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Abstract: This scientific study is concerned with an integral equation, especially with Volterra integral equation 

and used new variational formulation which corresponds on the linear operator Lu=f. The vibrating spring 

equation has been solved using this approach. 
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1. Introduction  

 

Integral equations appeared and used in various applied areas as important as differential equations but the 

integral formulations are more elegant and compact than the differential formulations due to the accuracy of 

solutions that obtained from the integral equations [3]. The present study works in solving Volterra integral 

equation directly using variational approach (Magri app) [1,9]. Moreover, a new approach will used for solving 

vibrating spring equation, this as an application to Magri approach. That physical phenomena of solids in free 

vibration is that the vibration of the solid induced by an instantaneous disturbance either in the form of a force or 
deformation of the supporting spring. The kinetic energy is stored in the movement of a mass where the measure 

of this movement is the velocity of the system and the continuous interchange between potential and kinetic 

energy is the vibration of the system [4,7,13]. 

  

2. Integral Equations 

  

An integral equation is an equation in which the unknown function 𝑓(𝑠) to be determined appears under the 

integral sign. A typical form of an integral equation in f(s) is of the form, 

 

 𝑓(𝑠) =  ɣ (𝑠) + 𝜆 ∫ 𝑘(𝑠
𝑢(𝑠)

𝑣(𝑠)

, 𝑡)𝑓 (𝑡)𝑑𝑡 ( 2.1)  

 

Where 𝑘(s,t) is called the kernel of the integral equation, the function ɣ (s) is called the driving term, 𝑢(𝑠) 

and 𝑣(𝑠) are the limits of integration and may be both variables, constants or mixed. It is easily observed that the 

unknown function f(s) appears under the integral sign as stated above, and out of the integral sign in most other 

cases. Integral equations arise naturally in physics, chemistry, biology and engineering applications modelled by 

initial value problems for a finite interval [a, b]. More details about the sources and origins of integral equations 

and as well how the initial value problem be converted to the form of integral equations can be found in [15]. 

Other problem whose direct representation in terms of differential equation and their auxiliary conditions may 

also be decreasing to integral equation [16]. 

 

Our goal is to classify integral equations, the kernel function in integral equations and to determine f(s) that 
will satisfy (2.1). according to Magri approach. 

 

Types of Integral Equations  

 

According to the limits of integrations, the driving terms and the kernel, Arfken [4] gave a simple 

classification for integral equations, as follows:  

 

1. If the limits of integration are fixed, the equation is called Fredholm integral equation, whereas if one of 

these limits is variable, then the equation will be Volterra integral equation.  

2. If the unknown function appears only under the integral sing, we shall label it, first kind. While if it 

appears both inside and outside the integral sing, it will be labeled as, second kind. Symbolically, we 
write the Fredholm integral equation of the first kind and second kind respectively as follows: 

 

ɣ (𝑠)  =  λ ∫ 𝑘(𝑠
𝑏

𝑎
, t (𝑓 (𝑡)𝑑𝑡, 𝑓(𝑠)  =  ɣ (𝑠) + λ ∫ 𝑘(𝑠

𝑏

𝑎
, t )𝑓 (𝑡)𝑑𝑡 

Whereas the Volterra integral equation of the first, second kind will be written respectively as:  
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ɣ (𝑠) =  ∫ 𝑘(𝑠
𝑠

𝑎
, 𝑡) 𝑓(𝑡)𝑑𝑡, 𝑓(𝑠)  =  ɣ (𝑠) + 𝜆 ∫ 𝑘(𝑠

𝑠

𝑎
, 𝑡) 𝑓(𝑡)𝑑𝑡 For more types, see [3, 2,4]. 

 

Classification of the Kernel of Integral Equations: [6] 

 

As mentioned earlier, the role of the known bivariate function k (s,t) is quite significant both from the 

problem and its solution point-of-view. Mainly, we shall come across with the following classification of the 

kernel of the integral equations: 
 

1. The kernel k(s, t) is said to be symmetric (complex symmetric or Hermitian) if 𝑘(𝑠, 𝑡)  =  �̅�(𝑡, 𝑠) (where 

the bar represents the complex conjugate). A real kernel is symmetric if 𝑘 (𝑠, 𝑡)  = 𝑘 (𝑡, 𝑠).  

