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Abstract: The objective of this paper is to propose a multiple target identification technique for orthogonal frequency 

division multiplexing (OFDM) radars. First, a 2-D (range & Doppler) periodogram is obtained from the reflected signal 

through 2-D fast Fourier transform (FFT) of the received OFDM symbols. Usually, the peaks of the periodogram indicates 

the targets. Conventionally, peak search algorithms are used to find the multiple targets. In this paper, however, a 

convolutional neural network (CNN) classifier is proposed to identify the targets. The proposed technique does not need any 

additional information but the 2-D periodogram while the conventional method requires the noise variance as well as the 

periodogram. The performance is examined through computer simulation. According to the results, if the number of 

maximum identifiable targets are small, the proposed technique performs well. However, as the number increases, the 

detection accuracy decreases. In the simulation environments, the proposed method outperforms the conventional one. The 

proposed OFDM radar technique can be applied to 6G mobile communications to identify the moving targets around the 

transmitter without additional frequency resource for radar systems. 

Keywords: CNN, OFDM radar, Target detection, Multiple targets, Direct coupling, Periodogram. 

 

1. Introduction 

Many technologies and applications demand higher communications capacity and bandwidth while the 

importance of various radio-based sensing schemes is also increasing in commercial, industrial and military 

fields [1]. The shortage of the available radio spectrum has started to raise interest in merging those 

communication and sensing functionalities to share the same frequency bands [2]. 

The integrated or joint operation of communications and radar systems implies that the same waveform is 

utilized for both tasks. It is well known that orthogonal frequency division multiplexing (OFDM) waveforms are 

well suited for radio communications, providing robustness against multipath fading and high flexibility in radio 

system design and resource management. The wideband OFDM waveform also satisfies the requirements as 

radar signals for fine resolution of range and Doppler estimation. Due to those reasons, the use of OFDM-based 

radar systems is receiving growing interest [1,2]. In [3], OFDM-based radar and communication system was 

developed and verified through experiments with commercial software defined radios (SDRs). In [4] and [5], the 

convergence of mobile communications and radar systems was addressed based on the use of the LTE and 5G 

NR waveform for radar purposes. The existing works only provide the feasibility of OFDM radar by simulations 

and experiments, but the detailed algorithm for finding the moving targets is not given. Recently, applying deep 

learning techniques in radar problem is gaining growing attention. The discrimination between vehicle, cyclist 

and pedestrian by using convolutional neural network (CNN) was proposed for frequency modulated continuous 

wave (FMCW) radar [6], and similarly, a classification technique of real target, clutter, and dense multi-false 

targets is developed for radar systems based on factorized CNN in [7]. In [8,9], the CNN was used for 

enhancing the range-Doppler radar image. To the best of the authors’ knowledge, multiple target detection 

problem for OFDM radar systems has not been dealt in the existing literatures. 

In this paper, we propose multiple target identification technique for OFDM radar based on CNN. The 

procedure of the proposed technique is as follows. After cyclic prefix (CP) removal and fast Fourier transform 

(FFT), the frequency domain received signal is obtained. Then, the signal is divided by the transmitted signal to 

remove modulation effect at the received signal. The same procedure is repeated on consecutive received 

OFDM symbols and the resulting signals are stacked to form a 2-D signal. Through 2-D FFT and taking 

magnitude square, the signal is converted into a 2-D range-Doppler periodogram. Usually, the local peaks of the 

periodogram indicates the targets, and the peaks’ x-axis and y-axis values indicate the distances and speeds of 

the targets, respectively. However, identifying the moving targets is challenging because of the direct coupling 

components between the transmitter and the receiver antennas. Conventional techniques find the local maxima 

first, and collect those bigger than a certain threshold. Then, the peaks close to zero Doppler frequency are 
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considered as direct coupling components and removed. The optimal threshold, however, requires the 

information on signal to noise ratio (SNR) and noise variance, which is difficult to obtain. 

In the proposed technique, the number of targets is found via a CNN classifier, one of famous deep learning 

techniques [10]-[13]. Specifically, the 2-D periodogram is inputted to the proposed CNN and the output is the 

predicted number of targets. No information other than the periodogram is required. We propose two kinds of 

CNN inputs. The first one is one 2-D periodogram for the targets, and the second one is two 2-D periodograms. 

