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Abstract: The purpose of this thesis was to select a cable-stayed bridge to which external force may cause damage as the 
subject, to develop a damage detection deep learning method capable of detecting cable damage, and to test and verify the 

developed damage detection deep learning method. The damage detection method was developed as a system that utilizes 
the acceleration response of a structure measured for maintenance purposes. To extract information capable of identifying the 
damage locations from among the measured acceleration responses, a CNN ID was used to develop the damage detection 
deep learning method. The developed damage detection deep learning method was developed in a way not independently 
arranging 1 machine learning model per each measuring point and finally predicting the damage location based on the 
decision-making results collected from each machine learning model. The developed damage detection deep learning 
method performed the learning per each machine learning model by utilizing the acceleration response of a structure 
acquired based on the preliminary damage test. Finally, the damage detection deep learning method that completed the 
learning verified the cable damage location detection performance by utilizing the data acquired based on the cable-stayed 

bridge damage test. As a result, it was confirmed that the developed damage detection deep learning method predicted the 
damage location of a cable-stayed bridge at an average accuracy of 89%. In the current research, only the cable-stayed 
bridge of the Seohaegyo Bridge was studied, but in the improved study, the research will be conducted on other bridges and 
damage assessment will be conducted on all cables. 

Keywords: SHM(Structure Health Monitoring), Cable-stayed Bridge, Cable Damage Detection, Deep Learning, 
Convolutional Neural Network. 

 

 

1. Introduction 

A cable-stayed bridge is a bridge where its cables bear the load of the superstructure for elongation 
purposes, and any cable damage is closely related to bridge safety. As demonstrated through a recently occurred 

bridge collapse in Taiwan, a cable bridge may be damaged due to diverse reasons, and may collapse in a worst-

case scenario. As of now, a long-span cable-stayed bridge is designed to last approximately 100 years and the 

cables used are designed to last 20 years, in general. Therefore, it is necessary to continuously manage the 

cables of a cable-stayed bridge[1-6]. Diverse structural heath monitoring(SHM) methods are being studied to 

prevent such damage and collapse from causing losses of both life and property in advance, and are being used 

for the maintenance of cable-stayed bridges. Structural health monitoring method is a method that not only 

utilizes the data acquired from the diverse sensors installed on a structure to analyze the action of the structure, 

but also utilizes the analyzed results to identify the damage and health statuses of the structure. 

A number of researches were conducted on such SHM method in the past. For example, a research 

conducted to determine the bridge damage status through identifying the statistical damage resulting from the 

measured ambient vibratory response[7], and the SHM method studied applicable to a cable-stayed bridge 
through statistically analyzing the natural frequencies, the modal damping, the mode shapes of the bridge, and 

the correlation shared between temperature and natural frequency[8]. 

The final purpose of such studied SHM method is to analyze the response data of a structure, to predict the 

damage level and damage location of the structure, and to secure structural safety through providing prompt 

responses based on the predicted results. To evaluate the damage to a non-simple structure, a prediction model 

taking into consideration diverse factors such as structural data, action features and external environments is 

required. Due to such reasons, pre-existing statistics-based prediction models used complicated, non-linear 

classification methods, and a number of questions were raised regarding the applicability of such prediction 

models[9]. To solve problems relating to such statistics-based damage detection methods as well as to utilize the 

developed models, deep learning technology started being applied to the SHM field. The deep learning method 

used in the SHM field is being diversely studied based on IT technology which is making rapid progress. 
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From among the deep learning methods, artificial neural network(ANN) and convolutional neural 

network(CNN) are the representative deep learning methods applied to the SHM field. ANN is a computing 

system designed by emulating the human brain structure, and is a method that uses artificial neurons to construct 

a network and perform machine learning. As a representative research utilizing such ANN, a research conducted 

to utilize the ANN to predict and evaluate the tension created by the cables of a bridge[10]. However, the 

problem with deep learning, a data-based learning model, is that it requires a number of variables(cable length, 
axis and bending stiffness, cable mass per unit length, etc.) to which the bridge status is applied. Namely, an 

ANN-based SHM requires considerable time and equipment to measure a number of occurring variables. 

