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Abstract: Circular distance between vertices of a graph has a significant role, which is defined as summation of detour distance 
and geodesic distance. Attention is paid, this is metric on the set of all vertices of graph  and it plays an important role in graph 

theory. Some bounds have been carried out for circular distance in terms of pendent vertices of graph  . Some results and 
properties have been found for circular distance for some classes of graphs and applied this distance to Cartesian product of 

graphs〖  P〗_2×C_n.  Including 〖 P〗_2×C_n, some graphs acted as a circular self-centered. Using this circular distance there 
exists some relations between various radii and diameters in path graphs. The possible applications were briefly discussed.   
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1. Introduction  

Due to the broad expansion of networks in graph theory, the distance concept has become very important. It 

has been recognized that the distance concept in graph theory is also useful in software development. Using this 

distance concept some basic graph theory parameters were defined such as eccentricity, radius, diameter and metric 

dimension. The above parameters are  related to one another and some bounds have been derived for the radius 

and diameter [1]. The geodesic distance ( , )d x y between two vertices x  and y  in a graph H  is the length of a 

shortest x y−  path in H . In a graph two vertices x  and y  are adjacent if and only if ( , )d x y  is unity and two 

different vertices x  and y  are non neighboring if and only if ( , ) 2.d x y   The length of the longest x y−  path 

between two vertices x  and y  is called detour distance ( , ).D x y  The two distances ( , )d x y  and ( , )D x y  are 

metrics on the set of all vertices of H . Different results on detour distance were found and compared to geodesic 

distance [2 - 4].  

Sometimes calculating degree of each vertex of a graph H  is also important. In that case in addition to the 

length of the path, consider degree of each vertex in that path. So many real life problems were solved using this 

graph distance. For example, when a  van is traveling to deliver the goods, it has to stop at one point and deliver 

the goods: consider the point as vertex and the number of goods delivered as degree of that vertex. Similarly it has 

to travel and deliver the goods at all delivery points, by taking it as a detour D − distance and return to home place, 

taking this distance as D − distance. By doing this type of work, it helps to save time and fuel usage [5, 6].  

Now a days wireless network is rapidly growing, in this type of network for example radio, mobile etc., are 

very useful. Assignment of frequencies to transmitters depend on distance between two transmitters [7 – 9]. On 

the off chance that L and M are two urban areas, at that point for a cab driver the distance between the two urban 

communities is the genuine distance between the two urban areas. Anyway for a bus transport driver, the distance 

between similar urban areas is only higher than the typical distance since he needs to cover some significant places 

in and around the two urban communities to get and drop the travelers. So a bus transport driver needs to locate a 

briefest defeat that starts from L and closures at M and goes through every one of the neighboring spots of L and 

M [10-13].  

In this paper we study a new distance, namely circular distance, between any two vertices of a graph H  by 

considering summation of detour distance and geodesic distance and work on its properties  

The circular distance takes part in a vital role in logistical management. For instance, a postman wants to distribute 

the letters from the post office which is, say, located at a place 'A' to various destinations on the way to another 

place 'B'. He takes a long trip from A to B so that he can cover as many as places on the way. On the return trip he 

may select the shortest route to arrive at the post office at the earliest so as to minimize the time, fuel consumption 

etc. Similarly, in case of delivery of goods from warehouse to various places we may choose longest path and 

shortest path. This distance was studied in [14].  Further more, this distance is also used in molecular dynamics of 

physics, crystallography, lattice statistics and physics. 

Throughout the article unless otherwise specified we consider undirected, finite, non-trivial, connected graphs 

without multiple edges and loops. For any unexplained terminology we follow the book [1].   

2. Circular distance and its properties  

Here we explain the concept of circular distance between vertices of a graph: 

Definition 2.1.  In a connected graph ,H  ,x y  are any two vertices, the circular distance between them is defined 

as summation of detour and geodesic distance. This is represented by ( ), .cir x y In otherwords 
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( )
( ) ( )D x, y d x, y if x y

cir x, y
0 if x y

 + 
= 

=
 

Definition 2.2. The circular eccentricity of y  is defined as  ( ) ( ) = Ce y max cir x, y :x V( H ) .  

