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Abstract: In this paper, analysis of nonlinear partial differential equations on velocities and temperature with 

convective boundary conditions are investigated. The governing partial differential equations are transformed into 

ordinary differential equations by applying similarity transformations. The system of nonlinear differential equations 

are solved using Homotopy Analysis Method (HAM). An analytical solution is obtained for the values of Magnetic 

parameter M2, Prandtl number Pr, Porosity parameter 𝜆, Radiation parameter R, Biot number Bi, Stretching 

parameter c. The present results are compared with the numerical result [1], showing good agreement with each 

other and with different parameters. The influence of the skin friction and local Nusselt number for different 

parameters are discussed. The effects of various parameters on velocity and temperature profiles are presented 

graphically. 

Keywords: Mixed Boundary Conditions, Similarity Transformations, Homotopy Analysis Method, Skin friction 

Co-efficient, SCILAB 

 

1.  INTRODUCTION 

        S. Shaw et.al [1] explained the study of Magnetohydrodynamic (MHD) flow 3D casson fluid. It has many 

industrial applications, such as purification of crude oil, Magnetohydrodynamic electrical power generation [1]. 

Many authors [2-5] have been investigated experimentally and numerically for the MHD flow of Casson fluid with 

convective boundary conditions..    

          The main objective of this paper is to investigate the analytical solution of boundary layer flow of electrically 

conducting Casson fluid past. The  

 

 

 

 

system of nonlinear partial differential equations has been diminished into the system of nonlinear ordinary 

differential equation [6-8]. S. Shaw et.al [1] presented the numerical solution of 3D Casson fluid flow using Spectral 

relaxation method. Still now there is no analytical results for 3D Casson fluid flow. In this manuscript, the coupled 

nonlinear equations are solved using Homotopy analysis method [9-11]. Analytical results are compared with 

Previous result [1]. Moreover analytical solution of Skin friction Co-efficient and local Nusselt number are given. In 

the HAM, the auxiliary parameter h converge the obtained analytical solution. Differential sensitivity analysis are 

graphically represented for different parameters. It shows that the behaviors of each of the parameter. 

 

2. MATHEMATICAL FORMULATION AND ANALYSIS OF THE PROBLEM 

            

 

Fig.1:  Physical model and coordinate [1] 

The conservation equation of Continuity, momentum and energy equation is as follows [1]: 
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where 𝑢, 𝑣 and 𝑤 denote the velocity components in the 𝑥, 𝑦 and 𝑧 – directions, respectively.  

For Eqs.(2.1) – (2.4), the boundary conditions are[1]: 

At  𝑧 = 0   

𝑢 = 𝑈𝑤(𝑥) = 𝑎𝑥    
𝑣 = 𝑉𝑤(𝑥) = 𝑏𝑦    
 𝑤 = 0   

 −𝐾
𝜕𝑇

𝜕𝑧
=  ℎ𝑓(𝑇𝑓 − 𝑇)                             (2.5)                                                                                             

At  𝑧 → ∞ 

 𝑢 → 0  

 𝑣 → 0   
 𝑇 →  𝑇∞                                                  (2.6) 

We introduce the similarity transformations [1]: 

𝑢 = 𝑎𝑥𝑓′(𝜂), 𝑣 = 𝑏𝑦𝑔′(𝜂), 𝑤 =  −√𝑎𝑣 [ 𝑓(𝜂) + 𝑐𝑔(𝜂)], 𝜂 = √
𝑎

𝑣
 𝑧,     𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑓−𝑇∞
                          (2.7)  

By using Eq.(2.7), Eq.(2.1) is clearly satisfied and Eqs.(2.2) to (2.6) become [1]: 

(1 +
1

𝛽
)  𝑓′′′ − (𝑓′)2 − (𝑓 + 𝑐𝑔) 𝑓′′ − (𝑀2 + 𝜆)𝑓′ = 0                                                               

                                                               (2.8) 

(1 +
1

𝛽
)  𝑔′′′ − (𝑔′)2 − (𝑓 + 𝑐𝑔) 𝑔′′ − (𝑀2 + 𝜆)𝑔′ = 0                                                      

                                                               (2.9) 
(1 + 𝑅) 𝜃′′ + 𝑃𝑟(𝑓 + 𝑐𝑔) 𝜃′ = 0                  (2.10)                                                                                                                                      

where 𝑀2 =  
𝜎 𝐵0

2

𝜌𝑎
  is the magnetic parameter, 𝑃𝑟 =  

𝜌𝜈𝑐𝑝

𝑘
 is the Prandtl number, 𝜆 =  

𝑣

𝑎𝑘𝑝
  is the porosity parameter, 

𝑅 =  
16𝜎𝑇∞

3

3𝑘𝑘∗  is the radiation parameter, 𝐵𝑖 =
ℎ𝑓

𝑘
( √

𝑣

𝑎
 ) is the Biot number and 𝑐 = 𝑏/𝑎 is the stretching parameter.   