In the latter, one signal is a current 2-D periodogram for the target, and the other is for the direct coupling 

components only. This periodogram can be obtained only when there is no targets. For example, if the OFDM 

radar system is equipped in a base station, and it collects the periodogram at dawn, only direct coupling 

components can exist in the periodogram. The performance of the proposed technique is examined through 

computer simulation. According to the results, the proposed method is more than 4 dB superior to the 

conventional method in the SNR range of -20 to 10 dB. If two periodograms are used for the CNN input, over 2 

dB further improvement can be achieved. 

2. System and signal model 

OFDM radar system model considered in this paper is shown in Figure 1. The m-th transmitted signal vector 

is denoted by 𝒄𝑚 = [𝑐0,𝑚, 𝑐1,𝑚, ⋯ 𝑐𝑁−1,𝑚]𝑇where 𝑁 is FFT size. In general, 𝑐𝑛,𝑚 is a complex symbol 

generated via channel coding and digital modulation of the transmitted information. However, those processing 

is not important for radar signal processing and omitted here for simplicity. The vector signal 𝒄𝑚 is converted 

into a time domain signal through inverse FFT (IFFT) and transmitted after inserting a CP. The reflected signal 

from the targets is received and the CP is removed. Then, it is converted into frequency domain signal via FFT. 

The FFT output is denoted by 𝒇𝑚 = [𝑓0,𝑚, 𝑓1,𝑚, ⋯ 𝑓𝑁−1,𝑚]𝑇. 𝒄𝑚 and 𝒇𝑚are different due to the time delay and 

the Doppler frequency of the reflected signal. By comparing and processing 𝒄𝑚 and 𝒇𝑚, the targets are 

identified. 

 

 
Figure 1 System model 

 

If a total𝑀OFDM symbols are transmitted, the transmitted and the received signals are represented as (1) and 

(2), respectively. 

𝑪 = [

𝑐0,0 𝑐0,1 ⋯ 𝑐0,𝑀−1

𝑐1,0 𝑐1,1 ⋯ 𝑐1,𝑀−1

⋮ ⋮ ⋱ ⋮
𝑐𝑁−1,0 𝑐𝑁−1,1 ⋯ 𝑐𝑁−1,𝑀−1

]                     (1) 

𝑭𝑅 =

[
 
 
 

𝑓0,0 𝑓0,1 ⋯ 𝑓0,𝑀−1

𝑓1,0 𝑓1,1 ⋯ 𝑓1,𝑀−1

⋮ ⋮ ⋱ ⋮
𝑓𝑁−1,0 𝑓𝑁−1,1 ⋯ 𝑓𝑁−1,𝑀−1]

 
 
 

                     (2) 

Every row of the matrix corresponds to the data on one subcarrier, whereas every column corresponds to the 

data on one OFDM symbol. It is assumed that the following parameters are known. 

 The subcarrier space is 𝛥𝑓, and therefore the OFDM symbol duration is 𝑇 = 1/𝛥𝑓. 

 The duration of the CP is 𝑇𝐺 . 

 The sampling rate after the IFFT is 𝑓𝑆 and 𝛥𝑓 = 𝑓𝑆/𝑁 

 The carrier frequency is 𝑓𝐶 

While transmitting, the receiver is active to pick up the reflected signal. It is important that the receiver is 

exactly synchronous to the transmitter, i.e., there must be no time or frequency offset. The received signal can be 

written as 

(𝑭𝑅)𝑘,𝑙 = ∑ 𝑏ℎ

𝐻𝑡−1

ℎ=0

(𝑪)𝑘,𝑙𝑒
𝑗2𝜋𝑇𝑓𝐷,ℎ𝑙𝑒−𝑗2𝜋𝜏ℎ𝛥𝑓𝑘𝑒𝑗𝜙ℎ  

+∑ 𝑏𝑖
𝐻𝑑−1
𝑖=0

(𝑪)𝑘,𝑙𝑒
−𝑗2𝜋𝜏𝑖𝛥𝑓𝑘𝑒𝑗𝜙𝑖 + (�̃�)

𝑘,𝑙
              (3) 
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where (𝑨)𝑘,𝑙represents the (𝑘, 𝑙) -th element of the matrix 𝑨, and 𝐻𝑡  denotes the number of reflecting targets. 