Definition 2.3.  The minimum circular eccentricity of graph H  is called  circular radius  ( )Cr H . The maximum 

circular eccentricity  of graph H  is called    circular diameter  ( )Cd H . . 

Next, we start with foremost result. 

Theorem 2.4.  The circular distance is a metric on the set of all vertices of connected graph .H
                                 

 

Proof.  Let , , ( ).x y z V H  Now ( )cir x, y 0  and ( )cir x, y 0= if and only if x y.=  Also we have 

( ) ( )cir x, y cir y, x= graph and hence this distance is symmetric. 

Next we will prove that for every , ,x y  ( )cir x, y  contentes the triangular inequality. The detour distance 

and geodesic distance satisfies triangle inequality (see [2]). 

Now ( ) ( ) ( )cir x, z d x, z D x, z= + and ( ) ( ) ( )cir z, y d z, y D z, y= + .Then ( )cir x,z + ( )cir z, y =

( ) ( )( ) ( ) ( )( )d x,z D x,z d z, y D z, y+ + + = ( ) ( )( )d x,z d z, y+ + ( ) ( )( ) ( )D x,z D z, y d x, y+  ( )D x, y+ 

( )cir x, y . Thus ( ) ( ) ( )cir x,z cir z, y cir x, y+  . Hence the theorem. 

In the next theorem, we give bounds for circular distance, in terms of pendent vertices. 

Theorem 2.5.  If H  is a graph having p q+  vertices in which q  are pendent vertices. Then

( )
( )
( )
( )

2 p q 1 if x, y are not pendent

cir x, y 2 p q 2 if either x or y is pen dent

2 p q 3 if both x and y are pendent

 − +


 − +
 − +

 

Proof: Let H be a graph with p q+  vertices and assume that among them q  are pendent vertices. For any two 

vertices ,x y  which are not  pendent  and  1 2, , , qx x x  be all the pendent vertices. Any x y−  path will exclude 

these vertices and the edges incident with them. Hence ( ) ( ), .d x y p q −  Similarly ( ) ( ), 2 .D x y p q − +  Thus 

we have ( ) ( ), 2 1 .cir x y p q − +  

 Suppose one vertex between x  and y (say x ) is a pendent vertex. Then each x y− path will begin at 

.x  These paths will go through the edge adjacent with .x  They will not go through the remaining  1q −  vertices 

and edges incident with them. Thus each of these minimum distances will have a maximum of 1p q− +  edges. 

Hence ( ) ( ), 1 .d x y p q − +  Similarly ( ) ( ), 3 .D x y p q − +  Thus we have ( ) ( ), 2 2 .cir x y p q − +  

 For pendent vertices x and ,y  the minimal x y−  path starts at x  and ends at .y  This minimal path 

passes through the edges adjacent with both x  and y  does not go through the rest of 2q −  pendent vertices. 

Hence ( ) ( ), 2 .d x y p q − +  Similarly ( ) ( ), 4 .D x y p q − +  Thus we have ( ),cir x y   2( p − 3).q + Hence the 

theorem. 

Theorem 2.6.  Let H  be a graph. Then we have ( ) ( ) ( )2C C Cr H d H r H  . 

Proof: The lower bound is true. By using triangular inequality the upper bound is as shown below. 

Let ( ),x y V H  such that circular distance between x and y  is equal to circular diameter of .H  Let z   

be a vertex of H  such that ( ) ( ).C Ce z r H=   

             Consider ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2C C C C Cd H cir x, y cir x,z cir z, y e z e z e z r H .=  +  + = =  Therefore 

( ) ( )2C Cd H r H .  Hence ( ) ( ) ( )2C C Cr H d H r H  . 

 

Remark 2.7.  The above bounds are sharp. For example a cycle graph nC , we have ( ) ( )C C
n nr C d C n,= =  (see 

theorem 3.2) and for a path graph nP  , we have ( ) ( ) ( )2 2 1C C
n nd P r P n ,= = −  (see theorem 5.4). 