The boundary conditions are 

 𝜂 = 0 ∶   𝑓(0) = 0, 𝑔(0) = 0, 𝑓′(0) = 1, 𝑔′(0) = 𝑐, 𝜃′(0) = −𝐵𝑖(1 − 𝜃(0))                              (2.11) 

𝜂 =  ∞ ∶   𝑓′(∞) = 0, 𝑔′(∞) = 0, 𝜃(∞) = 0 (2.12)  

                                                                         

3. USING HOMOTOPY ANALYSIS METHOD (HAM) ANALYTICAL EXPRESSION OF VELOCITIES   

AND TEMPERATURE 
           The homotopy analysis method is a semi-analytical technique to solve nonlinear problems. This method was 

introduced by Liao [12]. The basic concept of this method [13,14]. Using the HAM, the approximate analytical 

expressions are given as follows: 
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4. ANALYTICAL EXPRESSION FOR SKIN FRICTION CO-EFFICIENT AND LOCAL NUSSELT 

NUMBER 
     The expressions for skin friction coefficient is given by [1]: 

𝑅𝑒𝑥
1/2
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1
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where 𝐶𝑓𝑥 =
𝜏𝑤𝑥

𝜌𝑢𝑤
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𝐶𝑓 is the skin friction, 𝐶𝑓𝑥 and 𝐶𝑓𝑦  are skin friction along the 𝑥- and 𝑦-directions 

𝜏𝑤𝑥 and 𝜏𝑤𝑦   are defined in [1] 

       The analytical expressions for skin friction co-efficient along the 𝑥 and 𝑦 direction are represented as follows:   
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The dimensionless local Nusselt number is [1]: 

𝑅𝑒𝑥
− 1/2 

 𝑁𝑢 = − 𝜃′(0)                                      (4.4)                                                                     
where 𝑅𝑒𝑥 = 𝑢𝑥(𝑥) 𝑥/𝑣 is defined in [1].  

The analytical expression for local Nusselt number is   
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− 1/2 

 𝑁𝑢 = −
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√𝑠
+

ℎ(𝑐2+2)(1+𝑐)

6𝑠√𝑠
 , 𝑠 =

𝑀2+𝜆

𝑘
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5.  RESULT AND DISCUSSION 
         Eqs.(3.1) to (3.3) represent the analytical expression of velocities and temperature. In the present section, we have discussed 

the velocities profile and temperature for various values of  physical parameters 𝑀, 𝜆, 𝛽, 𝐵𝑖 , 𝑃𝑟 , 𝑅, 𝐶. The well known Homotopy 

analysis method (HAM) is used to solve system of coupled similar Eqs. (2.8) to (2.10). The obtained  analytical results are 

compared with the previous and  numerical result in Figs. 2 to 12 for different values of parameters. It gives good agreement with 

the previous result and numerical result [1]. 

     The velocity of the fluid for different parameters are presented in the graphs Figs.2 to 9. Fig.2 shows the influence of the 

velocity 𝑓′(𝜂) decreases with increases of casson parameter 𝛽. From Fig.3, it is inferred that the velocity decreases with 

increases of parameter. Fig.4 and 5 have been plotted to demonstrate the effects of parameters M and C on the velocity profiles. 

It is depicted that as M and C increases the velocity 𝑓′(𝜂) of the fluid decreases. In Fig.6 and 7, depict to analyze the velocity 

profile for various values 𝛽 and 𝜆 . It is noticed that the 𝑔′(𝜂) increases with  decreases of  𝛽 and 𝜆  parameter. Fig.8 and 9 are 

displayed to show the influence of M and C on the velocity profiles. It is observed that as M increases the velocity 𝑔′(𝜂) of the 

fluid decreases. It is clear that the velocity 𝑔′(𝜂) increases with increases of the parameter C. The temperature of the different 

parameters are presented through Figs.10 to 12. From Fig.10, It is  depicted to examine the effects of 𝑃𝑟 with temperature. It is 

clear that the temperature 𝜃(𝜂) decreases with increases of the parameter 𝑃𝑟. In Fig.11, It is revealed that the influence of 

temperature profile for various values 𝐵𝑖. This is because the temperature 𝜃(𝜂) increases with also increases of the parameter 𝐵𝑖. 