2. The kernel k (s,t) is called separable or degenerate kernel which means that k has been expressed as 

the sum of a finite number of terms, each of which is the product of function of s only and t 

only, 𝑘(𝑠, 𝑡) = ∑ 𝑓𝑖(𝑠) ɣ𝑖(𝑡) 𝑛
𝑖=1 . Obviously, 𝑓(s) 𝑖 and ɣ𝑖(𝑡) are linearly independent (or else some of 

the terms will combine, and consequently, the number of terms will reduce). A degenerate kernel has a 

finite number of characteristic values. 

3. The kernel of the form 𝑘(𝑠, 𝑡) =  𝑘 (𝑠– 𝑡)is called a difference kernel since it depends solely on the 

difference (s– t). 
 

The Connection between Differential and Integral Equations: [5] 

  

There is a close connection between these kinds of equations many initial and boundary value problems can 

formulated as integral equations and vice versa. In general, the initial problems, dynamical systems and 

boundary value problem can be formulated as Volterra and Fredholm integral equations respectively. 

Consider the differential problem (initial value problem):  

ỳ(s) =  𝑓 (𝑠, y), y (𝑠0)  = 𝑦0  … … … … (2.2)  

then ∫ 𝑦′(𝑡)𝑑𝑡 = ∫ 𝑓(𝑡, 𝑦(𝑡))𝑑
𝑠

𝑠0
𝑡 

𝑠0

𝑠
 which means that:  

y (𝑠) = 𝑦0  + ∫ 𝑓(𝑡, 𝑦(𝑡))𝑑
𝑠

𝑠0

𝑡. . … … … … (2.3)  

On the other hand, if (2.3) holds, we get y (𝑠0) =  𝑦0 and ỳ(s =  f (𝑠, y) which implies that (2.2) holds. Thus 

(2.2) and (2.3) are equivalent.  

 

3. The Variational Formulation 

 

Definition 1: (Linear Operator) [3]  

 

A functional is an operator whose range lies on the real line R or in the complex Ȼ. A functional 𝛽 on a linear 

space 𝑈 is called linear if for any 𝑢1, 𝑢2 ∈ U and any scalar 𝛼 we have: 

 

1. 𝛽 (𝑢1+ 𝑢2) = 𝛽 (𝑢1) + 𝛽 (𝑢2).  

2. 𝛽 (𝛼𝑢1) = 𝛼𝛽 (𝑢1). 

 

Definition 2 (Bilinear Form) [12]:  

 

A functional (𝑢, 𝑣) depending on 𝑢, 𝑣 ∈𝑈 is said to be bilinear form, if it satisfies the following properties 

for 𝑤 ∈𝑈 and 𝛼 ∈𝑅: 
 

(𝑢+𝑤,𝑣)= (𝑢, 𝑣)+ 𝛽(𝑤, 𝑣), 𝛽(𝛼𝑢, 𝑣) = 𝛼𝛽(𝑢, 𝑣) and 

𝛽(𝑢,𝑣+𝑤)=𝛽 (𝑢, 𝑣)+ 𝛽(𝑢, 𝑣), 𝛽(𝑢,𝛼𝑣)=𝛼𝛽(𝑢, 𝑣).  

 

Definition 3 (Non-Degenerate Bilinear Form) [1,11]:  

 

The functional (𝑢, 𝑣)is denoted by <𝑢,𝑣>which called non- degenerate on the two linear space 𝑈 and 𝑉 if for 

every 𝑢∈𝑈 and 𝑣 ∈𝑉, the following conditions are hold:  

1. 1.<𝑢, �̅� ≥ 0,𝑡ℎ𝑒𝑛 �̅� = 0.  

2. <�̅�, 𝑣≥ 0,ℎ𝑒n �̅� = 0.  