Convolutional neural network(CNN) is a deep learning technology that self-learns the process of extracting 

image features, and has high accuracy in terms of CNN-based prediction models[11]. In general, a CNN-based 

SHM method was utilized in the SHM field to extract the features of an image as well as to predict the damage 

level, damage location and damage progress of a complicated image. Through the use of faster-region based-

CNN, a more prompt and more accurate image processing based prediction model was studied[12]. However, 

most CNN-based SHM methods are used to classify image- or video-based data. In general, as far as the image 

processing based SHM research is concerned, the overall image(or video) of a structure including the damage 

location must be secured to enhance data accuracy and reliability. In general, image(or video) data take up a 

larger capacity than text data such as acceleration and displacement data measured for maintenance purposes, 

and the maintenance and server extension costs required for long-term monitoring are extreme[13-17]. Actually, 
a number of sensors were installed on the ‘Tsing Ma’ bridge in Hong Kong. The installation cost more than 

27,000 dollars per sensing channel, and, taking into consideration that a number of channels were installed on 1 

bridge, the cost escalated exponentially. 

In this thesis, a method capable of evaluating the cable damage location of a cable-stayed bridge to which 

structural deterioration or external force may cause damage was developed, and the developed method was 

experimentally verified. A deep learning method that made progress and attracted recently attention was utilized 

as the cable damage location detection method, and the CNN method that is mainly utilized in image(or video) 

data-based researches despite its highly accurate performance compared to other diverse deep learning methods 

was used to develop the damage evaluation method. The damage evaluation method utilizing the developed 

CNN method was developed based on the acceleration data generally acquired for structural maintenance 

purposes, and the data acquired based on the model bridge damage test were utilized to learn and verify the 
damage detection deep learning method. it was confirmed that the developed damage detection deep learning 

method predicted the damage location of a cable-stayed bridge at an average accuracy of 89%. 

 

2. Development of an ML Model for Damage Location Detection 

2.1. Machine Learning and CNN 

  Machine Learning(ML) is one field of artificial intelligence, and defined as a “field of study that gives 

computers the ability to learn without being explicitly programmed”. To successfully complete ML, as people 

learn through experience, computers must be provided with data to be learned. In this research, the 

ANN(Artificial Neural Network) from among diverse learning algorithms was used to develop the ML for 

detecting the damage location of a cable-stayed bridge.  ANN is a statistical learning algorithm configured in 

the shape of a biological neural network, and consists of artificial neurons(nodes) for data transfer. In addition, 

an artificial neural network changes the strength(weighted value) of the network consisting of artificial neurons 
to classify and learn the features of the target. As shown in Figure 1, a normal artificial neural network has a 

structure consisting of a number of layers(x, h, g and f) connected through nodes. In addition, the number of 

layers increases as the network gets more complicated, and the number of input neurons and of output neurons 

within the layers increases as well. 
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Figure 1. Artificial Neural Network 

  The layers of an artificial neural network are divided into input layers, hidden layers and output layers 

depending on the role, and, in Figure 1, x is the input layer, h and g are the hidden layers, and f is the output 

layer. The input layer is where the data input is made, the output layer is where the data output is made, and the 

hidden layers are where the inter-layer connection strength is updated according to the node value. In addition, 

‘Fully Connected(FC) Layer’ is the layer where all the nodes forming each layer are connected. The ANN 
shown in Figure 1 can be mathematically defined as Formula 1. The neuron’s network function f(x) is defined as 

a composition of other functions(𝑔𝑖(x)), and such functions can be defined as a composition of other functions to 

conveniently represent the dependency relationship shared among variables. 