(ℎ + 1) -th target has a distance 𝑑ℎ which translates into a delay 𝜏ℎ(= 𝑑ℎ/𝑐0) where 𝑐0is the speed of light. 

𝑓𝐷,ℎ is the Doppler frequency and 𝜙ℎ is an unknown phase offset. The attenuation 𝑏ℎ can be approximated by 

the point-scatter model [3]. 

𝑏ℎ = √
𝑐0𝜎𝑅𝐶𝑆,ℎ

(4𝜋)3𝑑ℎ
4𝑓𝐶

2                             (4) 

where 𝜎𝑅𝐶𝑆 is the radar cross section. The second summation at the right hand side of (3) represent the direct 

coupling components, and the number of components is 𝐻𝑑. Direct coupling components are caused by direct 

coupling between Tx and Rx antennas or circuits. Therefore, the time delays or equivalent distances of the direct 

coupling components are close to zero. To simulate such direct coupling, the equivalent distances are generated 

following the Weibull probability density function (PDF): 

𝑓(𝑑𝑖; 𝛼, 𝛽) =
𝛼

𝛽
(

𝑑𝑖

𝛽
)

𝛼−1

𝑒−(𝑑𝑖/𝛽)𝛼                      (5) 

and the equivalent radar cross sections are generated uniformly random. The all direct coupling components 

have zero Doppler frequency. The matrix 𝒁 ∈ 𝐶𝑁×𝑀 is white Gaussian noise. To remove the transmitted 

symbols in 𝑭𝑅, element-wise division is performed to yield. 

 

(𝑭)𝑘,𝑙 ≜ (𝑭𝑅)𝑘,𝑙/(𝑪)𝑘,𝑙 

= ∑ 𝑏ℎ
𝐻𝑡−1
ℎ=0 𝑒𝑗2𝜋𝑇𝑂𝑓𝐷,ℎ𝑙𝑒−𝑗2𝜋𝜏ℎ𝛥𝑓𝑘𝑒𝑗𝜙ℎ + ∑ 𝑏𝑖

𝐻𝑑−1
𝑖=0 𝑒−𝑗2𝜋𝜏𝑖𝛥𝑓𝑘𝑒𝑗𝜙𝑖 + (𝒁)𝑘,𝑙     (6) 

where (𝒁)𝑘,𝑙 = (�̃�)𝑘,𝑙/(𝑪)𝑘,𝑙. The radar problem is detection and identification of two sinusoid. The first 

exponential inside the summation in (5) contains the Doppler frequency and the second exponential has the time 

delay or distance. The radar cross section can be found from the magnitude. To separate and estimate the 

sinusoids for the targets, 2-D periodogram (magnitude square of discrete Fourier transform (DFT)) is used: 

(𝑹)𝑛,𝑚 =
1

𝑁𝑀
|∑ ∑ (𝑭)𝑘,𝑙(𝑾)𝑘.𝑙𝑒

−𝑗2𝜋(
𝑘𝑛

𝑁𝐹𝐹𝑇
+

𝑙𝑚

𝑀𝐹𝐹𝑇
)𝑀−1

𝑙=0
𝑁−1
𝑘=0 |

2

            (7) 

where 𝑹 ∈ 𝐶𝑁𝐹𝐹𝑇×𝑀𝐹𝐹𝑇 is 2-D periodogram of 𝑭 and DFT size is 𝑁𝐹𝐹𝑇 × 𝑀𝐹𝐹𝑇 . Usually, 𝑁𝐹𝐹𝑇  and𝑀𝐹𝐹𝑇are 

chosen as integer multiples of 𝑁and𝑀to improve estimation resolution. 𝑾is a window matrix generated by 

𝑾 = 𝒘𝑁𝒘𝑀
𝑇 , 𝒘𝑁 ∈ 𝑅𝑁×1, 𝒘𝑀 ∈ 𝑅𝑀×1                   (8) 

where 𝒘𝑁 and 𝒘𝑀 are one-dimensional window vectors and we uses the Hanning window. If the target’s 

range and Doppler frequency are limited within certain ranges, only a cropped region of periodogram 𝑹is useful 

for target detection. Detecting and identifying targets corresponds to the detection of peaks in the periodogram. 

