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Abstract: The output values Gyroscope measures will contain Bias, so errors gradually accumulate. Considering this point, 
a study on multi-sensors was conducted. An analysis of Gyroscope noise characteristics was carried out, and the modeling 
for Kalman Filter was performed based on the analysis. Afterwards, data values were extracted and analyzed through an 
experiment. Gyroscope’s Angle Random Walk and Rate Random Walk were derived using Allan Variance, and based on 
this, Kalman Filter covariance matrix was formed. Data reception algorithms were constructed using Matlab Simulink, and 
an experiment was conducted using MicroLabBox and Rate Table. The final research objective is to apply the results of this 
study to 2-Axis Small Gimbal to improve stabilization precision. 

Keywords: Multi-Sensors, Noise Characteristics, Kalman Filter, Allan Variance. 

 

1. Introduction 

With the advancement of semiconductor technology, research and development for inexpensive, low 

power-consuming, and small inertial sensors based on MEMS technology are being carried out. MEMS 

(Micro-Electro Mechanical System) IMU (Inertial Measurement Unit) sensors are used in various areas such 

as aircraft, inertial navigation, and platform stabilization [1]. MEMS IMU sensor refers to a sensor with 

Gyroscope, accelerometer, magnetometer and altimeter. Bias from Gyroscope output gradually accumulates 

errors causing Drift, which significantly lowers the performance of the sensors. The use of multi-sensors can 
compensate for the defect of a single sensor to improve sensor accuracy. In order to improve the accuracy of 

the information about the motion of an object, the method of using multi-sensors instead of a single sensor 

has already been used in many engineering fields ranging from medical systems to integrated navigation 

systems [2]. In 1992, Weis and Allan introduced a high-precise watch named ‘Smart Watch’ with an error of 

1 second by combining three inexpensive wrist watches [3]. This technology actually used heterogeneous 

sensor data fusion to improve accuracy. For higher accuracy of MEMS Gyroscope, researchers have recently 

conducted a study similar to sensor data fusion, and Bayard created a highly accurate virtual sensor by 

combining inexpensive MEMS Gyroscope. This technology was called 'Virtual Gyroscope' which was 

designed to have improved accuracy by using a homogeneous sensor unlike Smart Watch [4]. In order to use 

multiple MEMS IMUs, KF (Kalman Filter) is typically used to build a system. For the application of KF, it 

needs to obtain information on the noise state and system variables to determine the noise characteristics of 
sensors. This study aims to improve the accuracy by identifying the noise characteristics of a target sensor 

and combining two low-cost Gyroscopes, so as to improve the stabilization accuracy of a 2-Axis Small 

Gimbal. And this is the final objective of this study. Fig 1 shows the appearance of a Small Gimbal, and Fig 2 

shows the diagram of Gyroscope array.  

 

 
 

 

Fig 1. 2-Axis Small Gimbal Fig 2. Schematic of Gyroscope array 

 

2. Research Method 

The purpose of this study was to build a multi-sensor system for the application to a 2-Axis Small 

Gimbal. As a KF-based study, it constructed the overall system by selecting a mathematical model for multi-
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sensor fusion and identified the noise characteristics of the target Gyroscope through the analysis of AV 

(Allan Variance) and PSD (Power Spectral Density). An experiment was conducted using MicroLabBox and 

Rate Table. 

 

2.1. Mathematical Model for Multi-sensor Fusion 

2.1.1. Kalman Filter-based Fusion Method 
Multi-sensor data fusion is a technology that enables combining information from several data in order to 

form a unified data. And it is currently used in many fields such as robotics, image and image processing, 

sensor network, and intelligent system design. Multi-sensor data fusion has been mainly used in military 

applications over the past decades, but recently it has been also widely used in civilian applications [5]. 

Kalman Filter has been extensively studied as a filter for data fusion, and it can be largely divided into 

MF(Measurement Fusion) and TTF(Track to Track Fusion) according to the fusion stage for efficient data 

management, as shown in Fig 3 and Fig 4[6]. In this study, the principle of MEMS Gyroscope array multi-

signal fusion is shown in Fig 5, and Kalman Filter was used to derive the optimal estimate of angular velocity 

signals and Drift errors by fusing multi-signal velocities. 

 

 
 

Fig 3. Measurement Fusion 

 

 
 

Fig 4. Track to Track Fusion 

 

 
 

Fig 5. Principle of the Multiple Rate Signals Fusion of a MEMS Gyroscope Array 

 

2.2. IMU Noise Characteristics Analysis 

2.2.1 Random Noise Modeling for MEMS Gyroscope 

IMU signals are output including various noises that cause large errors in position, speed, and posture. In 

order to predict the accurate performance of an inertial system, it begins with appropriate noise modeling for 

sensors, and the noise characteristics of sensors can be derived through AV (Allan Variance) [7]. Most of the 

inertial sensor noises are ARW (Angle Random Walk) and RRW (Rate Random Walk), and additionally there 

is BI (Bias Instability) [8]. Fig 6 shows Random Error Model, and the noise model is shown in Table 1. 
Equation (1) is an AV Gyroscope measurement model. 

