Survey 

2018 Statistical Brief Number Twenty-Three, in 2018, it is estimated that there are about 24.6 million social 

networking users. Of those, 23.8% own a Twitter account. By February 2019, Twitter averaged over 320 million 

monthly active users making an average of 500 million tweets daily, which means around 6 thousand tweets per 

second [3]. The channel provides the sales campaign products and services to engage with their customers for 

advertising [4]. Through online communities, like the one that exists on Twitter, for example, an interactive 

media where consumers inform and influence others is created, consumers mostly depend upon user-generated 

content on the internet for decision making. Positive feedback from previous users could influence a consumer’s 

decision to purchase a particular product, generate brand awareness, and increase its sales. 

During the pandemic of Covid-19, social media medium usage has been used actively as the communication 

platform. Starting from March 18, 2020, until August 18, 2020, Malaysia announced the Movement Control 

Order (MCO) to prevent the virus’s spread. As many people must stay home during the MCO, and most 

activities conducted online, internet lines increased. Although the bandwidth is sufficient, the increase in internet 

data consumption makes it essential for telco companies to aware of their performances based on the comments 

or feedback so that it enables them to make any improvements. This ocean of opinionated tweets consists of 

various topics, making it the right spot for researchers to do data mining and gain research information. One of 

the studies related to using Twitter data is Twitter sentiment analysis. 

Sentiment analysis is a computer science field that uses language processing and machine learning to study 

and analyze one’s attitude, opinion, and evaluation towards entities like topics, services, products, and more. The 

objective of sentiment analysis or opinion mining is to determine the author’s attitude and emotions from a piece 

of writing or text [5]. For many different purposes, the sentiment value found within a written language such as 

comments, feedback, or critiques provides useful indicators for specific organizations. According to [6], two 

categories of sentiment values: a binary scale consisting of either positive or negative and an n-point Likert scale 

attitude measurement. The sentiment analysis technique automatically extracts and summarizes the sentiments of 

such a large amount of data in the social media that is unable to be handled by the average human reader [7]. 

Recently, Twitter has attracted researchers to analyze Twitter data for various types of sentiment analysis 

research, such as making predictions [8], detecting users’ sentiment towards different issues, and detecting users’ 
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emotions [9]. Furthermore, Twitter contains more relevant data than traditional blogging sites as each tweet has a 

limited number of only 280 characters to express opinion compressed in a short text [10]. Twitter caught the 

researcher’s attention with the number of tweets posted a day reaches 500 million, making it the right spot for 

data mining [11]. However, the biggest challenges of Twitter sentiment analysis are implicit sentiments, 

synonyms, and sarcasm. 

Data visualization is a powerful technique for exploring and communicating information as it represents 

quantitative attributes over visual properties such as position, length, area, and colour in an organized form [12]. 

Referring to [13], data visualization and visual analytics enable nontechnical organizations to make data 

discovery in a self-directed style to enhance decision making result and daily business operation. The innovation 

of various visualization tools helps users improve their understanding and skills in generating various charts 

using different visualization techniques. Due to the ability to provide a quick and clear understanding of the 

information, this field has rapidly grown, resulting in an increased number of types of charts and types of data 

analysis [14]. A significant amount of data was visualized using various charts such as pie charts, bar charts, and 

word clouds to find the data’s hidden information. 

Therefore, this paper presented the real-world of public sentiments using the proposed conceptual model 

(CM) to visualize CSP’s reputation to cater to the ideas. The CM was adapting the two CM, which is Simulation 

in Modeling CM (2008) and Integrated Framework for CM (2016) [15], to visualize the reputation during the 

MCO period. This study involves Full Stack Web Development, which means there are two components: the 

back-end and the front-end. For the back-end section, data collection, data pre-processing, and Naïve Bayes 

(NB) algorithm developed the model and accuracy testing of the model discussed. For the front-end section, we 

explained the flow of the system and the designed interface. 

 

Back-End Development 

The back-end is the server-side of the web application. Data manipulation and model development is a part of 

back end development. The back-end component of a web application also makes sure everything on the front 

end works accordingly. In this section, we performed data collection, data pre-processing, and implementation of 

the NB algorithm to develop the model and the accuracy testing. These processes are explained extensively in 

the following subsections. 

