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Abstract : This paper proposes a new spectrum sensing technique for cognitive radio systems. To determine 

vacancy of the spectrum, the proposed method employs the recurrent neural network (RNN), one of the popular 

deep learning techniques. The proposed technique determines the spectrum occupancy of the primary user (PU) 

by observing the received signal’s energy and any information on the PU signal characteristic is not used. To 

this end, the received signal’s spectrum is obtained by fast Fourier transform (FFT). This process is performed 

on consecutive received signals and the resulting spectrums are stacked. Finally, a 2-dimensional spectrum (or 

spectrogram) is made. This 2-D spectrum is cut into sensing channel bandwidths and inputted to the deep 

learning model to decide the channel’s occupancy. While the recently published spectrum sensing technique 

based on convolutional neural network (CNN) relies on an empty channel, the proposed technique does not 

require any empty channel. Only the channel signal of interest to sense is needed. Since spectrum sensing results 

is two (busy or idle), binary classification deep learning model is developed. According to the computer 

simulation results, the proposed method has similar performance with the conventional CNN-based method 

while the spectral efficiency of the proposed method is much higher than that of the existing scheme. In 

addition, the overall learnable parameters of the proposed deep learning model is only 2/3 of the existing 

method.  
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1. Introduction 

The cognitive radio (CR) is an effective mean to alleviate the problem of wireless frequency resource 

scarcity and underused licensed spectrum [1]. In CR systems, licensed users are called primary user (PU), and 

unlicensed users are called secondary user (SU). In the wireless communication systems, the spectrum allocated 

to the PU is not always used and the SU can share the idle spectrum. Many researches have been conducted to 

prevent the SU signal from interfering with the PU’s signal. The objective of spectrum sensing is to determine 

spectrum occupancy by the PU accurately. This technique is grouped into three categories: match filter [2, 3], 

energy detection [4], and cooperative method [5]. For spectrum sensing, the most popular and simplest method 

is energy detection that determines PU existence based on the received energy. However, the energy detection 

requires the noise power and the sensing performance is highly sensitive to the accuracy of the estimated noise 

power. To overcome this sensitivity, various methods have been proposed in energy detection [6].  

Recently, machine learning techniques are introduced for spectrum sensing in the industry [7]; artificial 

neural network (ANN) based spectrum sensing was proposed in [8], and deep learning techniques (e.g. 

convolutional neural network (CNN) and recurrent neural network (RNN)) to accurately identify the spectrum 

occupancy were suggested in [9-11]. Especially, the technique in [11] is relatively simple to implement but 

shows good performance even at low signal to noise ratios (SNRs). However, this method requires one empty 

channel, and this requirement lowers the spectral efficiency of both PU and SU.  

This paper considers a new deep learning based spectrum sensing technique in the category of energy 

detection without empty channel assumption. The proposed one is a simple deep learning method that detects 

the presence / absence of PU signal just by observing sensing channel’s energy. Specifically, the received signal 

is converted into a frequency spectrum vector through fast Fourier transform (FFT). Performing this process on 

consecutive received signals and stacking the resulting spectrums, 2-dimensional spectrum is made. Then, this 

2-D spectrum is cut by a sensing channel bandwidth and inputted to the CNN classifier to decide the channel’s 

occupancy. The performance of the proposed spectrum sensor is verified through computer simulation using 

Matlab. According to the results, the spectrum sensing accuracies of the proposed technique and the existing 

method in [11] are similar. However, since the proposed method does not need to empty one PU channel, the 
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spectral efficiency is higher than that of the existing scheme. In addition, the overall learnable parameters of the 

proposed deep learning model is only 2/3 of the existing model.  

 

2. System model 

 
Figure 1 System model 

 

The system model considered in this paper is in Figure 1. The received signal is converted into a baseband 

digital signal by radio frequency (RF) down converter and analog to digital converter (ADC). This signal is 

denoted by 𝑥(𝑛). A total 𝑁𝐹𝐹𝑇  , the size of the FFT, and collects samples by overlapping as 𝑁0. This process 

can reduce the time to collect the entire received signal. B is the total number of signal blocks observed. The 

collected signal blocks are as follows. 