If a peak is found at indices (�̂�, �̂�), the target distance is �̂� =
𝑐0�̂�

2𝛥𝑓𝑁𝐹𝐹𝑇
 and the relative speed is �̂� =

𝑐0�̂�

2𝑓𝐶𝑇𝑀𝐹𝐹𝑇
. 

Due to the subcarrier spacing 𝛥𝑓 and the OFDM symbol duration 𝑇, there are maximum unambiguous ranges 

and relative velocities as follows  

|𝑑𝑚𝑎𝑥||
𝑐0

2𝛥𝑓
|                              (11) 

|𝑣𝑚𝑎𝑥||
𝑐0

2𝑓𝐶𝑇
|                             (12) 

If the subcarrier spacing and the OFDM symbol duration are designed to be small enough, the maximum 

unambiguous values can cover the target’s distance and speed.  

3. Proposed method  

This paper focuses on detecting the number of the targets. First, we describe the conventional method and 

then the proposed method is explained. 

3.1 Conventional method  

 
Figure 2 Block diagram of conventional target detection 

As shown in Figure 2, the conventional method find all the local maxima first. Among them, those ones 

above a certain threshold are selected. In this procedure, only big peaks remain and small peaks are discarded. 

However, the big direct coupling components still remain and further process is required to remove them. One 

simple way is to neglect peaks around zero Doppler frequency. After removing direct coupling components, the 

remaining peaks are considered as the targets. Therefore, the number of targets is the number of remaining peaks. 
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However, during the zero Doppler removal procedure, the targets whose relative speed is close to zero, may also 

be discarded and not be detected as targets. This causes detection errors. In addition, since the optimal threshold 

is a function of SNR and noise variance of the reflected signal, determining optimal threshold in real field 

applications is rather difficult. 

3.2 Proposed method  

The proposed method predicts the number of target directly from the periodogram through CNN classifier. 

CNN is a famous deep learning technique that shows excellent performance especially in image classification. 

As shown in Figure 2, the periodogram can be an image and the radar problem is to find the peaks in the image. 

Therefore, it is expected that the CNN is very suitable for our radar problem. Figure 3 shows the block diagram 

of the proposed CNN classifier. The input signal is a 200x200 cropped periodogram. As mentioned previously, if 

the target’s maximum range and speed is limited, we may search only a cropped region. As search range 

increases, the crop size also increases. 

 

 
Figure 3 Block diagram of proposed CNN for target detection 

 

The proposed CNN classifier is composed of 6 convolutional layers and 1 fully connected layer. The 

convolution filter size is 5x5 for every convolutional layer and the channel (or kernel) size is increased from 16 

to 256. Each convolution layer also has batch normalization layer, Relu layer and max pooling layer. The last 

convolution layer’s output is connected to a fully connected layer, and the final number of output is 𝐻𝑡 + 1. 

This CNN classifier can detect maximum 𝐻𝑡 + 1 targets, and the possible classes are ‘0’ to ‘𝐻𝑡 + 1’. ‘0’ means 

no target exist. The input or output of the CNN can be changed according to the OFDM signals, 2-D DFT size, 

and the detection range.  

If the periodogram for the direct coupling components is available, the detection performance can be further 

improved. For example, if the radar system is equipped in a base station and is fixed in one place, the direct 

coupling components can be measured in the early morning when no target exists. To utilize this extra 

periodogram in the radar problem, we increase the input size of the CNN in Figure 3 to 200 x 200 x 2. Thus, two 

200 x 200 periodograms become the inputs of the CNN. Beside the input size, the rest of the CNN structure is 

the same. Figure 4 shows an example input of this scenario. The left periodogram is from the direct coupling 

components and the right periodogram is normal periodogram containing both the targets and the direct 

coupling components. 

The proposed CNN classifier does not need SNR estimation nor noise variance estimation, and also, any 

specific peak search algorithm is not needed. Hence, it is simpler to use in practice than the conventional 

technique[14-16]. 