 

Data Collection 

We extracted the dataset from huseinzol05’s GitHub repository named Malaya-Dataset for the training set 

and testing set for this study were extracted. The public can access this repository at 

https://github.com/huseinzol05/Malaya-Dataset. From the readme file, the repository claimed to gather and store 

Bahasa Malaysia corpus. We also discussed the method used to gather these data in the same file. The data are 

mostly collected using crawlers, and these data are semi-supervised by paid linguists. We extract two repository 

folders data, which are Sentiment Twitter and Sentiment Multidomain. These data are all in. json format, and the 

number of data in total is 1,231,396, and all the data are pre-labeled. The number of negative tagged sentences is 

693,249, and the number of positive tagged sentences is 538,147. 

We extract the data from Twitter profiles for real-world implementation without tusing Twitter’s API through 

Twint.TwintisanadvancedTwitter scraping tool written in Python, and it utilizes Twitter’s search operators to 

allow scraping from specific users and tweets relating to certain topics, hashtags,andtrends.Inthisresearch, we 

scraped tweetsthatcontainthekeyword‘Celcom’, ‘Digi’, and ‘Maxis’ dated from March 18, 2020, until August 18, 

2020.Throughsearchingforthosekeywords,tweets, directly and indirectly, mentioned to the 3 CSP can be 

extracted. The scraped data stored in .csv files. The total number of data scraped for Celcom, Digi, and Maxis is 

101,768, 45,783, and 36,582, respectively. There are 34 columns, and some examples of the columns are 

‘timezone’, ‘user_id’, ‘username’, ‘name’, and ‘tweet’. 

 

Data Pre-Processing 

We perform data pre-processing to discard any unnecessary qualities in the data, making the trained model a 

poor generalizer. We pre-processed the data for real-world implementation by removing the columns that are 

insignificant for this study. The final dataset comprises three columns: ‘date’, ‘username’, and ‘tweet’. The .csv 

files are then imported into Jupyter Notebook to run the cleaning process. The cleaning process involves 

removing HTML unique entities, converting @usernametoAT_USER, removing tickers, shifting all 

thecharacterstolowercase, removing hyperlinks, hashtags, punctuation, words with two or fewer letters, 

whitespace, and characters beyond Basic Multilingual Plane (BMP) of Unicode.The cleaned data are then stored. 

However, to draw up a word cloud,aseparatedatasetneedstobecreated. It is due to the need fortokenization on the 

data. Also, we remove the punctuations,stop words, andafew more ‘special’ words. 

The purpose of the Net Brand Reputation (NBR) is to simplify the process of gauging consumers’ loyalty 

[16]. The index helps in focusing on creating more positive remarks and decreasing the negative feedback. NBR 

scores do not reflect the scores obtained using the Net Promoter Score (NPS). Thus, we choose NBR as the 
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reputation index for this study as it suits the nature of this study better, and it addresses the issues faced by NPS 

[17]. 

 

Naïve Bayes Classifier 

The sentiment analyzer is built on top of a Naïve Bayes (NB) Classifier Model. The model learns the correct 

labels from the training set and performs a binary classification. The model assumes that the presence of a 

particular feature in a class is unrelated to the presence of any other feature. The NB theorem calculates the 

probability of a specific event happening based on the probabilistic joint distributions of certain other events 

[18]. Overall, NB is famous for its classification techniques due to its captivating structure for different tasks and 

a satisfactory performance obtained in the task. It shows excellent performance accuracy and the minimum rate 

of error compared to other classifiers [19]. In this study, we fed the model with the training set containing pre- 

labeled tweets, and it teaches itself the characteristics of the features of a positive and negative tagged sentence. 

As both the training and testing sets are already partly pre-processed, the earlier stage’s pre-processing is 

deemed unnecessary. However, vectorization still needs to be carried out on the two sets. Each message, 

representing a list of tokens, is converted into a vector that a machine learning model, like the NB Classifier 

Model, can process. The Bag of Words model used and it involves three simple steps, which are counting the 

number of times a word appears in each message, weighing the counts, which in turn lowers the frequent tokens’ 

weight, and normalizing the vectors to unit length to abstract from the original text length. Each vector has as 

many dimensions as there are unique words in the tweeter corpus. 

