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_____________________________________________________________________________________________________ 

 
Abstract: In this artificial intelligence time, speaker recognition is the most useful biometric recognition technique. Security is 

a big issue that needs careful attention because of every activities have been becoming automated and internet based. For 
security purpose, unique features of authorized user are highly needed. Voice is one of the wonderful unique biometric 

features. So, developing speaker recognition based on scientific research is the most concerned issue. Nowadays, criminal 
activities are increasing day to day in different clever way. So, every country should have strengthen forensic investigation 
using such technologies. The study was done by inspiration of contextualizing this concept for our country. In this study, text-
independent Amharic language speaker recognition model was developed using Mel-Frequency Cepstral Coefficients to 
extract features from preprocessed speech signals and Artificial Neural Network to model the feature vector obtained from the 
Mel-Frequency Cepstral Coefficients and to classify objects while testing. The researcher used 20 sampled speeches of 10 each 

speaker (total of 200 speech samples) for training and testing separately. By setting the number of hidden neurons to 15, 20, 
and 25, three different models have been developed and evaluated for accuracy. The fourth-generation high-level programming 
language and interactive environment MATLAB is used to conduct the overall study implementations. At the end, very 
promising findings have been obtained. The study achieved better performance than other related researches which used 
Vector Quantization and Gaussian Mixture Model modelling techniques. Implementable result could obtain for the future by 
increasing number of speakers and speech samples and including the four Amharic accents. 

Keywords: Text-independent Speaker Recognition, ANN, MFCC, Feature Extraction, Amharic Language, MATLAB Neural 
Network Tool 

___________________________________________________________________________ 
 

1. Introduction  

Speech is a medium for human to express their thoughts during communication. A speech signal is a complex 

signal which is packed with several knowledge resources such as acoustic, articulatory, semantics, linguistic and 

many more. It is the ultimate, universal mode of human communication and it is how a man should be able to 

interact with computers or machines [1]. Speech interface in the user‟s own language is in short, an ideal means of 

communication as being the most natural, flexible, efficient and convenient option allowing to perform hands and 

eyes free tasks. The study of speech signals and the processing methods of signals is called speech processing. It is 

the analysis of human speech (using digital signal processing techniques). There are several aspects of speech 

processing, according to the focus of analysis: speech synthesis, speech recognition, speaker recognition, voice 

analysis, speech coding and compression, speech enhancement, speaker diarization, speaker classification, 

language identification, etc. Speaker recognition which is the concern of this study is the process of automatically 

recognizing who is speaking by using the speaker-specific information included in speech waves to verify 

identities being claimed by people accessing systems; that is, it enables access control of various services by voice 

[2]. The aim of speaker recognition is to extract, characterize and recognize the information about speaker 

identity. 

In this digital world, speaker recognition is the most useful biometric recognition technique. Now days many 

organizations like bank, industries, access control systems, etc. are using this technology for providing greater 

security to their vast databases [3]. Applicable services include voice dialing, banking over a telephone network, 

telephone shopping, database access services, information and reservation services, voice mail, security control 

for confidential information, and remote access to computers. The most essential application of speaker 

recognition technology is as a forensics tool. 

Speaker recognition can be classified into speaker identification and speaker verification. Speaker 

identification is the process of determining from which of the registered speakers a given utterance comes. 

Speaker verification is the process of accepting or rejecting the identity claimed by a speaker. Most of the 

applications in which voice is used to confirm the identity of a speaker are classified as speaker verification. From 
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a security perspective, identification is different from verification. For example, presenting your passport at border 

control is a verification process: the agent compares your face to the picture in the document. Conversely, a police 

officer comparing a sketch of an assailant against a database of previously documented criminals to find the 

closest match(s) is an identification process. 

Speaker recognition systems fall into two categories, text-dependent, and text-independent. Text-dependent 

uses the same text for enrollment and testing. Text-independent uses different text for enrollment and testing. This 

study is dealt with text-independent speaker identification in a case of Amharic language speech. 