𝐹(𝑥) = 𝐾(∑ (𝑤 ∗ 𝑔𝑖(𝑥)))
𝑛
𝑖=0                         (1) 

  In Formula 1, x and g are the input layer and hidden layer, respectively, of a neural network, and w is the 

connection strength(weight) between fs. K refers to the activation function that counts as a neural network 

classification method, and is mainly used as a non-linear weighted sum. In this research, the CNN(Convolution 

Neural Network) from among diverse ANNs is selected as the learning method. The CNN method is one of the 

methods frequently used in deep learning, and its strength is that it enhances the performance of a deep learning 
model by extracting only the important features of input data to be used for learning and that it uses CNN 1D or 

CNN 2D depending on the type of data. CNN 1D is used in association with sequence or time series data such 

as change data according to sentence or time progress, and CNN 2D is frequently used in association with image 

data. Figures 2 and 3 briefly show the progress of CNN ID and of CNN 2D, respectively. 

 

          
Figure 2. Progress of CNN 1D              Figure 3. Progress of CNN 2D 

 

  In Figures 2 and 3, kernel is a queue consisting of weighted values(weights), and 1 kernel outputs 1 result per 

sequence or image data, and the number of results(features) matching the number of designated kernels is 

extracted and used for learning. Since rather learning only the important features of input data than learning all 

the unnecessary parts of input data allows a model to provide more accurate predictions, the weighted values of 

a kernel change in a way allowing the important features to be extracted as learning progresses. more features 

can be extracted from data as the number of kernels increases, and the extracted features vary depending on the 

size of kernels. Since the number or size of kernels varies depending on the data to be learned, it is necessary to 

find the optimized value through using a pre-existing model that learns data similar to the data to be learned or 

through conducting a test. 

 

2.2. Development of a Deep Learning Model for Cable Damage Evaluation 

  In this research, a deep learning model capable of evaluating the cable damage status of a cable-stayed bridge 

was realized to detect the cable damage location of a cable-stayed bridge. The 1D CNN method was used to 

have this deep learning model learn the bridge response data according to time progress, and this deep learning 

model was configured as shown in Figure 4. 

 
Figure 4. Cable-stayed Bridge Cable Damage Evaluation Model 

 

  As shown in Figure 4, the 1D CNN model realized to detect the damage of a cable-stayed bridge consisted of 
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6-phase hidden layers. A 1D CNN-based model requires the Conv1D layer, FC layer, and the input for learning. 

Such input is the bridge response data for learning, and the acceleration data acquired from the acceleration 

sensor attached to the bridge were used. Conv1D layer is a layer that extracts the important features for learning 

from the input data, and, as shown in Figure 4, Phases 0~2 were configured using the Conv1D layer. FC layer is 

a layer that learns and classifies the extracted features into 5 cases, and Phases 3~5 were configured using the 

FC layer. The result(output) learned through the 1D CNN method represents the percentage of each case. The 
size of kernels used for all the Conv1Ds was 3, and the depth(the output according to the number of kernels) of 

0:Conv1D, of 1:Conv1D and of 3:Conv1D was 256, 128 and 64, respectively. And the output shape in the FC 

layer was 1024, 128 and 5, respectively. The values used here were the values found through a test, were 

suitable for the data used in this research, and may be changed in the future. The ReLu(Rectified Linear Unit) 

was used as the activation function. ReLu is one of the most frequently used activation functions, has a fast 

learning speed compared to other activation functions, and is capable of solving the gradient vanishing and 

exploding problems that occur as the weight value decreases or increases excessively during the learning 

process. In this mode, the ReLu was used for all the layers except for the output layer.  The Conv1D layer used 

in the developed model was used to learn the vibration data according to time progress, and the process is as 

shown in Figure 5. 

 

 
Figure 5. Feature Extraction of Features from Conv 1D 

 

  The input data shown in Figure 5(1) are the input data applied to the Conv 1D layer for learning or prediction, 

and the overall time step length data are received, divided into feature/step sizes, and are applied to the Conv1D 

layer. The input data of the model realized in this research are the structure’s response acceleration data acquired 

for 6.4 seconds from the sensor attached to the structure, and the total length of such data is 16,384 frames. Such 

data are divided into 64 time steps and 256 features/steps(ie.64,256) and are applied to the model. This is input 

size of 0:Conv1D to which the collected data are applied, and the output from the previous layer are applied to 

1:Conv1D and 2:Conv1D. In Figure 5(2), the convolution operation is performed using the selected area of the 

input data through the kernel. The kernel-related variable value was differently set per each Conv1D 

layer(0:Conv1D~2:Conv1D), and was determined through an experimental test. As far as the convolution 

operation is concerned, the selected (a)Input Data area and (b)Kernel shown in Figure 9 were used, and the 
operation was performed as shown in Formula 2. 