 

Table 1. Noise Model 
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Category Symbol Definition 

ARW(Angle Random 

Walk) 
N White noise, short-term high frequency noise  

BI(Bias Instability) B 
Flicker noise found in the low frequency, and a noise important 

for determining sensor stability 

RRW(Rate Random 

Walk) 
K Irregular noise as changing over a long period of time 

𝛺(𝑡) = 𝛺𝐼𝑑𝑒𝑎𝑙(𝑡) + 𝐵𝑖𝑎𝑠𝑁(𝑡) + 𝐵𝑖𝑎𝑠𝐵(𝑡) + 𝐵𝑖𝑎𝑠𝐾(𝑡)     (1) 

 

 
 

Fig 6. Random error model of MEMS gyroscope 

 

2.2.2 Calculation of Allan Variance 

PSD (Power Spectral Density) and AV (Allan Variance) techniques were used to understand the characteristics 

of Random Noise. In this study, AV technique was performed to identify measurement noise in IMU signal, and 

PSD technique was used to secure data reliability [9]. 

2.2.2.1 Allan Variance Calculation 

The angular velocity of Gyroscope was sampled with M sample(s) at a sampling time of 𝝉𝒔, and then 𝑳(𝑴 <
𝑳−𝟏

𝟐
) data sample(s). Each group is called Cluster and has data corresponding to, 𝝉 = 𝑳𝝉𝒔. When the continuous 

output of Gyroscope is set to 𝛀(𝒕) and measured at discrete time intervals of 𝒕 = 𝒌𝝉𝒔(k=1,2,3…M), if the angle 

is indicated as 𝜽𝒌(𝜽(𝒕) = 𝜽(𝒌𝝉𝒔) = 𝜽𝒌), the average angle between 𝒌𝝉𝒔 and 𝒌𝝉𝒔 + 𝝉  is shown as Equation (3). 

 

𝜃(𝑡) = ∫ 𝛺(𝑡′)𝑑𝑡′𝑡

0
                 (2) 

 

𝜃̅𝑘(𝜏) =
1

𝜏
∫ 𝛺(𝑡)𝑑𝑡

𝑘𝜏𝑠+𝑡

𝑘𝜏𝑠
                     (3) 

 

AV for this is shown as Equation (4). 

𝜎2(𝜏) ≅
1

2𝜏2(𝑀−2𝐿)
∑ (𝜃𝑘+2𝐿 − 2𝜃𝑘+𝐿 + 𝜃𝑘)2𝑀−2𝐿

𝐾=1    (4) 

 

2.2.2.2 Noise Parameter Identification 

To obtain Noise Parameters for Gyroscope, an equation for a relation between AV and PSD should be used. 

 

𝜎𝛺
2(𝜏) = 4 ∫ 𝑆𝛺(𝑓)

𝑠𝑖𝑛4𝜋𝑓𝜏

(𝜋𝑓𝜏)2

∞

0
𝑑𝑓               (5)    

 

2.2.2.3 Angle Random Walk (ARW) 

PSD for ARW is shown as Equation (6). 

 

𝑆𝛺(𝑓) = 𝑁2                                  (6) 
 

Substituting Equation (6) into Equation (5) can be shown as Equation (7). 
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𝜎2(𝜏) =
𝑁2

𝜏
                                 (7) 

 

2.2.2.4 Rate Random Walk (RRW) 

PSD for RRW is shown as Equation (8). 

 

𝑆𝛺(𝑓) = (
𝐾

2𝜋
)

2 1

𝑓2                      (8) 

 

Substituting Equation (8) into Equation (5) can be shown as Equation (9). 

 

𝜎2(𝜏) =
𝐾2𝜏

3
                               (9) 

 

2.2.2.5 Bias Instability (BI) 

PSD for BI is shown as Equation (10). 

 

𝑆𝛺(𝑓) = {
(

𝐵2

2𝜋
)

1

𝑓
 : 𝑓 ≤ 𝑓0

       0      : 𝑓 > 𝑓0

           (10) 

 

Substituting Equation (10) into Equation (5) can be shown as Equation (11) and simplified as shown in Equation 

(12). 