At the highest level, all speaker recognition systems contain two main modules feature extraction and feature 

modeling and matching. Feature extraction is the process that extracts a small amount of data from the voice 

signal that can later be used to represent each speaker. Feature modeling and matching is modeling the extracted 

features and involves the actual procedure to identify the unknown speaker by comparing extracted features from 

the input voice with the ones from a set of known speakers. 

However, the speech based systems that have been developed so far are meant to serve a specific language and 

are totally limited to some techno-rich countries of the world. For developing countries like Ethiopia, it is a must, 

to follow the outfit of those techno-rich countries in relation to such technological advancements to do not lose the 

opportunities provided by technologies. Based on this fact, speech engineers and language experts invarious 

countries are making noticeable efforts to develop recognition that works for their own language. In our country, 

even though it is not enough 40 speech recognition and 3 speaker recognition researcheshad been attempted. As 

we have seen, there is a shortage of research regarding speaker recognition. The above three speaker recognition 

concerned researches used Vector Quantization and Gaussian Mixture model for modeling techniques. The goal of 

this study is exploring the possibility of a state of the art modeling techniques for building Amharic language 

speaker recognition. 

2. Literature Review 

S. A. Mahmood and L. E. George, 2007, investigate neural based speaker recognition system. LPC has been 

used as a feature extraction method. And back propagation neural network has been used for the purpose of 

speaker modeling and identification. Achieved 90% accuracy for 10 speakers [4]. 

M. S. Sinith et al. , 2010, emphasis on text-Independent speaker identification system using Mel-Frequency 

Cepstral Coefficients (MFCC) as the speaker speech feature parameters in the system and the concept of Gaussian 

Mixture Modeling (GMM) for modeling the extracted speech feature. And used the Maximum Likelihood Ratio 

Detector algorithm for the decision making process. The experimental study has been conducted on MATLAB 7. 

Gaussian mixture speaker model attains high recognition rate for various speech durations. The recognition rate is 

maximum (98.8 %) when the speech is of 60 seconds duration and the number of Gaussians is 16 [5]. 

Amr Rashed, 2014, this paper proposed a fast algorithm for speaker recognition. This algorithm first records 

voice patterns of speakers via noisy channel and use some of noise removal techniques. The feature is extracted by 

Mel Frequency Cepstral Coefficient (MFCC) and the feature is reduced by Principal component analysis (PCA) 

technique. Then the result vector is fed to ANN classifier. Experimental results indicates that using ANN with 

weight/bias training algorithm have better performance. The result shows that the proposed algorithm achieved on 

average about 99% accuracy rate and higher speed rate in comparison with other methods [7]. 

A. Azene, 2015, the first attempted Amharic language speaker recognition research. It presents text-

independent speaker identification system for the Amharic language. Speech signals are collected from different 

speakers including both sexes as well as different age groups. MFCC had been used to extract features from the 

speech signals and to generate feature vector. VQ and GMMs had been used for training and identification 

purpose. The intention of the researcher was to see which modeling approach is better for text- independent 

speaker identification. For a total of 50 speakers, 74.2% accuracy was achieved when VQ approach is used where 

as 84.3% accuracy for the GMMs. The researcher tried to see the speaker identification accuracy based on gender. 

25 male and 25 female speakers were considered. From the experiment, 86.2% and 85.9% accuracy was achieved 

for male and female speakers respectively [5]. 

A. D. Mengistu, 2017, presents an automatic text-independent speaker identification system for the Amharic 

language in noisy environments. Speech signals are collected from different 100 speakers including both genders. 

