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Abstract: This paper demonstrates finite element procedure for two-dimensional axisymmetric domains. For many engineering 

applications like structural engineering, aerospace engineering, geo-mechanics etc., the solution domain and boundary conditions 

are axisymmetric. Henceforth, we can illuminate just the axisymmetric part of the solution domain that gives the data of the entire 

domain. This paper demonstrates the effectiveness of using MATLAB programming demonstrated by Persson et.al (2004) as the 

initial mesh for discretization of axisymmetric domains for higher order meshing. Further, solving some class of partial 

differential equations using finite element method with nodal relation given by subparametric transformations Rathod et.al (2008). 

In this paper a cubic order curved triangular meshing for some of the domains like ellipse and circle are demonstrated. These in 

turn finds its applications in the fields like stress analysis in mechanical engineering, torsion twist (shear strength) analysis in civil 

engineering, evaluation of stress intensity factor for quarter elliptical crack in pressure vessels in equipment industry etc,. The 

output data from the meshing scheme like meshing of the domain, nodal position, element connectivity and boundary edges are 

been used in the finite element procedures. The efficiency of the method is achieved by p-refinement scheme i.e., fixing the 

number of elements and increasing the polynomial order. 

Keywords: Axisymmetric geometry; subparametric transformations; curved triangular elements; finite element 

method; 

 

1. INTRODUCTION 

 

The mathematical models where developed in order to analysis the physical phenomenon that depicts the system with specific 

assumptions and simplifications. This leads to governing mathematical expressions, which represent the behaviour of the system. 

The mathematical expressions are usually differential equations with boundary conditions. It is tedious to obtain the analytical 

solution for problems involving complex material properties and boundary conditions; hence, we resort to numerical methods that 

provide approximate but acceptable solution. Various numerical methods where developed to obtain the approximate solution for 

the differential equations. Especially, finite element method (FEM) is widely used numerical methods to solve the physical 

problems. The major advantages of using FEM are generalized computer program can be developed to analyse various problems 

and it can handle any complex geometry with the given boundary conditions.  

The strategy of FEM is based on meshing the complex geometry into simple elements such as triangle, quadrilateral or polygonal 

in 2D and tetrahedron or hexahedron in 3D. The investigation states that various endeavours were made on meshing the geometry 

with linear straight edged triangular, quadrilateral and polygonal elements [1, 2, 3]. Since, the domain of physical problem often 

contains curved boundaries that cause the difficulty in accurately meshing with straight edged elements. Hence, the requirement 

of meshing curved boundaries emerged. In addition, the use of transformations is essential to enhance the quality of meshing 

arbitrary domains, especially the curved boundaries. In paper [4, 5] the use of isoparametric transformations by parabolic or cubic 

arcs to match the curved boundaries using curved triangular elements where developed. Generally, usage of isoparametric 

transformations encounters a complex rational integral function whose denominator and Jacobian are bivariate polynomial of 

higher order. Thus the difficulty arising in solving such an integral of an arbitrary curved boundaries can be overcome by the use 

of subparametric transformations by parabolic or cubic arcs for higher order curved triangular elements developed in the works 

[6, 7].  Hence, the Jacobian acquired will always be bivariate polynomial of linear order. In the light of subparametric 

transformations, curved boundaries are meshed effectively. Numerous computer programming exist which executes meshing of 

two-dimensional (2D) geometries using straight edges, especially triangular elements. Persson and Gilbert [1] have presented a 

simple and efficient MATLAB meshing code for linear order straight edged triangular elements. Koko [8] has demonstrated a 

new algorithm improving the MATLAB code of Perrson et.al [1] for fast refinement upto quadratic order straight edged triangular 

elements. The implementation of the MATLAB code [1] for finite element procedures upto cubic order for straight edged 

elements is provided in the works of John Coady [9]. Though there are some excellent tools available for meshing, there is 

necessity for meshing in higher order curved triangular elements. Some of the two dimensional geometries for higher order 

curved triangular elements are meshed in the works of [10, 11]. 

In the present work, a simple and efficient MATLAB code is proposed based on distmesh2d developed by Persson et.al [1]. The 

proposed meshing scheme uses the finest point transformations proposed in the works of Rathod et.al [6]. The proposed meshing 

scheme is implemented in discretization of some of the 2D axisymmetric geometries. As an output meshing scheme provides 
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triangular meshing of the geometry, nodal position, element connectivity and boundary nodes, which can be used in the finite  

element procedures. The mathematical formulation of the finite element method is provided in section 2. The formulation of 

meshing cubic order curved triangular element using the subparametric transformations is briefed in section 3. Discretization of 

some of the axisymmetric geometries is demonstrated in section 4. The implementation of meshing scheme for the solution of 

Poisson’s problem is provided in section 5. The numerical results and the comparison of contour plot for the stress analysis are 

provided in section 6.  