 

𝜎2(𝜏) =
2𝐵2

𝜋
[𝑙𝑛 2 −

𝑠𝑖𝑛3 𝑥

2𝑥2
(𝑠𝑖𝑛𝑥 +                4𝑥𝑐𝑜𝑠𝑥) + 𝐶𝑖(2𝑥) − 𝐶𝑖(4𝑥)]       (11) 

 

𝜎2(𝜏) =
𝐵22 𝑙𝑛 2

𝜋
                          (12) 

 

𝐵 = 𝑏𝑖𝑎𝑠 𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

𝑓0 = 𝑐𝑢𝑡 − 𝑜𝑓𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝐶𝑖 = 𝑐𝑜𝑠𝑖𝑛𝑒 − 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑥 = 𝜋𝑓0𝜏 

 

2.2.3 Experimental Design and Analysis 

The target sensor in this study is Invensense AM-GYRO VO2(2-Axis), and Full-Scale Range is ±2000 °/s and 

Communication Protocol is Analog type. Data processing was performed using dSPACE MicroLabBox and 

Matlab. Fig 7 – 8 shows the target sensor and MicroLabBox. 

 

 
 

Fig 7. 

AM-GYRO V02 

Fig 8. MicroLabBox 

  

Table 2 briefly summarizes the equations derived through AV.  

Data was extracted at 1000Hz for about 6 hours and 40 minutes, and AV was applied. Fig 9-10 shows the 

graphs as a result of Allan Variance, and Table 3 shows the derived data 

 

Table 2. Allan Variance and Common Noise 
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(a) Gyroscope Raw Data 

 
(b) Allan Variance  

 
(c) Angle Random Walk 

 
(d) Rate Random Walk 

 
(e) Bias Instability 

 
(f) Noise Parameters 

 

Fig 9. AM-GYRO V02(X-Axis) 

 

 
(a) Gyroscope Raw Data 

 
(b) Allan Variance  

 
(c) Angle Random Walk 

 
(d) Rate Random Walk 

 
(e) Bias Instability 

 
(f) Noise Parameters 

 

Fig 10. AM-GYRO V02(Y-Axis) 
 

Table 3. Axis Error Coefficient 

Noise 
Para

meter 

Power Spectral 

Density 

Allan Standard 

deviation 

Slope of 

ADF 

Noise 

coefficient 
Unit 

Angle 

Random 

Walk 

N 𝑵𝟐 𝝈𝟐(𝝉) =
𝑵𝟐

𝝉
 -1/2 𝝈(𝟏) 

𝒅𝒆𝒈

√𝒉
 

Rate 

Random 

Walk 

K (
𝑲

𝟐𝝅
)

𝟐 𝟏

𝒇𝟐
 𝝈𝟐(𝝉) =

𝑲𝟐𝝉

𝟑
 1/2 𝝈(𝟑) 

deg/h

√𝒉
 

Bias 

Stability 
B {

(
𝑩𝟐

𝟐𝝅
)

𝟏

𝒇
 : 𝒇 ≤ 𝒇𝟎

       𝟎      : 𝒇 > 𝒇𝟎

 

𝝈𝟐(𝝉)

=
𝑩𝟐𝟐 𝐥𝐧 𝟐

𝝅
 

0 𝝈(𝒊) 
𝒅𝒆𝒈

𝒉
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AM-GYRO V02 

Noise X-Axis Y-Axis 

Angle Random Walk(N) 0.0079 0.0023 

Rate Random Walk(K) 0.0472 0.0578 

Bias Stability(B) 0.0587 0.0490 

 
The graph (a) is the raw data of the gyroscope, and (b)-(e) is the graph of ARW, RRW, BI respectively. For 

ARW, expression (7) and Slope of ADF are -1/2 applied. Expression (9) and Slope of ADF 1/2, BI (12) and 

Slope of ADF 0 are applied. (f) expresses the whole graph. 

 

2.3. Optimal Kalman Filter 

As Kalman Filter is widely used in a navigation system, this study was also conducted based on Kalman Filter 

modeling. Based on system model, KF makes a prediction of updated state and error covariance and calculates 

a new estimation through compensation for the difference between the predicted value and the measured value 

[10]. Fig 11 shows the algorithm of Kalman Filter. Gyroscope equation is shown as Equation (13). 

 

𝜔𝑔 = 𝜔 + 𝑏 + 𝑛𝑎,     𝑏 = 𝑛𝑏          (13) 

𝜔𝑔 = Output Velocity 

𝜔 = True Velocity 

𝑛𝑎=ARW,     𝑏 = 𝑛𝑏 =RRW 

 
Fig 11. Kalman Filter Algorithm 

 

2 Gyroscopes were configured in a serial array, and the angular velocity ω was extracted as a filtering state to 

improve the accuracy of sensors. Kalman Filter’s state equation and measurement equation were set up as 

shown in Equation (14). 

 

{

𝑋 = [𝑏1, 𝑏2, 𝜔]𝑇

𝑋̇(𝑡) = 𝐹𝑋(𝑡) + 𝐺𝜔(𝑡)

𝑍(𝑡) = 𝐻𝑋(𝑡) + 𝐵𝑣(𝑡)

       (14) 

 

𝑋̇(𝑡) is composed of State Vector, and 𝑣(𝑡) and 𝜔(𝑡) are measurement noise and process noise, respectively. 