Each speech has 10 seconds duration from each individual. Combination of MFCC, LPCC, and GFCC had been 

used for feature extraction purpose. VQ and GMMs had been used for training and identification purpose. The 

researcher was attempting to see which modeling approach is better for text- independent speaker identification 

with the combination of the three feature extraction techniques (MFCC, LPCC, and GFCC). The researcher 

conducted two experiments; One, VQ modeling approach with the combination of the three feature extraction 

techniques for 30, 60, and 90 speakers. And achieved 77.2%, 70.9%, and 69% accuracy respectively. Two, GMM 
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modeling approach with the combination of the three feature extraction techniques for 30, 60, and 90 speakers. 

And achieved 75.2%, 76.9%, and 78% accuracy respectively [6]. 

M. Islam, F. Khan, and A. M. Haque, 2013, presents the implementation of Text Independent Speaker 

Identification system. Feature extraction task has been done using Mel Frequency Cepstral Coefficients (MFCC) 

acquisition algorithm that extracts features from the speech signal, which are actually the vectors of coefficients. 

The backpropagation algorithm of the artificial neural network stores the extracted features on a database and then 

identify speaker based on the information. Achieved near 100% accuracy in case of static speech signal and above 

90% accuracy in case of real time speech signal [6]. 

D. Mengistu D. Melesew, 2017, presents a hybrid approach of VQ and GMM have been used for classifying 

dialects of Amharic language. In speech signals collection, total of 100 speakers from each group of dialects 

(Gojjam, Wollo, Shewa, and Gonder) are considered. MFCC feature vectors are used to recognize the dialects of 

speakers. When 25 speakers are considered from areas, 85.9% accuracy had been achieved. When the number of 

speakers are increased to100, which is the maximum number of dialect speakers of the experiment, 92.7% 

accuracy had been achieved [7]. 

A. Antony and R. Gopikakumari, 2018, introduces an isolated word speaker identification system based on a 

new feature extractor and using ANN. The system is designed for both text independent and text dependent 

speaker identification system for English words. The speech is recorded using audio wave recorder. Then the 

preprocessing is applied for the given speech signals. UMRT is a transform which has been used for image 

compression. Combinations of MFCC and UMRT are taken and are used as a feature extractor. The classification 

of the features is done using Multi-layer perceptron with back propagation algorithm. The accuracy is taken using 

confusion matrix. The accuracy achieved is around 97.91% for speech dependent systems while for speech 

independent system the accuracy is around 94.44% [8]. 

3. Methodology 

Activities involved in this study framework of methodology are speech collection, preprocessing of speech 

signals, feature extraction of preprocessed data, feature modeling of extracted features, feature matching during 

identification, and performance evaluation. All activities has been done using an appropriate techniques and tools. 

Figure 1. shows the overall detailed framework of the methodology. 

 

Figure 1.  Conceptual Framework of the Methodology 
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4. Experiments, Findings  

Proposed Speaker Recognition Prototype 

In order to have simple interaction in demonstration, we developed graphical user interface prototype. So, in 

this study, the overall processes are conducted using GUI speaker recognition prototype. 

Figure 2. depicts the general architecture of the proposed speaker recognition prototype which shows the 

overall process flow. 

 

Figure 2. Architecture of Proposed Speaker Recognition Prototype 

Input speech is preprocessed speech signal. The preprocessed input speech always pass through feature 

extraction technique (MFCC). After feature extraction, there are two paths; training and testing. During training, 

feature vector of speech signal is created and stored in to database. Then, all feature vectors of speech signals 

which have been stored in the database will be trained for the feedforward neural network and „Network.mat‟ file 

which contain the trained neural network is created. During testing, a comparison between feature vector of the 

input speech and feature vector of speech signals in the trained neural network (in Network.mat) will be done. 

Finally, after comparison has been made, the neural network make a decision to identify the speaker. 

Feature Extraction 

Since the prototype is GUI, the preprocessed input speech is loaded one by one to the system for feature 

extraction. The class ID is given when the input speech is loaded for feature extraction. 200 speech samples of 10 

speaker has been loaded to the system for feature extraction and stored in database 

(speech_feature_vector_database). 
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Figure 3. MFCC Feature Vector Matrix of AA_00.wav 

Finally, the class ID is given based on the alphabetical order from 1 up to 10. 