 

 
(a) Input Data 

 
(b) Kernel 

Figure 6. Input Data Area and Kernel Selected for Convolution Operation  
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(n = width, h = height) 

𝐹 = ∑ (∑ (𝑥𝑖𝑗 ∗ 𝑤𝑖𝑗
ℎ
𝑗=0 ))ℎ

𝑖=0                         (2) 

  In Figure 6, n, h are the width and height, respectively, of (a) and (b), and must share the same value. In (a), x 

is the input data value and is the weight value, and such values are updated as the learning process progresses. as 
1 kernel performs the convolution operation in all the timesteps of the input data, Conv 1D layer results are 

saved as shown in Figure 5(3). The next kernel repeats the same convolution operation, and the same 

convolution operation repeats as many times as the number(c) of set kernels. Once this process is completed, the 

operation of 1 Conv 1D layer is terminated. 

2.3. Cable-stayed Bridge Cable Damage Location Prediction through Cable-stayed Bridge Cable Damage 

Detection Deep Learning Model 

  In this research, the realized cable damage detection deep learning model is used to conduct a damage 

location prediction research. The realized deep learning model learns the data collected from the sensor installed 

on a cable-stayed bridge on a random basis. In this research, a total of n sensors are used to collect data, and, 

accordingly, n cable damage detection deep learning models are used, and the data acquired from 1 sensor are 

learned by 1 model. Once each model learns the data collected from a separate sensor, to predict the final 

damage location, as shown in Formula 3, n cable damage detection deep learning  models(𝑀𝑜𝑑𝑒𝑙𝑛) predict the 

damage results(𝑅𝑛) using the data(𝐷𝑛) acquired from sensors. 

𝑅𝑛 = 𝑀𝑜𝑑𝑒𝑙𝑛(𝐷𝑛)                             (3) 

  As shown in figure 4, is R the prediction result acquired from 1 𝑀𝑜𝑑𝑒𝑙, and m represents the percentage of 

each cable damage location. 

𝑅𝑛 =

{
 
 

 
 
𝑅𝑛0
𝑅𝑛1
. . .

𝑅𝑛𝑚−1
𝑅𝑛𝑚

                               (4) 

  The results(𝑅𝑛) acquired from models(𝑀𝑜𝑑𝑒𝑙𝑛) are integrated as shown in Formula 5, and the damage 

possibility(𝑃𝑜𝑠𝑚) per each cable damage location is acquired. 

𝑃𝑜𝑠𝑚 =
∑ 𝑅𝑖𝑚
𝑛
𝑖=0

∑ 𝑅𝑗
𝑛
𝑗=0

                             (5) 

  The cable damage location(m) having the highest damage possibility(𝑃𝑜𝑠𝑚) is determined to be damaged. 
 

3. Cable-stayed Bridge Cable Damage Location Prediction Using Accelerometer and Deep Learning 

3.1. Data Collection for Learning 

  In this research, a damage test was conducted to evaluate the performance of the machine learning model 

developed for detecting the cable damage location of a cable-stayed bridge. As far as the damage evaluation test 

is concerned, a cable-stayed bridge model approximately 1/200 the size of actual Seohaedaegyo Bridge was 

manufactured and used. The subject model having an overall length of 4.2m, a distance from tower to tower of 

2.2m, a width of 0.17m and a tower height of 0.70m was designed/manufactured as shown in Figure 7, and 20 

pairs of cables were connected to each tower, allowing a total of 40 pairs of cables to bear the weight. 