Figure 1 shows the idea of the conceptual model developed in the previous research to visualize the 

reputation of CSP through Twitter sentiment analysis. 

 

Figure 1 The Conceptual Model for Visualizing Reputation of CSP Through Twitter Sentiment Analysis 

The first two steps are also commonly known as term frequency and inverse document frequency. These two 

are combined to form Term Frequency, Inverse Document Frequency, or TF-IDF, a weight commonly used in 
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information retrieval and text mining. This weight is a statistical measure used to evaluate the level of 

significance of a word to a particular document in a collection or corpus. The level of significance increases 

proportionally to the number of times a word appears in the document. Nevertheless, it offset by the frequency of 

the word in the corpus. 

Term Frequency (TF) is a measure of how frequently a term appears in a particular document. Since every 

document varies in length, there is a possibility that a term would occur many more times in longer documents 

than shorter ones. Thus, the term frequency is usually divided by the document length as a way of normalization, 

and the formula to calculate TF shows in Eq. (1). 

 
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠) 

𝑇𝐹(𝑡) = 
(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠) 

(1) 

 

Inverse Document Frequency (IDF), on the other hand, measures the level of significance of a term. While 

computing TF, all terms were considered similarly significant. However, specific terms such as “is”, “of”, and 

“that” have the tendency to appear more frequently while adding little to no significance. Thus, we weighed 

down the frequent terms and scaled up the rare ones at the same time. The formula to generate IDF shows in Eq. 

(2). 
(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠) 

𝐼𝐷𝐹(𝑡) = log 𝑒 
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑖𝑡) 

(2) 

 

The recommended method for training a good model is to first and foremost, cross-validated using a portion 

of the training set to check whether if the model is overfitting the data. Different hyperparameter configurations 

have been testing out to split the model into random parts to evaluate whether it is generalizing well or 

overfitting. For this particular study, there 4+2+2 parameter combinations to test and 10 kfold validations. 

Hence, the model is trained and tested on the testing set 80 times. The data are split into training and testing sets 

beforehand, with the ratio of 80:20. It is considered there are 985,117 tweets in the training set and 246,279 

tweets in the testing set. 

The model is then stored and can be retrieved in the future without having to retrain it. Model evaluation is 

then performed on the trained model to predict the unseen test data, allowing grading and retrieving the 

performance metrics. Two metrics are retrieved, which are the classification report and the confusion matrix. 

Figure 2 shows how we interpreted a confusion matrix. 

 

Figure 2 Guide on Interpreting Confusion Matrix 

 

Real-World Data Visualization 

We run the sentiment predictions with the trained model on the data collected; the data and model were 

loading. Sentiment analysis based on the trained NB Classifier Model is then performed on the data to generate 

new data with the texts tagged with either a “positive” or a “negative” label, which is represented by “0” and 

“1”. “0” represents “positive”, and “1” represents “negative”. These data are sorted according to the date and 

saved. 

The data visualized using Plotly, an open-source, interactive graphing library for Python. We imported the 

data into Pandas data frames, and from the data frames, the data plugged in, and charts and draw up the graphs. 

The charts generated include bar charts, line charts, and word clouds. Apart from the word clouds, all the charts 
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generated are interactive, and hovering over some elements on the charts will trigger a pop-up containing extra 

details of the charts. 

 

Front-End Development 

Front-end development, also known as client-side development, is the writing HTML, CSS, and JavaScript 

practices for a web application to allow users to see and interact with the application directly. The product of the 

development is then served to the users commonly through a web browser. Front end development also involves 

the design aspects like visual aesthetics and usability of the web application. Extensive explanations of the front- 

end development are provided, including design elements such as a use case diagram and a flowchart. 

 

Use Case Diagram 

Figure 3 shows the overall use case for the visualization system that involved user interaction with the 

system. It is crucial to show the sequence of actions and the interactions involved to achieve the objectives. Each 

use case has its description of the involved activities, and the developer can easily comprehend the system’s 

requirements. 