Table 1.  Training dataset and their corresponding class ID after feature extraction 

No. Speaker Name Speaker 

Code 

Wav files‟Name 

(20 perSpeaker) 

Class ID 

1 Dr. Abiy Ahmed AA AA_00 to AA_19 1 

2 Biniam Belete BB BB_00 to BB_19 2 

3 Birtukan Mideksa BM BM_00 to BM_19 3 

4 Fikadu T/mariam FT FT_00 to FT_19 4 

5 Meaza Biru MB MB_00 to MB_19 5 

6 Dr. Mihret Debebe MD MD_00 to MD_19 6 

7 Muferiat Kamil MK MK_00 to MK_19 7 

8 Sahilework Zewde SZ SZ_00 to SZ_19 8 

9 Ustaz Abubeker Ahmed UAA UAA_00 to UAA_19 9 

10 Yetnebersh Nigussie YN YN_00 to YN_19 10 

The code given for the speakers‟ is assigned using the two capital letters of first and last name of the speaker. 

Each speaker has 20 speeches, and the wav files are represented using the speaker code with numbers from 00-19 

(i.e.  AA_00.wav, AA_01.wav, AA_02.wav……. AA_19.wav). 

Training of Neural Network 

During the feature extraction stage, the speech signals are transformed in to feature vector in the way it will be 

suitable for training the neural network. The next step is training and testing the neural network. As tried to 

mention in chapter 3, in this study, three experiments have been conducted. After setting the training parameters, 

the set of inputs with respective target outputs fed for the neural network sequentially. 
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The training parameters used for all experiments are listed below 

  Number of Input Neurons=26 

  Number of Hidden Neurons=15, 20, 25 (Expt.1, Expt.2, and Exp. 3 respectively). 

  Number of Output Neurons=10 

  Train Function= trainlm (Levenberg-Marquardt) 

  Performance Function= Mean Squared Error (MSE) 

  Divide Function= dividerand 

  Training Ratio=70%, Validation Ratio=15%, Testing Ratio=15% 

  Epochs=100 

Figure 4. is the plot of the performance of experiment one for the training, validation, and testing versus the 

epochs. 

 

Figure 4. Performance Plot of Experiment One [Hidden Neurons=15] 

Figure 5. is the plot of the performance of experiment two for the training, validation, and testing versus the 

epochs. 

 

Figure 5. Performance Plot of Experiment Two [Hidden Neurons=20] 
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Figure 6. is the plot of the performance of experiment three for the training, validation, and testing versus the 

epochs 

 

Figure 6. Performance Plot of Experiment Three [Hidden Neurons=25] 

Performance Evaluation 

Here, the evaluation has been performed in two ways: 

 Trained neural network model evaluation based on confusion matrix. 

 Real time test using speeches that are prepared for testing. 

Based on all confusion matrixes, the below result summary has been summarized. 

Table 2. Result Summary Based on Gender 

No. Hidden Neurons 15 20 25 

Overall Accuracy 96.0 % 96.7% 97.3% 

Male 49.5% 49.8% 49.9% 

Female 50.5% 50.2% 50.1% 

Table 3. Confusion Matrix Metrics Result of each Class of all Experiments 
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Experiment One: [Hidden Neuron=15] 

Table 4 shows how to classify the samples sound frames versus with four confusion matrix parameters. For 

example, Class 1, has total 2730 sound sample frames stored in sound database extracted from his voice. From 

those, the truly classified samples are the actual Class 1 predicted correctly 2558 (TP). The 83 (FP) frame samples 

are classified incorrectly. The 172 (FN) frame samples of actual Class 1 are predicted incorrectly by 

otherclasses.The23214(TN)framesampledneitheractualclassnorpredictedclasswhich means truly predicted 

incorrectly from the total samples26027. 