Proposition 2.8.  Let ( ), .x y V H Then ( ) ( ) ( ), .C Ce x e y cir x y−   

Proof: Given two vertices ( ),x y V H , let z  be a vertex such that ( ) ( ), z .Ccir x e x=  Consider 

( ) ( ) ( ) ( ) ( ) ( ), , , , .C Ce x cir x z cir x y cir y z cir x y e y=  +  +  Thus ( ) ( ) ( ), .C Ce x e y cir x y−   Hence 

( ) ( ) ( ), .C Ce x e y cir x y−    
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3. Circular distances of some classes of graph 
Here we find the circular diameter and circular radius. We start with the family of complete graphs. 

Theorem 3.1.  For a complete graph ,mK  where m 3.  Then the ( )Ce x m=  for all  ( )x V H . Thus we have 

( ) ( )C C
m mr K d K m= =  and hence mK  is circular self-centered. 

 

Proof.   In mK , the minimum path length between any two vertices is 1 and maximum length of path is 1m − . 

We have ( ), 1 1 .cir x y m m= − + =  Thus ( )Ce x m= , for all ( )x V H . Therefore 

( ) ( )C C
m mr K d K m= = .  

Next, we go for class of cycle graph 

Theorem 3.2.  Let nC  be the cycle graph. Then ( )cir x, y n=  for every ,i jx x . Also ( ) ( )C C
n nr C d C n= =  and 

hence cycle graph is self-centered. 

Proof:  The vertices of cycle graph nC  can be listed in order 1 2, , , .nx x x  Within any two vertices ix  and jx  

there exist two paths. If one path (geodesic path) contain   edges, the other path (longer path) contain n −  

edges. Geodesic distance and detour distance is computed along the smallest path and longest path respectively. 

Thus ( )i jcir x ,x n n = + − = for every ix , jx .  Therefore ( )C
ie x n=  and ( ) ( )C C

n nr C d C n= = . 

Next, we study the wheel graph. 

Theorem 3.3.  Let 1n +  be the order of wheel graph 1, .nW  Then ( )C
1,nr W n 1= +  and ( )C

1,nd W n 2= +  for 

4.n   Further we have ( ) ( )C C
1,3 1,3r W d W 4= =  

Proof.  In a wheel graph 1, ,nW the vertices are  0 1, , , .nx x x  Suppose that  0x  is adjacent to rest of the vertices.  

 For 3,n =  0x  is adjacent to 1 2 3, , .x x x  Then clearly ( ), 3,i jD x x = ( ), 1,i jd x x =  for 1 i, j 3  . Thus 

( )i jcir x ,x 4= . Hence the circular eccentricity of every vertex is 4. Thus ( ) ( )C C
1,3 1,3r W d W 4= = . So 1,3W  is 

self-centered. 

 For a wheel graph 1, ,nW  with 4n  , we calculate the circular distance between 0x  and ix . We have 

( )0 , 1id x x =  and ( )0 , iD x x n= . Then ( )0 icir x ,x n 1= + . Thus ( )C
0e x n 1= + . 

 Let 1,, ,i j nx x W
 
which are adjacent. Thus ( ),i jD x x n=  and ( ), 1.i jd x x =  Thus ( )i jcir x ,x n 1= +  

 Let 1,, ,i j nx x W  which are not adjacent. Thus ( ),i jD x x n=  and  ( ), 2.i jd x x = Thus

( )i jcir x ,x n 2= +   Hence ( )
+

= 
+

i j

i j
i j

1 n if x ,x are adjacent
cir x ,x

2 n if x ,x are not adjacent
 

Thus ( )C
ie x n 2.= +  This is true for all  .ix   Hence ( )C

1,nr W n 1= +  and ( )C
1,nd W n 2.= +  

Further note that the center of 1, nW  is  0x   and periphery is  1 2, , , .nx x x  

Now, we look at complete bipartite graph. 

Theorem 3.4.   