 

𝒙𝑚 = [𝑟(𝑚𝑁0), 𝑟(𝑚𝑁0 + 1), ⋯ , 𝑟(𝑚𝑁0 + 𝑁𝐹𝐹𝑇 − 1)] 𝑓𝑜𝑟 𝑚 = 0, ⋯ , 𝐵 − 1       (1) 

𝑋𝑚 conducts an FFT to convert to a frequency domain. The size of �̂�𝑚 is 𝑁𝐹𝐹𝑇 × 1. 

 

�̂�𝑚 = 𝐹𝐹𝑇{𝒙𝑚} = [𝑋𝑚(0), 𝑋𝑚(1), ⋯ , 𝑋𝑚(𝑁𝐹𝐹𝑇 − 1)]𝑇             (2) 

For spectrum sensing, absolute values are taken to yield. 

 

|�̂�𝑚| ≜ [|�̂�𝑚(0)|, |�̂�𝑚(1)|, ⋯ , |�̂�𝑚(𝑁𝐹𝐹𝑇 − 1)|]
𝑇
                 (3) 

For consecutive received signals, the process (1) – (3) are performed the resulting B vectors of |�̂�𝑚| for 0 ≤

𝑚 < 𝐵  are stacked. The stacked signal becomes a 2-D matrix denoted by 𝑿 ∈ 𝑅𝑁𝐹𝐹𝑇×𝐵: 
 

𝑿 = ⌊|�̂�0|, |�̂�1|, ⋯ , |�̂�𝐵−1|⌋                           (4) 

The 2-D signal 𝑿 is made by FFT of broadband signal and can include multiple PU channels. To sense by 

PU channel interval, it must be separated into sensing bandwidth intervals. Suppose the whole bandwidth of the 

receiving signal corresponds to 𝑁𝐹𝐹𝑇  and the bandwidth of sensing channel is 𝐾𝐶 . The total number of sensing 

channels is 𝑁𝐹𝐹𝑇 𝐾𝐶⁄ . If the sampling clock of the ADC is 𝐹𝑠(𝐻𝑧), the bandwidth of each channel is 

𝐾𝐶𝐹𝑠 𝑁𝐹𝐹𝑇⁄ (𝐻𝑧). The existing research in [11] assumes that the last channel is always empty and is not 

allocated by the PU. [11] insists that the empty channel (or noise-only channel) is very advantageous for 

spectrum sensing. 

 

𝑿𝑐 = [
   �̃�𝑐      

�̃�𝑁𝐹𝐹𝑇 𝐾𝐶−1⁄
]  𝑓𝑜𝑟  𝑐 = 0, ⋯ , 𝑁𝐹𝐹𝑇 𝐾𝐶 − 2⁄                     (5) 

�̃�𝑐 is of size 𝐾𝐶 × 𝐵 and is a submatrix of 𝑿 and is a matrix made by selecting rows from 𝑐𝐾𝐶 + 1 to 

(𝑐 + 1)𝐾𝐶. In (5), �̂�𝑁𝐹𝐹𝑇 𝐾𝐶⁄ −1 is the last sensing channel and can be regarded as a noise vector because the last 

channel is always unassigned. As a result, the conventional work uses a matrix (𝑿𝑐) of size 2𝐾𝐶 × 𝐵 to 

determine the presence of PU signals.  

 

3. Conventional spectrum sensing  

This section introduces the conventional spectrum sensing technique using a 2-dimensional matrix 𝑿𝑐. First, 

the threshold-based spectrum detector in introduced, and then a deep learning-based spectrum detector to be 

compared is explained.  

 

3.1 Threshold-based spectrum detector  

The conventional energy detection method estimates the power of noise and obtains threshold value based 

on this. After that, when the signal if PU signal exceeds the threshold value, it decides that it exists. 