 

2. MATHEMATICAL FORMULATION OF FINITE ELEMENT METHOD 

 

Finite element method is a computational methodology used for numerical approximation of some class of partial differential 

equations that models the problems arising in applied sciences. The strategy of FEM is based on meshing the complex domains 

into simple elements like triangular or quadrilateral in 2D. PDEs are used to describe a good number of phenomenons in sciences 

and engineering. One such phenomenon in 2D boundary value problem is the stress concentration over elliptical or circular plate 

[12, 13]. Consider a two-dimensional boundary value problem, 
𝜕

𝜕𝑥
[𝑘𝑥(𝑥, 𝑦)

𝜕𝑢

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝑘𝑦(𝑥, 𝑦)

𝜕𝑢

𝜕𝑦
] + 𝑝(𝑥, 𝑦)𝑢 + 𝑞(𝑥, 𝑦) = 0,   𝑤𝑖𝑡ℎ𝑖𝑛  Ω                                                                               (1) 

subject to the boundary conditions, 

Essential boundary condition: 𝑢 = known value on 𝜕Ω.     (1a)                                                      

Natural boundary condition: 𝑘𝑥
𝜕𝑢

𝜕𝑥
+ 𝑘𝑦

𝜕𝑢

𝜕𝑦
= 𝛼𝑢 + 𝛽        (1b)                                                           

where Ω and 𝜕Ω are the interior and boundary region of the domain respectively. 𝑘𝑥(𝑥, 𝑦), 𝑘𝑦(𝑥, 𝑦), 𝑝(𝑥, 𝑦) and 𝑞(𝑥, 𝑦) are 

known functions on the Euclidean space, 𝑢 is the unknown solution of the domain and 𝛼, 𝛽 are the specified parameters along the 

boundary. Considering the field variable 𝑢, the governing equations are as follows, 

            𝑢(𝑥, 𝑦) = ∑ 𝑁𝑖
(𝑛)(𝜉, 𝜂)𝑢𝑖(𝑥, 𝑦),

[(𝑛+1)(𝑛+2)]/2
𝑖=1              (2)                                 

where 𝑁𝑖 refers to Lagrange shape functions, 𝑢𝑖 refers to the unknown nodal values and 𝑛 represents the order of the curved 

triangular elements.  

The underlying mathematical basis of FEM is very well explained by the theories of Galerkin weak formulation [6, 7]. A key 

feature of this method is that the integrals of functions can be evaluated on any arbitrary domains. The integrations are carried out 

as the product of shape function and governing differential equation over the given domain and it is equal to zero. Now, on 

applying the Galerkin weak formulation to Eq. (1), we have 

∬ {
𝜕

𝜕𝑥
[𝑘𝑥

𝜕𝑢

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝑘𝑦

𝜕𝑢

𝜕𝑦
] + 𝑝(𝑥, 𝑦)𝑢 +                                                 𝑞(𝑥, 𝑦)} 𝑁𝑖(𝑥, 𝑦)𝑑Ω

Ω
= 0,             (3) 

where 𝑖 varies from 1 to 𝑛. Any natural boundary conditions Eq. (1b) are imposed in the weak formulation. Hence, the finite 

element equation is as follows, 

[𝐾𝑘 +  𝐾𝑝]𝑢 = 𝐾𝑞                                                                   (4)                                                                                                                                                                                                     

where, 

𝐾𝑘 = 𝐾𝑥,𝑥
𝑖,𝑗

+ 𝐾𝑦,𝑦
𝑖,𝑗

=  ∬ (𝑘𝑥
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
+ 𝑘𝑦

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦
) 𝑑𝑥𝑑𝑦

Ω𝑒
     (5)                                                  

𝐾𝑥,𝑥
𝑖,𝑗

= ∫ ∫ (
𝐾𝑥(𝑥(𝜉,𝜂),𝑦(𝜉,𝜂))

𝐽
) (

𝜕𝑁𝑖

𝜕𝜉

𝜕𝑦

𝜕𝜂
−

𝜕𝑁𝑖

𝜕𝜂

𝜕𝑦

𝜕𝜉
) (

𝜕𝑁𝑗

𝜕𝜉

𝜕𝑦

𝜕𝜂
− 

𝜕𝑁𝑗

𝜕𝜂

𝜕𝑦

𝜕𝜉
)

1−𝜉

𝜂=0

1

𝜉=0
𝑑𝜂𝑑𝜉                                                                        (6a) 

𝐾𝑦,𝑦
𝑖,𝑗

= ∫ ∫ (
𝐾𝑦(𝑥(𝜉,𝜂),𝑦(𝜉,𝜂))