1. Let ,p qK  be the graph of order  p q+  where .p q  Then we have ( )C
p, qr K 2 p=

 
and ( )C

p,qd K 2 p 2.= +  

2. For the graph,  , ,p pK we have ( ) ( )C C
p, p p,qr K d K 2 p= =  and hence ,p pK  is  self-centered. 

 

Proof.   (1) In a graph, ,p qK , all vertices can be split into two sets 1U  and 2U  having p  and q vertices 

respectively. 

Let 1 1 1, .x y U  For any 2 2x U , we have 1 2 1x x y− −  path between 1x  and 1y . Thus distance between 1 1,x y  is 

always 2. and detour distance between 1 1,x y  is always ( )2 1 .p −   Thus ( )1 1,cir x y = ( )2 2 1 2 .p p+ − =  

Therefore ( )1 1, 2 (1)cir x y p= . 

Similarly for any two vertices 2 2 2,x y U  we have ( )2 2, 2 2 (2)cir x y p= + . 

At lost, we determine the the circular distance between a vertex of 1U  and a vertex of 2U .  
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  Let 1 1x U  and 2 2y U . Then there is path 1 2x y−  in the graph. Then  the geodesic distance 

between 1 2,x y  is always 1 and detour distance between 1 2,x y  is always 2 1p− . Then 

( )1 2, 1 2 1 2 .cir x y p p= + − =  Therefore ( )1 2, 2 (3).cir x y p=  

 From the above three equations, clearly ( )1 2Ce x p=  and ( )2 2 2Ce x p= + . Thus minimum circular 

eccentricity is 2 p   and maximum circular eccentricity is 2 2p + . Thus ( )C
p, qr K 2 p= and ( )C

p,qd K 2 p 2.= +  

 Similarly, in the case of , ,p pK ( ) ( )C C
p, p p,qr K d K 2 p.= =   

4. Cartesian product of the graphs 2P  and .nC   

Here we prove that for all n , the Cartesian product of graph 2 nP C  is circular self-centered 

Theorem 4.1.  Let 2 nP C
 
be the product of graph having 2n  vertices. Then for 3n  .    

                                             
( ) ( )

( )

( )C C

2 n 2 n

5n
n even 4 p

2

5n 2
r P C d P C n even 4 p 2 .

2

5n 1
if n is odd

2


=


−

 =  = = +


−



 

Proof.  The vertices of the graph 2 nP C
 
can be listed in order as 1 2 2, , , nx x x .  

Now let us calculate the radius and diameter of 2 nP C   for 3n   using circular distance.  

 Case (1): Let n=4.  

 Here the circular distances between the vertices of  2 4P C are as shown in table [1]. 

 

 
1x  2x  3x  4x  5x  6x  7x  8x  

1x  0 8 8 8 8 8 10 8 

2x  8 0 8 8 8 8 8 10 

3x  8 8 0 8 10 8 8 8 

4x  8 8 8 0 8 10 8 8 

5x  8 8 10 8 0 8 8 8 

6x  8 8 8 10 8 0 8 8 

7x  10 8 8 8 8 8 0 8 

8x  8 10 8 8 8 8 8 0 

                                     Table 1. Circular distance of 2 4P C  graph 

From this table1, we can observe that circular eccentricity of each vertex is 10. Thus this graph is circular self-

centered with ( ) ( )C C
2 4 2 4r P C d P C 10. =  =  We can also observe that ( ) ( ) ( )C

De x e x e x+ =  for all vertices 

r  in this graph.  

  ( )C
2 nr P C  ( )C

2 nd P C  

2 2P C  4 4 

2 4P C  10 10 

2 6P C  14 14 

2 8P C  20 20 

2 10P C  24 24 

   

2 nP C  5
4

2

5 2
4 2

2

n
if n p

n
if n p


=


− = +



 

5
4

2

5 2
4 2

2

n
if n p

n
if n p


=


− = +



 

 Table2. ( )C
2 nr P C and ( )C

2 nd P C  of a graph (n is even) 

Similar calculation will lead to the table2, from which we can conclude that  
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( ) ( )C C
2 n 2 n

5n
if n 4 p

2
r P C d P C

5n 2
if n 4 p 2

2


=

 =  = 
− = +



 

Case 2 Let n  = 5. 