Experiment Two: [Hidden Neuron=20] 

Table 4 shows how to classify the samples sound frames versus with four confusion matrix parameters. For 

example, Class 1, has total 2730 sound sample frames stored in sound database extracted from his voice. From 

those, the truly classified samples are the actual Class 1 predicted correctly 2567 (TP). The 64 (FP) frame samples 

are classified incorrectly.  

The 163 (FN) frame samples of actual Class 1 are predicted incorrectly by 

otherclasses.The23206(TN)framesampledneitheractualclassnorpredictedclasswhich means truly predicted 

incorrectly from the total samples26000. 

Table 4. Computed Model and Classification Accuracy of all Experiments 

No. of 

Hidden 

Nuerons 

Metrics Classes 

1 2 3 4 5 6 7 8 9 10 

  Model 

Accuracy (%) 
9.8 9.4 9.6 9.5 9.9 9.8 8.9 9.8 9.6 9.8 

  

Classification 

Accuracy (%) 99 98.4 99.1 99.3 99.8 100 98.5 99.5 99.1 99.6 

15 Precision (%) 96.9 90.9 95.1 93.9 99.2 99 95.8 97.3 94.8 98 

  Recall (%) 93.7 93.7 96 99.5 98.8 98 89.3 97.7 96 98.1 

  F1-score (%) 95.3 92.3 95.6 96.6 99 98 92.4 97.5 95.4 98.1 

                        

  Model 

Accuracy (%) 
9.9 9.6 9.6 9.4 9.9 9.8 9.2 9.8 9.6 9.9 

  

Classification 

Accuracy (%) 99.1 99 99.3 99.3 99.8 100 98.7 99.6 99 99.8 

20 Precision (%) 97.6 94.4 96.9 93.2 98.4 99 95.6 98.2 94.7 98.5 

  Recall (%) 94 96 96 99.4 99.2 98 91.6 98.2 95.9 98.8 

  F1-score (%) 95.8 95.2 96.5 96.2 98.8 99 93.6 98.2 95.3 98.7 

                        

  Model 

Accuracy (%) 
9.9 9.6 9.7 9.5 9.9 9.8 9.4 9.8 9.7 9.9 

  

Classification 

Accuracy (%) 99.2 99.2 94.5 99.4 99.8 100 98.9 99.7 99.4 99.7 

25 Precision (%) 98.1 96.1 97.4 94.6 99.4 99 95.2 98.6 96.8 98.1 

  Recall (%) 94.5 96.4 97.1 99.6 98.9 99 93.8 98.3 97.5 99.1 

  F1-score (%) 96.3 96.3 97.3 97.1 99.2 99 94.5 98.5 97.2 98.6 

Experiment Three: [Hidden Neuron=25] 

Table 4 shows how to classify the samples sound frames versus with four confusion matrix parameters. For 

example, Class 1, has total 2730 sound sample frames stored in sound database extracted from his voice. From 

those, the truly classified samples are the actual Class 1 predicted correctly 2579 (TP). The 50 (FP) frame samples 

are classified incorrectly. The 151 (FN) frame samples of actual Class 1 are predicted incorrectly by 

otherclasses.The23229(TN)framesampledneitheractualclassnorpredictedclasswhich means truly predicted 

incorrectly from the total samples26009. 
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Figure 7. Average Precision, Recall, F1-score, and overall Accuracy of all Experiments 

Here, the prototype has been tested using testing speeches that are preprocessed separately. 20 testing speeches 

are prepared for each speaker. So, one speaker has been tested 20 times with his/her respective prepared test 

speeches. 