 
Figure 7. Model Cable-stayed Bridge Model Used for Data Collection 

  The cable-stayed bridge model damage test targeted the cables connecting the middle span between 2 towers. 

The damage test subjects, damage scenario cases, and the sensor location information for structure response 

measurements are as shown in Figure 8. 
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Figure 8. Data Collection Environment and Scenario Cases 

 

  Figure 8 shows the middle span of the bridge model under test. A total of 8 accelerometers were installed in 

the middle span at the same interval, the structure response was measured at intervals of 1/256 during the test, 

and the accelerometers manufactured by Dytran were used. As far as the excitation for test is concerned, as 

specified in Figure 6, external force was applied to the structure by performing the  hammer excitation between 

Channel 4 and Channel 5. From among a total of 20 pairs of cables, 5 damage test cases of 2 pairs(4 cables) 

each were selected as shown in Table 1. 

Table 1. Contents of Each Case 

 Damaged Cable 

Case 1 Cables 1 and 2 

Case 2 Cables 13 and 14 

Case 3 Cables 19 and 20 

Case 4 Cables 7 and 8 

Case 5 All cables function properly. 

 

  From among a total of 5 cases specified in Table 1, Case 5 had all the cables properly connected, and Cases 

1~4 had the cables disconnected to simulate damage(cable rupture). Each case was repeatedly tested 300 times 

to measure the structure response, and a consistent impact was applied to the center of the bridge to measure the 

data for 6.4 seconds starting from the time the impact is applied. 

 
Figure 9. Data Collection, Pre-processing and Learning Process Examples in Damage Case 3 

 

  Figure 9 shows a process applicable to Case 3, one of diverse damage test cases. The learning process was 

performed by individually pre-processing the data acquired from 8 acceleration sensors and applying them to the 

models per channel. The data acquired from the pre-processing process were normalized within a range of –1 ~ 

1, and were re-shaped in a way matching the input size(64.256) of the models. The final damage location is 

determined by having the results acquired from the 8 cable damage evaluation models run through Formulas 3 ~ 

5 described above 
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4. Result discussions 

4.1. Cable-stayed Bridge Cable Damage Location Prediction Using Accelerometer and Deep Learning 

  Whether or not the cable damage location prediction model that completed the learning process through the 

training set is capable of accurately detecting the damage location of the collected test set is confirmed, Figure 8 

shows the damage location(Pos) results calculated based on the data randomly brought from each case of the 

test set. 
 

 
Figure 10. Pos Results per Case of Test Set 

 

  In Figure 10, since 𝑃𝑜𝑠1 has the highest Pos value in Case 1 of the test set, the involved data are determined 

to be Damage Case 1. The same procedures are used to determine the results regarding the remaining cases of 

the test set. The results that can be acquired from the bridge cable damage location prediction model based on 

the random test set case 1~5 data are shown in Figures 11 ~ 15. In Figure 11, the damage location is accurately 

detected on Channels 1, 7 and 8 in Test Set Case 1, but Channels 4, 5 and 6 show no significant difference 

between Case 1 and Case 3, and it failed to predict the damage location on Channels 2 and 3 in Case 3. However, 

it is confirmed that Case 1, the damage location of the actual data, can be predicted by calculating the damage 

location(Pos) based on such results.  

  In Figures 12 and 14, Test Set Cases 2 and 4 show a significantly high accuracy compared to other cases, and, 

in Figures 13 and 15, Test Set Cases 3 and 5 show inaccurate results acquired from several channels(which were 

similar to the results that Test Set Case 1 show), but it was confirmed that the damage location of the actual data 
can be predicted by calculating the damage location(Pos). 