 Here the circular distances between the vertices of 2 5P C  are as shown in table 3. 

 

 
1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  

1x  0 10 11 11 10 10 11 12 12 11 

2x  10 0 10 11 11 11 10 11 12 12 

3x  11 10 0 10 11 12 11 10 11 12 

4x  11 11 10 0 10 12 12 11 10 11 

5x  10 11 11 10 0 11 12 12 11 10 

6x  10 11 12 12 11 0 10 11 11 10 

7x  11 10 11 12 12 10 0 10 11 11 

8x  12 11 10 11 12 11 10 0 10 11 

9x  12 12 11 10 11 11 11 10 0 10 

10x  11 12 12 11 10 10 11 11 10 0 

                                        Table 3. Circular distance of 2 5P C  graph 

From the above table3, we can observe that ( ) 12C
ie x =  for every ix . Thus the graph is circular self-centered 

with ( ) ( )C C
2 5 2 5r P C d P C 12. =  =  We can also observe that ( ) ( ) ( )C

De x e x e x+ =
 
for all vertices of x  in 

this graph. 

Similar calculation will lead to the table4 from which we can conclude that ( ) ( )C C
2 n 2 n

5n 1
r P C d P C

2

−
 =  =  

 ( )C
2 nr P C  ( )C

2 nd P C  

2 3P C  7 7 

2 5P C  12 12 

2 7P C  17 17 

2 9P C  22 22 

2 11P C  27 27 

   

2 nP C  5 1

2

n −
 

5 1

2

n −
 

                       Table4. ( )C
2 nr P C and ( )C

2 nd P C  of a graph (n is odd) 

Hence the theorem. 

5. Trees with respect to circular distance. 
Here we study the some results on trees. 

Theorem 5.1.  Let H
 
be the path graph if and only if ( ) ( ) ( )2 2cir x, y d x, y D x, y= =  for all vertices  , .x y  

Proof.  If H is a path graph, then there exist one and only one path between any two vertices of .H  Hence the 

shortest and longest paths are the same. Thus ( ) ( )d x, y D x, y= . Then ( ) ( ) ( )2 2cir x, y d x, y D x, y .= =  

Conversely, ( ) ( ) ( )2 2cir x, y d x, y D x, y= = for all vertices , .x y   

We have to prove that H  is a path graph. If H has two vertices the answer is trivial. Assume that 3n .  If H  is 

not a path graph then it contains at least one cycle. Let C  be a cycle with m  vertices, where 3 m n  . Suppose 

there is an edge between ,x y  in H  which are in .C Then ( ) 1d x, y ,= ( ) 1D x, y m= − . Thus ( )cir x, y m= , 

which is not true because H  is a graph such that ( )cir x, y = . ( ) ( )2 2d x, y D x, y= . Thus H must be a path 

graph. 

Below we determine the circular diameter and circular radius of path graph. 

Theorem 5.2.  Let nP
 
be the path graph of order n.  Then we have for n 3

( ) ( )C C

n n

n if n is even
r P and d P 2n 2.

n 1 if n is odd


= = −

−
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Further ( ) ( )C C

2 2r P d P 2= =  

Proof.  The vertices of path graph nP   can be listed in order 1 2, , , nx x x  such that the edges are  1i ix x +  where 

1, 2, 3, , 1.i n= −  There is one and only path between two vertices and hence detour distance and geodesic 

distance are equal.  

Now for 2n = , ( ) 2C
ie x =  for every ix . Hence 

2P  is a self-centered graph with ( ) ( )C C

2 2r P d P 2= = .  

Now let us calculate the radius and diameter of  nP  for n 3  using circular distance. This we will do when n is 

even and odd. 

 Case (1): Assume n  is even.  

Here the circular distances between the vertices of nP  are as shown in table 5. 