Considering the Random Noise of Gyroscope, 𝜔(𝑡) = [𝑛𝑏1, 𝑛𝑏2, 𝑛𝜔]𝑇  and 𝑣(𝑡) = [𝑛𝑎1, 𝑛𝑎2]𝑇  were set. 𝑛𝑎 is 

ARW, and 𝑛𝑏 is RRW. The two noises in Equation (15) satisfy the conditions of the equation in Equation 

(16). 

 

{
𝜔(𝑡) = [𝑛𝑏1, 𝑛𝑏2, 𝑛𝜔]𝑇

𝑣(𝑡) =    [𝑛𝑎1, 𝑛𝑎2]𝑇    
         (15) 
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{

𝐸[𝜔𝑘] = 0,  𝐶𝑜𝑣[𝜔𝑘 , 𝜔𝑗 ] = 𝐸[𝜔𝑘𝜔𝑗
𝑇] = 𝑄𝑘𝛿𝑘𝑗

𝐸[𝑣𝑘] = 0,  𝐶𝑜𝑣[𝑣𝑘 , 𝑣𝑗] = 𝐸[𝑣𝑘𝑣𝑗
𝑇] = 𝑅𝑘𝛿𝑘𝑗     

𝐶𝑜𝑣[𝜔𝑘 , 𝑣𝑗] = 𝐸[𝜔𝑘𝑣𝑗
𝑇] = 0                        (16)

 

 

Rk  and Qk of Equation (17) are covariance matrices of measurement noise and system noise, respectively. 

 

𝑄𝑘 = [
𝑄𝑏 0
0 𝑄𝜔

]     𝑅𝑘 = [𝑄𝑎]      (17) 

 

Qb and Qa are RRW Vector 𝑛𝑏 and ARW Vector 𝑛𝑎, respectively. 

 

3. Experimental Method and Result 

3.1. Experiment Method 
In this study, the experiment is performed as follows, as shown in Fig 12. 

 

Step 1: Mount two Gyroscopes arranged in series on Rate Table, and connect them to Power Supply 

 
Step 2: Build data reception modeling using Matlab Simulink, and apply it to MicroLabBox 

 

Step 3: Connect the Analog signal of Gyroscope to MicroLabBox, and extract the output value 

 

Step 4: Apply Gyroscope's output value to Matlab Simulink's KF modeling 

 

 
Fig 12. Experimental Device Configuration 

 

3.2. Experiment Result 

The experiment was conducted with Pan-Axis (Gyroscope X-Axis) and Tilt-Axis (Gyroscope Y-Axis), 

using the Rate Table at a speed of 30deg/sec and a position of ±𝟑𝟎°. Gyroscope Raw data1 and Raw data2 

were extracted using the offset when receiving data. Data was extracted by applying Raw Data 1, 2 to 

Kalman Filter and Lowpass Filter. KF modeling is the result of this study, and Lowpass Filter produced the 

optimal value through System Identification and Parameter Study. Fig 13-14 shows Raw Data graphs, a 

comparative graph of KF and Raw Data, and a comparison graph of KF and Lowpass Filter

  

(a) Raw Data 
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(b) Kalman Filter and Raw Data 

. 

(c) Kalman Filter and Lowpass Filter 

 

Fig 13. AM-GYRO V02[X-Axis] 

 

  
(a) Raw Data 

 
(b) Kalman Filter and Raw Data 

 
(c) Kalman Filter and Lowpass Filter 

 

Fig 14. AM-GYRO V02[X-Axis] 

As a result of comparing the output value when Gyroscope’s Raw Data and Lowpass Filter and KF are 
applied, it is better to track and reduce noises than a single sensor when Kalman Filter is applied to two 

Gyroscopes. Comparing the lowpass filter applied to the 2-Axis Small Gimbal currently under development 

with the KF output value of this study, it can be seen that the KF filter has an advantage in reducing noise. 

 

4. Conclusion  

In this study, an integrated MEMS Gyroscope was examined to improve the accuracy of MEMS 

sensors to be used in a 2-Axis Small Gimbal. Noise characteristics were analyzed through AV of AM-GYRO 

V02 sensor, and an experiment was conducted by applying this result to Kalman Filter. It has proven that the 

method using multi-sensors is very effective in improving accuracy rather than using a single sensor, and it is 

easy to deal with problems caused by sensor failure. A follow-up study is planning to add the number of 

sensors and conduct an experiment by applying it to the Kalman Filter developed in this study in real time. If 

the experiment is sufficiently performed, it will look into the applicability to a 2-Axis Small Gimbal that is 
currently under development by arranging multi-sensors on one expansion board. 
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