 

Figure 3 Overall Use Case Diagram 

 

Flowchart Diagram 

Figure 4 shows the whole system’s flow, which includes the sentiment analyzer and other system features. As 

soon as the system is running, the user can see the landing page. If the user clicks on the ‘Go to Dashboard’ 

button, the system directed the user to the overview page. The user can browse through where the overview of 

the data and analysis performed on the data is displayed. If clicks the ‘Celcom’ button, the system directed the 

user to the Celcom page with extensive details, including the NBR and data visualization. The user is directed 

either to the Maxis or Digi page, depending on the selection button, ‘Maxis’ or ‘Digi’. The contents are similar 

to the Celcom page but for the respective CSP. For the ‘Sentiment Analyzer’ button, the user can enter any input 

in the text. After clicking the ‘Submit’ button, the system performed the sentiment analysis based on the NB 

Model Classifier developed in the back end development and display the result of the sentiment analysis. Lastly, 

for the ‘Twitter Updates’ button, timelines of Celcom, Maxis, and Digi’s official Twitter accounts are streamed 

and displayed on the ‘Twitter Updates’ page. 
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Figure 4 Overall Use Case Diagram 

 

Design User Interface Diagram 

A design must be drawn up beforehand before developing the system’s prototype interface to ensure that the 

interface’s flow is not compromised. Besides, a design provides a better and more precise view of the flow of 

how the actual system will function. The UI covered the functional requirements and non-functional 

requirements of the system. 

 
Result and Discussion 

In this subsection, we discussed the final result of the web-based visualization of the CSP system started 

from the interface, functionality testing, accuracy testing, real-world data analysis, and the three CSP word 

cloud. 

 

Actual User Interface Diagram 

Figure 5 shows the description of the user interface’s final design of the system started with the Landing 

Page, where the user has to click on the ‘GO TO DASHBOARD’ button to enter the application. 
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Figure 5 UI for Landing Page 

Figure 6 displays the page of ‘Overview’. User can see the NBR for all the 3 CSP and a summary of the 

analysis through data visualization. Figure 7 illustrates the Celcom page. It displayed the result of the analysis 

for Celcom on this page through data visualization. 

Figure 6 UI for Overview Page 

 
 

Figure 7 UI for Celcom Page 
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Functionality Testing 

The purpose of conducting functionality testing is to locate any anomaly, error, or odd behaviour in the 

system. It is vital to ensure that every function of the system works smoothly and accordingly. If an error can be 

detecting, this is an indicator of a poorly developed system. 

 

Accuracy Testing of the Native Bayes Classifier Model 

We automated the accuracy testing of the NB Classifier Model by writing a simple Python code. Figure 8 

shows the snapshot result of accuracy testing. 

 
Figure 8 Snapshot Result of Accuracy Testing 

 

As observed, the accuracy score is 89% after conversion to a percentage. This score means that the model 

predicted the correct label 89% of the time. In simpler words, out of 10 attempts, the model was able to get 

approximately nine correct results based on the data fed from the testing set. This score provides a decent picture 

of how well the model is performing. The model predicted 129,727 labels correctly as “negative” and 89,948 

labels correctly as “positive” from the confusion matrix. However, there were 8,598 “negative” labels and 

18,007 “positive” labels mispredicted. 

Lastly, from the classification report, extra details on the model’s performance can be extracted. The label 

“0” precision is 88% and 91% for the label “1”. These numbers indicate the proportion of the labels predicted 

correctly out of the total number of predictions for that class. Next, label “0” got a score of 94%, and label “1” 

managed a score of 83% for recall. Recall translates to the number of correct predictions out of accurate labels 

for that class. F1-score, on the other hand, is the weighted average of precision and recall for that class. It 

typically provides a bigger and more precise picture of how well the model performs for that label, and a higher 

number is a good indicator of a better performing model. Label “0” scored 91%, and label “1” scored 87% for 

the f1- score. 

The agreement scores in social computing studies average at around 0.60 or 60% [20] to provide a 

perspective on how well the model performs. Therefore, a nearly 90% accurate program can be considered quite 

impressive. The model can also be benchmarked against similar work by [21]. The final model based on Support 

Vector Machine (SVM) achieved an accuracy of 79.08%. 

 

Analysis Result of Real-World Data 

We analyze the real-world data result for three CSP as in this subsection. 

A. Celcom CSP: 

Tweets directly or indirectly mentioned to Celcom amount to a total of 101,768 tweets. The model runs on 

these tweets, and the number of “positive” tagged tweets are 22,235, and “negative” tagged tweets are 79,533. 