  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Table5. circular distance of path graph when n  is even 

From the table5, we see that the circular eccentricities of vertices are 

 2 2 2 4 2 2 2 4 2 2n , n , , n , n, n, n , , n , n− − + + − − . Thus the minimum circular eccentricity is n   and maximum 

is 2 2n− .  Hence the circular radius and diameter are n , 2 2n−  respectively,  when n  is even. 

Case (2): Assume  n  is odd. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Table 6. circular distance of path graph when n  is odd 
 From the table 6, we see that the circular eccentricities of vertices are 

 2 2 2 4 3 1 1 1 3 2 4 2 2n , n , , n , n , n , n ,n , , n , n− − + + − + + − − . Thus the minimum circular eccentricity is n 1−  

and maximum is 2n 2.−  and maximum Hence circular radius and diameter are n 1,− 2n 2,−  when n is odd. 

Remark 5.3: In a path graph nP   when n is odd  we observe that ( ) ( )C C

n nd P 2r P .=   

Theorem 5.4.  Let nP
 
be a path graph having n vertices and n 3.  Then we have  

1. if the center of nP  consist of a single vertex then ( ) ( )C C

n nd P 2r P .=  

2. if the center of nP  consist of a two adjacent vertices then ( ) ( )C C

n nd P 2r P 2.= −  

 
1x  2x   

 1
2

nx
−

 

2

nx  
1

2

nx
+

  

 
1nx −  nx  Ce  

1x  0 2  n-4 n-2 n  2n-4 2n-2 2n-2 

2x  2 0  n-6 n-4 n-2  n+4 2n-4 2n-4 

           

1
2

nx
−

 n-4 n-6  0 2 4  n n+2 n+2 

2

nx  n-2 n-4  2 0 2  n-2 n n 

1
2

nx
+

 n n-2  4 2 0  n-4 n-2 n 

           

1nx −  2n-4 n+4  n n-2 n-4  0 2 2n-4 

nx  2n-2 2n-4  n+2 n n-2  2 0 2n-2 

 
1x  2x   

 
1

2

nx −  1

2

nx +  3

2

nx +   

 
1nx −  nx  Ce  

1x  0 2  n-3 n-1 n+1  2n-4 2n-2 2n-2 

2x  2 0  n-5 n-3 n-1  2n-6 2n-4 2n-4 

           

1

2

nx −  n-3 n-5  0 2 4  n-1 n+1 n+1 

1

2

nx +  n-1 n-3  2 0 2  n-3 n-1 n-1 

3

2

nx +  n+1 n-1  4 2 0  n-5 n-3 n+1 

           

1nx −  2n-4 2n-6  n-1 n-3 n-5  0 2 2n-4 

nx  2n-2 2n-4  n+1 n-1 n-3  2 0 2n-2 
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Proof.  We can demonstrate this hypothesis in two cases in particular when n  is even and odd. 

 If n  is even then center of 
nP  consist of two adjacent vertices.  From above theorem ( )C

nd P 2n 2= −

and ( )C

nr P n .=  Hence ( ) ( )C C

n nd P 2r P 2.= −   

If n  is odd then center of 
nP  consist of a single vertex. From the above theorem ( )C

nd P 2n 2= −  and 

( )C

nr P n 1.= −  Hence ( ) ( ) ( )C C

n nd P 2n 2 2 n 1 2r P= − = − = .  

 

Next in a star graph, circular diameter and radius are independent of n . 

Theorem 5.5.  Let  
n, 1St  be the star graph. Then we  ( )C

n,1r St 2,=  ( )C

n,1d St 4.=  
Proof: The vertices of star graph 

n, 1St  can be listed in order 0 1 2, , , , nx x x x . Suppose that 0x  is adjacent to all 

other vertices so that ( ) ( )0 i 0 id x , x D x , x 1.= =  The circular distances between various vertices are as shown in 

table 7. Using these, We have ( ) ( ) ( )0 i 0 icir x , x 2d x , x 2 1 i n= =    and 

( ) ( ) ( )i j i jcir x , x 2d x , x 4 1 i, j n .= =    

 
0x  1x  2x

  nx
 ( )C

n,1e St
 

0x  0 2 2  2 2 

1x  2 0 4  4 4 

2x  2 4 0  4 4 

       

nx  2 4 4  0 4 

                                                 Table 7. circular distance in star graph 

It follows that the circular eccentricities are  2, 4 .  Hence circular radius is 2 and diameter is 4. Hence 

( )C

n,1r St 2,=  ( ) =C

n, 1d St 4  as claimed. 