From Fig.12 It is clear that the parameter R increases with temperature 𝜃(𝜂) also increases.   

           The skin friction co-efficient and local Nusselt number are presented in Figs.13 to 15. From Fig.13, There is prominent 

that the skin friction co-efficient in 𝑥 direction increases when M also increases. It is noticed that when C increases the skin 

friction co-efficient 𝑥 direction decreases. In Fig.14, It illustrate that the skin friction co-efficient 𝑦 direction increases when the 

parameters M and C also increases.  From Fig.15, Indicated the local Nusselt number decreases when M increases. It is evident 

that the parameter C increases with local Nusselt number also increases.  

    

Determining the validity region of h  

     Eqs.(3.1) and (3.2) contains so called convergence control auxiliary parameter h. It plays a vital role for converging the 

solution series. In order to obtain the h region, the analytical solution is independent of h. To study the influence of h on the 

convergence of solution, the h curves of f and g are plotted in Fig.16. This figure clearly indicates that the valid region of h is 

about ( – 0.1 ).     

 

Differential Sensitivity Analysis 
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       Eq.(3.1) represent the new approximate analytical expression for the fluid 𝑓 in terms of the parameters 𝑀, 𝐶, 𝛽, 𝜆 

differentiating the fluid partially with respect to determined. The percentage of change in fluid with respect to  𝑀, 𝐶, 𝛽, 𝜆 are 

5.28%, 0%, 87.69%, 8.83% respectively. From this, it is evident that parameter 𝛽 have more impact on fluid. These parameter are 

highly sensitive parameter. The parameter 𝜆 is called as moderately sensitive parameter as it has 8.83% of influence over fluid . 

The remaining two parameters M and C are less sensitive and zero sensitives. The spread sheet analysis of these result is 

described in Fig.17. 

       Eq.(3.2) represent the approximate analytical expression for the fluid 𝑔 in terms of the parameters 𝑀, 𝐶, 𝛽, 𝜆 differentiating 

the fluid partially with respect to determined. The percentage of change in fluid with respect to  𝑀, 𝐶, 𝛽, 𝜆 are 5.06%, 18.18%, 

69.99%, 7.54% respectively. From this, it is inferred that parameter 𝛽 have high impact on fluid. These parameter are greatest 

sensitive parameter. The parameter C is called as moderately sensitive parameter as it has 18.18% of  influence over fluid . The 

remaining two parameters M and 𝜆 are lowest sensitive. The fluid analysis of these result is described in Fig.18. 

        Eq.(3.3) represent the approximate analytical expression for the temperature  𝜃 in terms of the parameters  𝑀, 𝐶, 𝛽,
𝜆,  𝑃𝑟 ,  𝐵𝑖 , 𝑅 differentiating the temperature partially with respect to determined. The percentage of change in temperature with 

respect to  𝑀, 𝐶, 𝛽, 𝜆, 𝑃𝑟 , 𝐵𝑖 , 𝑅 are 82.92%, 0%, 124.37%, 20.73%, 0%, 1.95%, 141.82% respectively. From this, it is revealed 

that parameter R have sorely impact on temperature. These parameter are biggest sensitive parameter. The parameter 𝛽 is called 

as nearest sensitive parameter as it has 124.37% of  influence over temperature. The parameter M is said to center sensitive 

parameter as it has 82.92% of examine over temperature. The remaining four parameters 𝜆,  𝐵𝑖 and 𝐶, 𝑃𝑟 are smallest and zero 

sensitives. The temperature analysis of these result is described in Fig.18. 

 

6.  CONCLUSION 
           In this paper, we have investigated Analytical solution of Velocities and Temperature fields using Homotopy Analysis 

Method. By introducing the similarity transformation we have solved the coupled differential equations using Homotopy analysis 

method (HAM). We compare the present result with the numerical result and previous result, we get a very good agreement. 

Moreover, effects for various values of emerging parameters are discussed for velocities 𝑓′(𝜂), 𝑔′(𝜂) and temperature 𝜃(𝜂). The 

magnitude of the skin friction coefficients in both 𝑥 and 𝑦-directions are obtained. It is demonstrated that the obtained results are 

in good agreement with numerical result and previous result [1]. 