 

{
𝐵𝑢𝑠𝑦,    �̂�𝑐 > 𝜂   
𝐼𝑑𝑙𝑒,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                            (6) 

𝜂 is the threshold value as follows: 

𝜂 = 𝛼 × �̂�𝑛                                 (7) 

 



Tae-Yun Jung and Eui-Rim Jeong* 

540 

𝛼 is a positive real number value. �̂�𝑛 is the estimated value of noise power and is obtained by the last 

channel �̃�𝑁𝐹𝐹𝑇 𝐾𝐶⁄ −1. 

 

P̂n =
1

KCB
∑ ∑ |�̃�NFFT KC⁄ −1(m, n)|

2KC−1
m=0

B−1
n=0                     (8) 

 

In Eq. (8), �̂�𝑐 means the estimated power value of the PU channel and is obtained as follows: 

 

�̂�𝑐 =
1

𝐾𝐶𝐵
∑ ∑ |�̃�𝑐(𝑚, 𝑛)|

2𝐾𝐶−1
𝑚=0

𝐵−1
𝑛=0                            (9) 

 

The threshold-based detector performs well when the power of the noise signal is accurately estimated. 

However, in the opposite case, performance deviations are severe. In addition, there is a problem in that the 

SNR value must be known in advance for spectrum sensing.  

 

3.2 CNN-based spectrum detector [10]  

 

The existing CNN-based spectrum detector is briefly explained. On the left side of Figure 2, 𝑿 is shown as 

a black-and-white image when 𝑁𝐹𝐹𝑇 = 512, 𝐵 = 64. White is a large signal, black is a small signal, and the 

middle value is gray. This figure is obtained when SNR=20 [dB], so the presence of the PU signal is clearly 

distinguishable. The CNN based spectrum detector in [10] has 𝑿𝑐 as the input and consists of three 

convolutional layers. Each convolution layer includes a batch normalization layer, a pooling layer. The last 

convolution layer excludes the pooling layer. The channel size (or number of filters) in each convolution layer is 

8, 16, and 32, the filter size is 3 × 3, and the stride is 1. The pooling layer is max pooling with stride 2. The 

activation function is ReLU (Rectified Linear Unit). The output of the last convolution layer goes through the 

fully connected layer and finally determines the presence of the PU signal at the classification layer.  

 

3.3 RNN-based spectrum detector [11]  

 

The existing RNN structure in [11-13] is shown on the right side of Figure 2. For spectrum sensing, the RNN 

model also uses 𝑿𝑐 as the input, but at each time, the column vectors of 𝑿𝑐 are inputted one by one. 

Therefore, input to the RNN model is a total B column vectors with size 2𝐾𝐶 × 1. The first input to the LSTM 

(Long short-term memory) cell is 𝒙𝑐,0 = [𝑿𝑐(0,0), ⋯ , 𝑿𝑐(2𝐾𝐶 − 1,0)]𝑇; the next input is 𝒙𝑐,1 =
[𝑿𝑐(0,1), ⋯ , 𝑿𝑐(2𝐾𝐶 − 1,1)]𝑇 and so on. The structure of the RNN model consists of LSTM cells, the fully 

connected layer, and the binary classification layer. The number of LSTM cells is 64. The final output value 

after the last vector (𝒙𝑐,𝐵−1) is Busy or Idle.  

 

 
Figure 2 Block diagrams of conventional techniques in [10] and [11] when B = 64 

 

4. Proposed spectrum sensing 

 

This section introduces the proposed CNN-based spectrum sensing technique. The proposed method is the 

same as the conventional spectrum detector structure. However, the input signal of the deep learning model is 
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different from the conventional techniques in [10] and [11] to improve spectral efficiency. Figure 3 (a) shows the 

typical PU signal’s spectrum. As can be seen, PU signal has a guard band to prevent interference between 

adjacent channels. It can be seen that there is only noise in the guard band. Therefore, instead of using additional 

intentional noise channel, the PU’s single channel of interest may be sufficient to determine spectrum usage. 