 

 
Figure 11. Damage Location Prediction Results Per 

Channel regarding Case 1 Data 

(𝑃𝑜𝑠1=56%, 𝑃𝑜𝑠2=0%, 𝑃𝑜𝑠3=29%, 𝑃𝑜𝑠4=0%, 

𝑃𝑜𝑠5=15%) 

 

 
Figure 12. Damage Location Prediction Results per 

Channel regarding Case 2 Data 

(𝑃𝑜𝑠1=0%, 𝑃𝑜𝑠2=98%, 𝑃𝑜𝑠3=0%, 𝑃𝑜𝑠4=2%, 

𝑃𝑜𝑠5=0%) 
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Figure 13. Damage Location Prediction Results per 

Channel regarding Case 3 Data 

(𝑃𝑜𝑠1=30%, 𝑃𝑜𝑠2=0%, 𝑃𝑜𝑠3=60%, 𝑃𝑜𝑠4=0%, 

𝑃𝑜𝑠5=10%) 
 

 
Figure 14. Damage Location Prediction Results per 

Channel regarding Case 4 Data 

(𝑃𝑜𝑠1=0%, 𝑃𝑜𝑠2=2%, 𝑃𝑜𝑠3=0%, 𝑃𝑜𝑠4=98%, 

𝑃𝑜𝑠5=0%) 

 

 
Figure 15. Damage Location Prediction Results per Channel regarding Case 5 Data 

(𝑃𝑜𝑠1=10%, 𝑃𝑜𝑠2=0%, 𝑃𝑜𝑠3=14%, 𝑃𝑜𝑠4=0%, 𝑃𝑜𝑠5=76%) 
 

  Table 2 shows the calculated sensitivity results of the 8 bridge cable damage location prediction models that 

independently performed the learning process. Such sensitivity results were calculated based on the results 

acquired from a total of 450 test sets(90 test sets per case). 

 

Table 2. (Test Set) Sensitivity per Case on Each Accelerometer(Channel) 

 
Test Set Sensitivity 

Avg 
Case 1 Case 2 Case 3 Case 4 Case 5 

Ch 1 0.98 1.00 0.98 1.00 1.00 0.99 

Ch 2 0.97 1.00 0.91 1.00 1.00 0.98 

Ch 3 0.75 0.97 0.74 1.00 0.97 0.89 

Ch 4 0.41 1.00 0.42 0.98 0.61 0.68 

Ch 5 0.86 0.98 0.23 0.98 0.28 0.67 

Ch 6 0.95 1.00 0.81 1.00 0.86 0.92 

Ch 7 0.92 1.00 0.98 1.00 0.98 0.98 

Ch 8 1.00 1.00 0.95 1.00 1.00 0.99 

Avg 0.86 0.99 0.75 1.00 0.84 0.89 

 

 

  Sensitivity refers to the percentage of true values predicted by the model out of actual true values, and is 

calculated as shown in Formula 6. TruePositive is a case where the actual damage case is predicted as a damage 

case, and FalsePositive is a case where the actual damage case is predicted as a no-damage case. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                   (6) 

  As shown in Table 2, except for Channels 4 and 5, the remaining channels show an average sensitivity of 89% 

~ 99% in all the cases. Channels 4 and 5 show a low sensitivity in Cases 3 and 5, and Channel 4 showed a low 
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sensitivity in Case 1 as well. 

 

5. Conclusions 

  In this thesis, for the SHM, a research utilizing accelerometer and deep learning to predict the cable damage 

location of a cable-stayed bridge was conducted. The pre-existing researches were mainly focused on analyzing 

the accurate status of each cable installed on a cable-stayed bridge, and this research was aimed at detecting the 
location of the damaged cables requiring precision inspection. A Seohaedaegyo Bridge cable-stayed bridge 

model was designed and selected as the subject, the damage cases were divided into 5 different cases depending 

on the cable damage location, 8 accelerometers(channels) were used to collect the response data, and the 

collected data were applied to the learning process. The response data acquired from the 8 acceleration sensors 

were independently learned by the cable-stayed bridge cable damage evaluation models, the prediction results 

acquired from the 8 cable-stayed bridge cable damage evaluation models after completing the learning process 

were integrated, and the location of the damaged cable was finally predicted based on the integrated results. As a 

result of calculating the sensitivity through the test set, it was confirmed that the damaged cable can be predicted 

at an average accuracy of 89%. 
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