 
Figure 4 Periodogram examples of direct coupling only (left) and target plus direct coupling (right) 

 

4. Simulation result 

4.1 Simulation environments  

Performance of the proposed CNN is examined through computer simulation using MATLAB. In the 

simulation, 𝑓𝑆 = 122.88𝑀𝐻𝑧, 𝑁 = 4096, 𝑀 = 64, 𝑁𝐹𝐹𝑇 = 4096, and 𝑀𝐹𝐹𝑇 = 256. The length of CP is 296 

and hence the symbol duration is 𝑇 = 35.74𝜇𝑠. The subcarrier spacing is 𝛥𝑓 = 30𝑘𝐻𝑧. By considering 200 x 

200 cropped periodogram, the maximum identifiable distance and speed are 244 m and 211 km/h, respectively. 

To expand the detection range, we can just increase the cropped region. Among the total 4096 subcarriers, only 

1,284 subcarriers are used and the signal bandwidth is 40 MHz. The carrier frequency is 𝑓𝐶 = 28𝐺𝐻𝑧.  
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The maximum number of target, 𝐻𝑡 , is 2, 4, and 8. At each iteration, the number of target is selected 

randomly from 0 to 𝐻𝑡 . For modeling the direct coupling components in (3), the number of direct coupling 

components is 20 (𝐻𝑑), and the parameters of the Weibull distribution are 𝛼 = 1 and 𝛽 = 1 in (5). Thus, 20 

direct coupling components are generated with random effective distances, and in Figure 3, you can see the 

direct coupling components generated in this way. Due to the characteristic of the Weibull distribution, the 

effective distances are concentrated near zero. 

4.2 Training the CNN classifier  

For training the CNN classifier in Figure 3, total 50,000 periodograms are generated and used. The reflected 

target signals have random SNR from -20 dB to +30 dB. The mini batch size is 100 and training is performed 

for 20 epochs. Therefore, the total number of parameter updates is 10,000. The parameter optimization 

algorithm is Adam with learning rate 0.001. We will call ‘T’ for one input CNN (target), and ‘T+D’ for two input 

CNN (target + direct coupling). The parameters for each layer are summarized in Table 1 for ‘T’. The total 

number of learnable parameters is 4,374,401+8193*𝐻𝑡 . For ‘T+D’, since the input size increases to 200 x 200 x 

2, the total number of parameters also increases to 4,374,801+8193*𝐻𝑡 . 

 
Figure 5 Learning curves for ‘T’ when (a) 𝑯𝒕 = 𝟐 (b) 𝑯𝒕 = 𝟒 (c) 𝑯𝒕 = 𝟖 

 
Figure 6 Learning curves for ‘T+D’ when (a) 𝑯𝒕 = 𝟐 (b) 𝑯𝒕 = 𝟒 (c) 𝑯𝒕 = 𝟖 

Figures 5 and 6 show the learning curves for ‘T’ and ‘T+D’, respectively. The maximum possible numbers of 

the targets, 𝐻𝑡 , are 2, 4, and 8. As shown in the figures, as 𝐻𝑡  increases convergence time becomes longer. The 

reason is that as 𝐻𝑡  increases, so do the learnable parameters. At the end of the iteration, the losses are close to 

zero, which indicates that the training is completed well. Comparing ‘T’ and ‘T+D’, convergence speed of 

‘T+D’ is slightly faster than ‘T’. 

4.3 Performance comparison 

For performance evaluation of the proposed technique, new test signals are generated. For each periodogram, 

the number of targets is generated randomly from 0 to 𝐻𝑡 , but the SNRs of the targets are the same. The SNR is 

varied from -20 dB to +10 dB with 3 dB step. At each SNR, 10,000 periodograms are generated. The Figures 7 

and 8 show the accuracies of the proposed technique for ‘T’ and ‘T+D’ respectively. As the SNR increases, the 

accuracy also improves. 𝐻𝑡 = 2 shows the best performance, i.e., the number of maximum targets has a big 

impact on accuracy. For the case ‘T’, the accuracy is below 0.9 at best. When 𝐻𝑡 = 8, the accuracy is only 0.45 

at SNR=10 dB. In contrast, ‘T+D’ shows much better performance. When 𝐻𝑡 = 2, the accuracy at SNR=10 dB 

shows almost 1. Even for 𝐻𝑡 = 4 and 𝐻𝑡 = 8, the performance is much better than ‘T’. Those results indicate 

that if the periodogram of the direct coupling components is used, much better target detection performance can 

be expected. 