This is the motivation of the proposed technique. Figure 3 (b) shows �̃�𝑐 without noise channel in (5). When the 

channel is busy, the far upper and lower region look black because of the guard band. The input of the proposed 

detector is a 2-dimensional matrix �̃�𝑐 in size 𝐾𝐶 × 𝐵. Existing researches must assume an empty channel to 

ensure the performance of spectrum sensing. However, this is a major disadvantage due to spectral efficiency 

loss.  In contrast, the proposed technique can relieve from this problem. 

 

 
Figure 3 (a) PU signal’s spectrum (b) Input signal for the proposed spectrum detector 

 

5. Simulation results 

5.1 Environment and signal preparation  

To access the performance of the proposed technique, computer simulation is conducted using MATLAB 

R2020a. The sampling frequency of the received signal is 𝐹𝑆 = 16 𝑀𝐻𝑧 and the bandwidth of a sensing 

channel is 0.5 𝑀𝐻𝑧. The number of channels that can be observed at a time through broadband sampling is 32 

(16𝑀/0.5𝑀). The parameters used in the proposed method are shown in Table 1. The length of the observation 

signal block(𝐵) is fixed at 64.  

 

Table1 Parameters for spectrum sensing 

Parameter Value 

Sampling clock 𝐹𝑆 = 16𝑀𝐻𝑧 

Channel bandwidth 0.5𝑀𝐻𝑧 

FFT size 𝑁𝐹𝐹𝑇 = 512 

Overlap length 𝑁0 = 𝑁𝐹𝐹𝑇/2 

Sensing channel bandwidth in FFT points 𝐾𝐶 = 16 

Number of observation signal blocks 𝐵 = 64 

 

The data sets for training the proposed deep learning model are generated with the same condition in [10] 

and [11]. The SNR of the training data is selected rendomly from – 20 dB to 50 dB and we produces a total of 

620,000 data sets. The test data is generated with a SNR interval of 2 [dB] and 124,000 data sets are generated 

at each SNR. Training is performed to minimize cross-entropy and the optimization technique is SGDM 

(Stochastic Gradient Descent with Momentum). The learning rate is 0.001 and the batch size is 620. Figure 4 
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shows the learning curve, and (a) is the proposed CNN model (b) is the proposed RNN model. In Figure 4. The 

learning curve is converged sufficiently without the need for a noise channel. In order to examine the 

performance of the proposed spectrum sensing technique, two indicators are measured. First is the MDR (miss 

detection ratio). Miss detection means the PU channel is empty but detected to be in use. Second is FDR (false 

detection ratio). False detection means the opposite of MDR. In spectrum sensing, it is important to minimize 

FDR to reduce interference from the SU to the PUs.  

 

 
Figure 4 Learning curves for (a) proposed CNN model (b) proposed RNN model 

 

5.2 Results  

 

Figure 5 compares the performance of the CNN model. The test data to compare performance is all the same. 

𝜂 of the threshold-based detector is determined by the formula (7), and 𝛼 is selected optimally at each SNR. 

The results of the simulation show that the performance of the CNN model is almost identical regardless of the 

use of extra noise only channel. However, threshold-based method have a performance degradation about 2 [dB]. 

Figure 6 shows the performance of the RNN model and is also similar to the previous results (CNN model). 

Those results indicate that by using the proposed CNN or RNN spectrum detector, good spectrum sensing 

performance can be achieved without any spectrum resource waste due to the intentional empty channel. 

 

 
Figure 5 Simulation results with CNN model (a) MDR (b) FDR (c) ACC 

 

 
Figure 6 Simulation results with RNN model (a) MDR (b) FDR (c) ACC 

 

5. Conclusions 

 

This paper proposed a CNN-based spectrum sensing technique for sharing the PU’s licensed spectrum. The 
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proposed method was designed based on existing research and the use of the empty channel is removed. The 

simulation results show that the conventional and the proposed techniques have almost the same FDR and MDR 

performances. Those results indicate that by using the proposed technique, there is no spectrum resource waste 

to achieve reliable spectrum sensing performance. 
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