Table 5. Real Time Testing Recognition Results 

Speakers 

Experiments 

Result AA BB BM FT MB MD MK SZ UAA YN 

Experiment 1 Correct 17 17 18 17 18 18 17 18 18 18 

Incorrect 3 3 2 3 2 2 3 2 2 2 

 

Experiment 2 Correct 18 17 18 19 19 18 17 18 19 19 

Incorrect 2 3 2 1 1 2 3 2 1 1 

 

Experiment 3 Correct 18 18 19 20 20 19 18 20 18 19 

Incorrect 2 2 1 0 0 1 2 0 2 1 

 

5. Result Discussions 

In the experiments and findings section, various findings are presented. The findings have addressed the 

problems in research question. The first research question was realizing whether ANN has promising performance 

for speaker recognition. Definitely, ANN has promising performance for speaker recognition. The indication is 

separately discussed later on. First, based on the confusion matrix on the overall accuracy is 96.0%, 96.7%, and 

97.3% respectively for the three experiments. This shows how often the classifier is correct. Second, based on 

table 4 which presented the performance in terms of TP, TN FP, and FN, the approach showed good results in 

classifying objects correctly and incorrectly. They were a few objects that are classified wrongly. Third, based on 

table 5 which presented the performance in terms of precision, recall, and F1-score, the approach showed good 

results. Finally, based on the real time testing on table 5, the trained neural network provides a promising result in 

recognition of untrained speeches of registered speakers. 

Later exploring internal factors that could improve the performance of the model and recognition. Selecting 

appropriate number of hidden layers and neurons is still a gap. There is no common standard approach, various 

approaches are listed in[12], from them rule of thumb is used in this study. So, used three different number of 

hidden neurons (15, 20, and 25) randomly. The findings obtained using this three experiments are presented 

 

OVERALL 

ACCURACY 

F1-SCORE RECALL PRECISION 

20 Hidden Neurons 

25 Hidden Neurons 
96 96.04 96.06 96.05 

15 Hidden Neurons 

96.7 96.69 96.7 96.68 

97.3 
97.38 97.37 97.34 

Average Precision, Recall, F1-score, and Overall Accuracy 
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separately. Basically, the response times also increases during training the networks when increasing the number 

of the hidden neurons. 

It is not appropriate to compare and contrast this study with the three previously done papers because to 

compare and contrast, researches should be in common background or equivalent environments. [5] and [6] used 

50 and 100 speakers directly recorded speeches respectively, in this study the speeches are collected from 

multimedia and conducted using 10 speakers. But, the good thing is in [5], the researcher presented the 

performance per number of speakers (10, 20, 30, 40, 50). For 10 speaker, he achieved 83.2% and 87% accuracy 

using VQ and GMM respectively. In the same manner in [6], the researcher presented the performance per 

number of speakers (30, 60, 90). For 30 speakers and he achieved 70% and 66% accuracy using VQ and GMM 

respectively. Therefore, based on this analysis, our study achieved better performance than the two previously 

worked papers. However, it couldn‟t mean that this modeling technique has better performance than others for 

large number of speakers because this study is conducted for only 10 speakers. 

At the end, the study introduce a novel attempt of modeling techniques for Amharic language speaker 

recognition research. And showed that ANN performs better than others on this context. 

Table 6. Comparison of this research with other related researches 

6. Conclusion 

Biometric techniques are one of the modern advances in security systems. No longer requires of entering a 

password or a PIN which is difficult to remember. Physical characters of the person are used instead. This thesis 

has presented voiceprint as one of the most promising and useful technologies fitting to the biometric security. 

The general issues and applications of speaker recognition is described in the introduction of this thesis in well 

manner. The goal of the thesis was enabling the environment to develop text-independent speaker recognition for 

Amharic language using a novel modeling technique which is not attempted for Amharic previously. 

Total of 200 sample speeches dataset has been prepared from 10 famous people public speeches. MFCC 

feature extraction and ANN modeling technique is used to meet the goal. MFCC transformed the preprocessed 

speech signals in to feature vectors so that it will be appropriate for training the neural network. The feedforward 

neural network trained the feature vectors using Levenberg Marquadrt training algorithm with training epoch 

parameters of 100. Training speech dataset has been divided into 70%, 15%, 15% for training, validation and 

testing respectively using dividerand function, and tansig activation function has been used to convert input signal 

of a neuron in to output signal. 