Definition 4 (Symmetric Bilinear Form) [3]: 

Let U and V be two normed linear spaces and 〈𝑢, 𝑣 〉 be a bilinear form, then F(𝑢, 𝑣)  =  〈𝑢, 𝑣 〉 is said to be 

symmetric if:  
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〈𝑢, 𝑣 〉  =  〈𝑣, 𝑢 〉, for all 〈𝑢, 𝑣 〉  ∈  U × V. It is clear that a linear operator 𝐿 is said to be symmetric linear 

operator with respect to chosen bilinear form 〈𝑢, 𝑣 〉, if: 
 

〈L𝑢, 𝑣 〉  =  〈L𝑣, 𝑢 〉, ∀ 𝑚 ∈ U, 𝑛 ∈  V .  

〈𝑢, 𝑣 〉 is saide onto be Symmetric. 

 

For many examples of non-degenerates bilinear forms see [11].  

 

Theorem: [1]  

 

For a given symmetric linear operator L with respect to the chosen bilinear form <𝑢, 𝑣 >, the solutions of the 

equation L𝑢= 𝑓 are the critical points of the functional:  

 

F[𝑢] = < L𝑢, L 𝑢 >  − < 𝑓, 𝑢 >  
Proof: see [3].  

 

4. Approximated Solutions for Integral Equations 

 

Because of that some integral equations, particularly in non-homogeneous or non-linear cases, are not easy to 

analytically solve, an approximate method is needed. For solving Fredholm and Volterra integral equations, there 

are several normal approximate methods, see [3,8]. We addressed the use of variational formulation to solve 

Volterra integral equations in this paper. 
 

Example 1:  

 

Consider the following Volterra integral equation:  

 

f(s) = s -∫ (𝑠 − 𝑡 )𝑓(𝑡)𝑑𝑡
𝑠

0
, where its analytic solution is: 

f(s) = s   −
𝑠3

3!
 + 

𝑠5

5!
 = sin s 

 Using the linear operator 𝐿 = 𝐼 + ∫ (𝑠 − 𝑡 )𝑓(𝑡)𝑑𝑡
𝑠

0
 and chosen bilinear form: 

 

< 𝑢,> = ∫ 𝑢 (𝑠)(𝑇 − 𝑠)𝑑𝑠
.

𝑠
, to get the functional: 

[f]= 
1

2
 ∫  

𝑠

0
[𝑓 (𝑠) + ∫ 𝑘(𝑠, 𝑡 )𝑓(𝑡)𝑑𝑡

𝑠

0
] 2𝑑𝑠 − ∫  ɣ

𝑠

0
(s) [𝑓 (𝑠) + ∫ 𝑘(𝑠, 𝑡 )𝑓(𝑡)𝑑𝑡

𝑠

0
] 𝑑𝑠 𝑣 (4.1) 

 

The function 𝑓 (s) can be written as a linear combination as: 

𝑓 (s)= 𝑎1𝑠 + 𝑎2𝑠2 + 𝑎3𝑠3, 𝑘(s,t) = (𝑠 − 𝑡) and Ɣ(s)= 2𝑠. 

So, ∫ 𝑘(𝑠, 𝑡 )ɣ(𝑡)𝑑𝑡
𝑠

0
=

𝑎1

2
𝑠2 +

𝑎2

6
𝑠3 +

𝑎3

12
𝑠4 (4.2) 

and  

∫ 𝑘(𝑠, 𝑡 )ɣ(𝑡)𝑑𝑡 =
1−𝑠

0
 (

𝑎1

2
+

𝑎2

6
+

𝑎3

12
)+ (−𝑎1 +

𝑎2

2
+

𝑎3

3
 ) s+ (

𝑎1

2
+

𝑎2

2
+

𝑎3

3
 )𝑠2 + (−

𝑎2

6
+

𝑎3

3
) 𝑠3+ 

𝑎2

12
𝑠4 (4.3) 

 

substituting (4.3) and(4.2) in(4.1), to obtain 𝐹 [𝑓]. Now by equating the partial derivatives of the functional 𝐹 

[𝑓] with respect to the coefficients of the solution (𝑎1, 𝑎2, 𝑎3)to zero, we will get the critical points which give 

the linear system of equations for 𝑎1, 𝑎2, 𝑎3 and by solving this system we have the values: 

 
83

60
𝑎1 +

49

72
𝑎2 +

383

840
𝑎3 =

3

4
 

49

72
𝑎1 +

509

1260
𝑎2 +

169

576
𝑎3 =

6

15
 

383

840
𝑎1 +

169

576
𝑎2 +

61122

272160
𝑎3 =

10

36
 

𝑎1= 1.2527, 𝑎2 = - 4.5624, 𝑎3= 4.6541 

for more examples, see 2.4 in [3,10].  