 
Fig.2: Plot of dimensionless velocity 𝑓′(𝜂) various 𝜂 at different values of 𝛽   

    
Fig.3: Plot of dimensionless velocity 𝑓′(𝜂) various 𝜂 at different values of 𝜆   
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Fig.4: Plot of dimensionless velocity 𝑓 ′(𝜂) various 𝜂 at different values of  𝑀       

 

 
Fig.5: Plot of dimensionless velocity 𝑓′(𝜂) various 𝜂 at different values of 𝐶    

 

 

Fig.6: Plot of dimensionless velocity 𝑔′(𝜂) various 𝜂 at different values of 𝛽                

 

   Fig.7: Plot of dimensionless velocity 𝑔′(𝜂) various 𝜂 at different values of 𝜆   
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Fig.8: Plot of dimensionless velocity 𝑔′(𝜂) various 𝜂 at different values of  𝑀 

 

 
  Fig.9: Plot of dimensionless velocity 𝑔′(𝜂) various 𝜂 at different values of 𝐶   

 

 
Fig.10: Plot of dimensionless temperature 𝜃(𝜂) various 𝜂 at different values of  𝑃𝑟 

 

 
 Fig.11: Plot of dimensionless temperature 𝜃(𝜂) various 𝜂 at different values of 𝐵𝑖   



Turkish Journal of Computer and Mathematics Education              Vol.12 No.1S (2021), 691-700 

Research Article 

697 

 

  Fig.12: Plot of dimensionless temperature 𝜃(𝜂) various 𝜂 at different values of  𝑅    

 

Fig.13: The graph of skin friction coefficient 𝑅𝑒𝑥
1/2

 𝐶𝑓𝑥 for various physical parameters.  

 

 

 
   Fig.14: The graph of skin friction coefficient 𝑅𝑒𝑥

1/2
 𝐶𝑓𝑦  for various physical parameters. 
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    Fig.15: The graph of local Nusselt number  𝑅𝑒𝑥

−1/2
 𝑁𝑢 for various physical parameters.  

 

 
                       Fig.16: Validity region of ℎ curve of 𝑓 and  𝑔.  

 
Fig.17: Sensitivity analysis for evaluating the influence of the concentration of fluid distribution in Eq.(3.1). 

 

 

Fig.18: Sensitivity analysis for evaluating the influence of the concentration of fluid distribution in Eq.(3.2). 

 
Fig.19: Sensitivity analysis for evaluating the influence of the concentration of temperature distribution in Eq.(3.3). 

NOMENCLATURE 
Parameters Description  

β Casson fluid parameter   

B Magnetic  

T Fluid temperature  

ν Kinematic viscosity 
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Kp Permeability 

k Thermal conductivity 

ρ Density of the fluid  

cp Heat capacitance  

M2 Magnetic parameter  

λ Porosity parameter  

Pr Prandtl number  

R Radiation parameter  

Bi Biot number  

c Stretching parameter   

u, v, w Velocity components along x, y and z directions 

Uw and Vw Stretching velocities in the x and y directions  

hf Convective heat transfer coefficient  

Tf Convective fluid temperature  

Cf Skin friction  

Cfx and Cfy  Skin friction along the x and y directions 

τwx  and τwy  Wall shear stress along x and y directions  

Rex Local Reynolds number  

 

APPENDIX B 

Using MATLAB program numerical solution of Eqs.(2.8)-(2.10). 
function sol = ex8 

ex8init=bvpinit (linspace(0,8,8), 

[0 1 0 0 0.5 0 -2.5 0]); 

sol= bvp4c(@ex8ode,@ex8bc,ex8init); 

end 

function dydx = ex8ode(x,y) 

N=1.0; 

p=5.0; 

b=0.5; 

M=2; 

c=0.5; 

R=0.3; 

dydx=[y(2) 

    y(3) 

((b/1+b)*(y(2)*y(2)+(y(1)+c*y(4))*y(3)+(M*M+N)*y( 2))) 

    y(5) 

    y(6) 

((b/1+b)*(y(5)*y(5)+(y(1)+c*y(4))*y(6)+(M*M+N)*y(5))) 

    y(8) 

    ((-p/1+R)*(y(1)+c*y(4))*y(8)) 

    ]; 

end 

function res = ex8bc(ya,yb) 

c=0.5; 

B=5.0; 

res=[ 

ya(1) 

ya(2)-1 

yb(2) 

ya(4) 

ya(5)-c 

yb(5) 

ya(8)+B*(1-ya(7)) 

yb(7) 

]; 

end 

 

The command window 

solution=ex8; 

x=solution.x; 

 y=solution.y; 

 y2=solution.y(2,:); 

 y5=solution.y(5,:); 

 y7=solution.y(7,:); 

 

 Plot(x,y2,'r',x,y5,'g',x,y7,'b'); 
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