 



Multiple target detection for OFDM radar based on convolutional neural network 

549 

 
Figure 7 Accuracy performance for ‘T’ 

 
Figure 8 Accuracy performance for ‘T+D’ 

 

6. Acknowledgements 

 

This work was supported by Institute of Information & communications Technology Planning & Evaluation 

(IITP) grant funded by the Korea government(MSIT) (No.1711081183, Development of Communication-

Sensing Converged B5G Millimeter Wave System)  

 

7. References 

1. Strum C, Pancera E, Zwick T, Wiesbeck W. A novel approach to OFDM radar processing. Radar 

Conference; 2009 May 4-8; Pasadena, CA, US. IEEE; 2019. p. 1-4. 

2. Strum C, Zwick T, Wiesbeck W, Braun M. Performance verification of symbol-based OFDM radar 

processing. Radar Conference; 2010 May 10-14; Washington, DC, US. IEEE; 2010. p. 60-63. 

3. Braun M, Muller M, Fuhr M, Jondral FK. A USRP-based testbed for OFDM-based radar and 

communication system. Proceedings of 22nd Virginia Tech Symposium on Wireless Communications; 

2012 June; 1-6. 

4. Evers A, Jackson JA. Analysis of an LTE waveform for radar applications. Radar Conference; 2014 May 

19-23; Cincinnati, OH, US. IEEE; 2014. p.0200-5. 

5. Barneto CB, Riihonen T, Turunen M, Anttila L, Fleischer M, Stadius K, et al. Full-duplex OFDM radar 

with LTE and 5G NR waveforms: challenges, solutions, and measurements. IEEE Transactions on 

Microwave Theory and Techniques. 2019;67:4042-54. 

6. Gao T, Lai Z, Mei Z, Wu Q. Hybrid SVM-CNN classification technique for moving targets in automotive 

FMCW radar system. 11th International Conference on Wireless Communications and Signal Processing. 

2019 Oct 23-25; Xi’an, China. IEEE; 2019. p. 1-6. 



Jae-Woong Choi and Eui-Rim Jeong* 

550 

7. Heng L, Xiao L, Zeng LI, Jian LI. Radar target discrimination with F-CNN: fewer parameters and higher 

accuracy. 3rd International Conference on Signal and Image Processing. 2018 July 13-15; Shenzhen, 

China. IEEE; 2018. p.499-503. 

8. Dai Y, Jin T, Song Y, Du H, Zhao D. CNN-based multiple-input multiple-output radar image enhancement 

method. Journal of Engineering. 2019;2019:6840-4. 

9. Gao J, Deng B, Qin Y, Wang H, Li X. Enhanced radar imaging using a complex-valued convolutional 

neural network. IEEE Geoscience and Remote Sensing Letters. 2019;16:35-9. 

10. Joung JG, Jung SH, Chung SM, Jeong ER. CNN-based Tx-Rx distance estimation for UWB system 

localization. Electronics Letters. 2019;55:938-40. 

11. Zhao ZQ, Zheng P, Xu ST, Wu X. Object detection with deep learning: a review. IEEE Transactions on 

Neural Networks and Learning Systems. 2019;30:3212-32. 

12. Wu X. Sahoo D. Hoi SC. Recent advances in deep learning for object detection. Neurocomputing. 

2020;396:39-64. 

13. Wang L, Tang J, Liao Q. A study on radar target detection based on deep neural networks. IEEE Sensors 

Letters. 2019;3:1-4. 

14. Bhoi, A. K., Mallick, P. K., Kumar, S. S., & Sherpa, K. S. Brain tumor detection: a comparative analysis of 

edge detection techniques. International Journal of Applied Engineering Research, 10(44), 2015. 

15. Satapathy, S. K., Mishra, S., Sundeep, R. S., Teja, U. S. R., Mallick, P. K., Shruti, M., & Shravya, K. 

(2019). Deep learning based image recognition for vehicle number information. International Journal of 

Innovative Technology and Exploring Engineering, 8, 52-55. 

16. Satapathy, S.K., Mishra, S., Mallick, P.K. et al. ADASYN and ABC-optimized RBF convergence network 

for classification of electroencephalograph signal. Pers Ubiquit Comput (2021). 

https://doi.org/10.1007/s00779-021-01533-4 