 

5. Vibrating Spring Equation 
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Phenomenon of vibration is the exchange of energy between potential (power) and kinetic (resuiting from 

motion) energy. Therefore, a vibrating system must have a component that stores potential energy. This 

component must also be capable of releasing the energy as kinetic energy. The simplest physical model for 

forced vibration is a simple mass-spring system subjected to an exciting force F(t) where t (time variable): 

    

 
 

The differential equation for the instantaneous amplitudes of the vibrating mass under the influence of force 

F(t) becomes: 
 

𝑚 𝑑
2 𝑦(𝑡)

𝑑 𝑡2 + 𝐴 𝑦(𝑡) = F(t) (4.4) 

 

Equation (4.1) is a nonhomogeneous 2nd order differential equation As an application of variational 

formulation that is related to integral equation in physics is that the vibrating spring equation., for example, as 

follows[14]   :  

  

𝑓(𝑠) =  𝐵𝑠 − ∫ (𝑠 − 𝑡)𝑓(𝑡)𝑑𝑡
𝑠

0
 (4.5)  

 

Which is a second kind of Volterra integral equation. To solve this Volterra equation (4.5) using variational 

formulation, we have defined the linear operator as : 

𝐿 = 𝐼 + ∫ (𝑠 − 𝑡 )𝑓(𝑡)𝑑𝑡
𝑠

0
 with the bilinear form : 

< 𝑢,> = ∫ 𝑢 (𝑠)𝑣(𝑡)𝑑𝑠
.

𝑠
, the functional 𝐹[𝑓] will be : 

[𝑓] = 
1

2
 (Lf,f) - (ɣ,f)  

 = 
1

2
 ∫ (𝐼 −  𝐼𝑁) 𝑓(𝑠) 

0

𝑠
 (𝐼 − 𝐼𝑁) f(s) − ɣ (s)(𝐼 − 𝐼𝑁) f(s)𝑑s  

[f] = 
1

2
 ∫  

𝑠

0
[𝑓 (𝑠) + ∫ 𝑘(𝑠, 𝑡 )𝑓(𝑡)𝑑𝑡

𝑠

0
] 2𝑑𝑠 − ∫ ɣ 

𝑠

0
(s) [𝑓 (𝑠) + ∫ 𝑘(𝑠, 𝑡 )𝑓(𝑡)𝑑𝑡

𝑠

0
] 𝑑𝑠𝑣(4.6)  

 

Suppose that the function (𝑡) as a linear combination of some basis as: 

 

 𝑓(𝑡) = 𝑎1+ 𝑎1s +𝑎1𝑠2 As well as the s=0 with the B=20, by flowing the same procedure in Example (1), the 

critical points of the functional 𝐹[𝑓] in (4.5) are found by equating the derivatives of 𝐹[𝑓] with respect to the 

coefficient of the solution (𝑎1, 𝑎2 and𝑎3) to zero, then solve the obtained system of linear algebraic equations: 

 

which will give the values of 𝑎1, 𝑎2 and 𝑎3:  

which will give the values of 𝑎1, 𝑎2 and 𝑎3:  

 
83

60
𝑎1 +

49

72
𝑎2 +

383

840
𝑎3 =

25

2
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49

72
𝑎1 +

509

1260
𝑎2 +

169

576
𝑎3 =

22

3
 

383

840
𝑎1 +

169

576
𝑎2 +

10187

45360
𝑎3 =

380

72
 

𝑎1= - 0.1470, 𝑎2 = 21.8210, 𝑎3= - 4.7089 

 

This result shortens a lot of efforts and time for programming rather than solving the required problem, since 
using the linear system is easier for programming, as differential equation where the solution is difficult. 

Moreover, using the linear system is easier for programming in order to solve it's physics equation vibrating 

spring equation. 
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