Hence, the NBR for Celcom is -56%. Figure 9 shows the line chart generated to illustrate the sentiment from 

March 18, 2020, until August 18, 2020, every month. 
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Figure 9 Trend of Sentiment for Celcom 

 

The variance of negative statements tweeted is much higher than positive statements. Twitter users were 

tweeting marginally fewer negative statements at the beginning of the year than towards the end of the year. 

B. Maxis CSP: 

On the other hand, tweets directly or indirectly mentioned to Maxis amount to a total of 36,582 tweets. The 

number of “positive” tagged tweets are 10,571, and “negative” tagged tweets are 26,011. Hence, the NBR for 

Maxis is -42%. Figure 10 shows the line chart generated to illustrate the trend of sentiment in six months. The 

variance of negative statements tweets for Maxis is also higher than positive statements. Twitter users were 

tweeting marginally fewer negative statements targeted at Maxis at the beginning of the year than towards the 

end of the year, similar to the pattern identified on Celcom’s tweets. 

 
Figure 10 Trend of Sentiment for Digi 

 

C. Digi CSP: 

Tweets directly or indirectly mentioned to Digi amount to a total of 45,783 tweets. The number of “positive” 

tagged tweets are 13,107, and “negative” tagged tweets are 32,676. Hence, the NBR for Digi is -43%. Figure 11 

shows the line chart generated to illustrate the trend of sentiment within six months. 
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Figure 11 Trend of Sentiment for Digi 

 

The variance of negative statements for Digi tweeted is higher than positive statements. However, the 

variance is lower than Maxis’ and Celcom’s. The tweeted number of negative statements about Digi is similar 

during the beginning and end of the year. There is consistency in Digi’s reputation throughout the year. 

D. World Cloud Visualization: 

Figure 12, Figure 13, and Figure 14 show the word clouds generated from Celcom, Maxis, and Digi data. 

Fromtheseword clouds, we conclude that the biggest issue that gets the subscribers ofthese CSP tweetingisthe 

cellreception. Theyallhaveonething in common: the most frequent term or word used in the tweets is “line”. In 

the context of Malaysia and Malaysians, this translates to connectivity and cellreception. 

 

Figure 12 Trend of Sentiment for Celcom 

Figure 13 Trend of Sentiment for Maxis 
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Figure 14 Trend of Sentiment for Digi 

 
 

Table 1 and Figure 15 shows the comparison of the results for the three CSP. In conclusion, during the first 

MCO started from March 18 until August 18, 2020, the NBR of Celcom is the worst compared to its 

competitors, and the NBR of Maxis is the best, with Digi’s being a close second best with a minimal margin. The 

figure shows that Celcom received the highest percentage of negative tweets and the lowest percentage of 

positive tweets. These two combined make the Net Brand Reputation. However, all three CSP has a negative 

NBR. 

 
Table 1Comparison of Results for Celcom, Maxis and Digi 

CSP Number of 

Tweets 

Number of Positive 

Tweets 

Number of Negative 

Tweets 

Net Brand Reputation 

Celcom 101,768 22,235 79,533 -56% 

Maxis 36,582 10,571 26,011 -42% 

Digi 45,783 13,107 32,676 -43% 

 

Figure 15 Comparison of Percentage Number of Tweets 

 

Conclusions 

This web-based real-world Twitter sentiment analysis of Malaysian Communication Service Providers (CSP) 

serves as a medium to visualize the results of the sentiment analysis conducted on tweets directly or indirectly 

mentioned to Celcom, Maxis, and Digi during the first MCO. The Naïve Bayes Classifier Model developed for 

this research is also embedded in the application, allowing the user to use the model on any textual data. The 

information extracted from the application can facilitate decision-making and make a rough estimation of how 

well a particular CSP is doing. The application’s visuals are all interactive, making it easier for the user to gain 

better and more precise insights. An extra feature included in the application is streaming the tweets from the 

official Twitter accounts of the three CSP. This feature updates the users with the latest news and 

announcements regarding these CSP’s services and products. For future work, we can improve the corpus to 

include different slangs of Bahasa Malaysia and commonly used short forms and add an extra class to represent 

texts that do not belong to either “positive” or “negative”. 
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