Remark5.6.  We observe that in a star graph ( ) ( )= = C C

n,1 n,1d St 2r St 4 n.  
Theorem 5.7. Let x, y  be the two vertices of tree T  which are adjacent. Then we have ( ) ( )− C Ce x e y 2 . 

Proof:  Choose an eccentric vertex z  of x   such that ( ) ( )= Ccir x,z e x . By triangular inequality 

( ) ( ) ( ) +cir x,z cir x, y cir y,z  implies ( ) ( ) ( ) ( ) + +C Ce x d x, y D x, y e y  implies ( ) ( )−  +C Ce x e y 1 1

Therefore ( ) ( )− C Ce x e y 2  
Remark5.8: The above theorem  may not be true for a graph which is not a tree. 

Theorem 5.9.  In a tree the circular periphery consists of pendent vertices only. 

Proof:  Let T  be a tree. Then between any two vertices the maximum circular distance occurs then they must be 

end vertices. Thus if a vertex has maximum circular distance then that vertex must be in the circular periphery. 

Hence the circular periphery of a tree contains pendent vertices only. 

Some of the future applications. 

Below we discuss some possible applications of the concept of circular distance in real life. Here we discuss three 

of such applications.  

Delivery of goods using drones . 

Now a days some of the delivery companies are using the drones to deliver the goods. The drones will have the 

option to fly up to 15 miles and convey bundles under five pounds to clients in under $30$ minutes time. For 

instance the Amazon prime company used this for the first time. At present it is using the one to one correspondence 

procedure to deliver goods. In this method it will take more cost and time. To reduce the cost and time we can use 

this new concept of circular distance. Using this concept, when we feed the delivery points to the system, the drone 

will choose the detour path containing more delivery points and choose the shortest path to come back.  

Automatic map generation of driverless car with safe journey   

In future we will have most updated driverless cars. While going on a tour using these cars, we have to set the 

destination and visiting places. Then automatically car will go through these places by using some algorithm. 

Suppose when we use this circular distance concept in these cars, the tour will go smoothly  with low cost and can 

be reduced time also. Considering the vertices as visiting places and giving this information to the car system by 

using circular distance concept it will generate the map which consists of detour path containing more visiting 

places and shortest path while coming back home. Thus we will reduce the time and cost of the tour. 
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V2V communication in 5G technology 

In driverless vehicles, there must be communication between vehicles. For instance while traveling, generally we 

come across signals in junctions. Near the signals the car has to stop and communicate to the vehicles behind it, 

that ahead there is a red signal and reduce the speed of the car. This message has to go to the vehicles behind up 

to certain number of cars depending upon the programming. Again the destination car has to send signals to the 

source car that it received the message. Thus all the cars reduce their speed automatically. When the source car 

communicates the message it will choose the detour path and destination car sends the message using the shortest 

path. Indirectly here the mechanism is circular distance. Here the cars are vertices. Using this mechanism we can 

reduce accidents of the cars in traffic and we will have more peaceful and safe journey. 

 

6. Conclusion 

In this work, we studied circular distance in a graph and we proved that circular distance is metric. We 

concentrate few properties of circular distance. We found the circular distance of some families of graphs. We 

proved that few of the graphs are self-centered. Further we proved   𝑃2 × 𝐶𝑛 is also a self-centered graph.  

In future work, we want to study radio circular distance between edges of a graph and also find the relation 

between circular distance and radio circular distance of a graph. Further we will study the properties of radio 

circular distance of a graph. 
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