The study is conducted based on three experiments in changing the number of hidden neurons in to 15, 20, and 

25. The experiments have been conducted and the maximum promising findings have been obtained. The 

Author (s) 

and Year Title 

Feature 

Extraction 

Technique 

Modeling 

Technique, 

Tools Findings 

Aykefam 

Azene, 2015 Text-independent speaker 

identification system for Amharic 

language. MFCC 

VQ & 

GMM, 

MATLAB 

74.2% & 84.3% accuracy had been 

achieved for 50 speakers using VQ & 

GMMs respectively. 

  

      

For 10 speaker, he achieved 83.2% and 

87% accuracy using VQ and GMM 

respectively. 

Abrham 

Debasu, 2017 

Automatic Text Independent 

Amharic Language Speaker 

Recognition in Noisy Environment 

Using Hybrid Approaches of 

LPCC, MFCC and GFCC. 

LPCC, VQ & 

GMM, 

MATLAB 

[77.2%, 70.9%, 69%] and [75.2%, 

76.9%, 78%] 

  

  

MFCC and 

GFCC. 

  

accuracy had been achieved for 30, 60, 

90 speakers using VQ and GMMs 

respectively. 

Abrham 

Debasu, 2017 

Text Independent Amharic 

Language Dialect Recognition: A 

Hybrid Approach of VQ and 

GMM. 

MFCC 

VQ & 

GMM, 

MATLAB 

85.9% and 92.7% accuracy had been 

achieved for 25 & 100 speakers 

respectively. 

This Study 

ANN Based Amharic Language 

Speaker Recognition 

MFCC 

ANN, 

MATLAB 

96%, 96.7%, 97.3% using 15, 20, and 

25 number of hidden neurons 

respectively for 10 speakers. 



Artificial Neural Network Based Amharic Language Speaker Recognition 

 

 

 5115 

proposed modeling technique showed better performance than other techniques which are used in previously done 

researches. 

Findings addressed the whole research questions raised in the study. Findings have been discussed in 

discussion section of chapter four. Since the third research question is general question, the answer is found after 

completion of the whole research process. Its‟ implication was exploring external cause that could reduce the 

performance of the model and recognition accuracy. For the performance improvements of model as well as 

recognition accuracy, there are various external factors. 

From speech perspective; 

 Way of speech collection (direct recorded or from speech database) 

 Environment on which the speech is recorded (Noisy or Noise free) 

 Emotion and health condition of the speaker. 

 Accent of speaker. 

 From techniques perspective; 

 Appropriateness of preprocessing steps 

 Selecting of best feature extraction technique 

 Modeling using a technique that is best in discriminating. 

 Criteria to evaluate the performance. 

Every research context has its‟ own fitting requirements. It needs scientific searching in order to get 

appropriate requirements for specific research context. Still it is a big gap for the researcher to standardize 

common appropriate requirements that works for any kind of research context. Mimicking the nature is so 

difficult. 

At the end, we witnessed that the architecture selected for the neural network in this thesis, which is a pattern 

recognition feed-forward neural network with one hidden layer containing 15, 20, and 25 neurons and an output 

layer containing 10 neurons, inputted 26 coefficients vector was effective and suitable for the identification 

process. 

The study contributes a novel attempt of modeling technique for Amharic language speaker recognition. Since 

the technique achieved better performance than other modeling techniques that are used in previously worked 

papers, it gives a clue which modeling technique is best, when anyone who needs to implement practically. The 

availability of this study will create a chance for the coming researchers who have willingness in this research area 

in order to conduct comparative analysis on modeling techniques especially for Amharic language speaker 

recognition. Finally, even though it is not the objective of this study, after all it is the product of this study; the 

GUI prototype developed by the researcher could be used as a tool for the coming researchers who have 

willingness in this field of research based on MFCC and ANN. It simplifies searching for different source codes 

and incorporating all in one. 
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