𝐽
) (

𝜕𝑁𝑖

𝜕𝜂

𝜕𝑥

𝜕𝜉
−

𝜕𝑁𝑖

𝜕𝜉

𝜕𝑥

𝜕𝜂
) (

𝜕𝑁𝑗

𝜕𝜂

𝜕𝑥

𝜕𝜉
−

𝜕𝑁𝑗

𝜕𝜉

𝜕𝑥

𝜕𝜂
)

1−𝜉

𝜂=0

1

𝜉=0
𝑑𝜂𝑑𝜉                                                                         (6b) 

𝐾𝑝 = − ∫ ∫ 𝑝(𝑥(𝜉, 𝜂), 𝑦(𝜉, 𝜂))𝑁𝑖(𝜉, 𝜂)𝑁𝑗(𝜉, 𝜂) 𝐽
1−𝜉

𝜂=0

1

𝜉=0
𝑑𝜂𝑑𝜉 (7)    𝐾𝑞 = ∫ ∫ 𝑞(𝑥(𝜉, 𝜂), 𝑦(𝜉, 𝜂))𝑁𝑖(𝜉, 𝜂) 𝐽

1−𝜉

𝜂=0

1

𝜉=0
𝑑𝜂𝑑𝜉                      

(8)                                                                   

where Ω𝑒 is the region of each element 𝑒 and 𝐽 is the determinant of Jacobian matrix which is expressed as, 

                          𝐽(𝜉, 𝜂) =
𝜕(𝑥,𝑦)

𝜕(𝜉,𝜂)
=

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜂
−

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜉
                    (9)                                                                       

The above integrals Eqs. (5) - (8) are evaluated numerically for each element by using Gauss quadrature rules over a standard 

triangle from the works of Rathod et.al. [14, 15]. Then assembling is done to get the global matrices relating the entire domain. 

Any essential boundary conditions Eq. (1a) are imposed to the global matrices. The obtained system of equations are solved 

numerically to get the solution at each unknown nodal points. 

 

3. MATHEMATICAL FORMULATION FOR MESHING OF CUBIC ORDER CURVED TRIANGULAR 

ELEMENT 

Generally, in FEM while solving PDEs for curved boundaries encounters a complex rational integral function whose denominator 

and Jacobian are bivariate polynomials of higher order as discussed in [6]. Thus, the difficulty arising in solving such an integral 

function of an arbitrary curved boundaries can be overcome by the use of subparametric transformations with parabolic arcs 

developed by [6]. The Jacobian acquired will be a bivariate polynomial of linear order. In light of subparametric transformations 
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for higher order, curved boundaries can be meshed effectively. We use [1] as the starting mesh by defining the nodal points on the 

interior and boundary by subparametric transformations matching parabolic arcs given in [6]. The investigation states that various 

endeavours where made on subparametric transformations by several authors [6, 7]. As a part of this section, the way to generate 

curved cubic order triangular meshing is discussed. Considering, the mapping of global co-ordinates (𝑥, 𝑦) in one-sided curved 

triangular element to the local co-ordinates (𝜉, 𝜂) in the standard triangular element as evident in Fig.1. 

The subparametric transformations defining the nodes on the boundary and interior of the curved triangular element is represented 

by, 

  𝑡 = ∑ 𝑁𝑖
(𝑛)(𝜉, 𝜂)𝑡𝑖   

(𝑛+1)(𝑛+2)

2
𝑖=1

𝑡 = (𝑥, 𝑦)                             (10)                                                                                                                                  

where 𝑁𝑖 and 𝑡𝑖 denotes the Lagrange shape functions and nodal values for each element at 𝑖𝑡ℎ node respectively.  

The shape functions for curved triangular element in the case of cubic order are as per the following, 

𝑁1
(3)(𝜉, 𝜂) =

9𝜉3

2
−

9𝜉2

2
+ 𝜉, 

𝑁2
(3)(𝜉, 𝜂) =

9𝜂3

2
−

9𝜂2

2
+ 𝜂, 

𝑁3
(3)(𝜉, 𝜂) = −

9𝜉3

2
−

9𝜂3

2
−

27𝜉2𝜂

2
−

27𝜉𝜂2

2
+ 9𝜉2 + 9𝜂2 + 18𝜉𝜂 −

11𝜉

2
−

11𝜂

2
+ 1, 

𝑁4
(3)(𝜉, 𝜂) =

27𝜉2𝜂

2
−

9𝜉𝜂

2
, 

𝑁5
(3)(𝜉, 𝜂) =

27𝜉𝜂2

2
−

9𝜉𝜂

2
, 

𝑁6
(3)(𝜉, 𝜂) = −

27𝜂3

2
−

27𝜉𝜂2

2
+ 18𝜂2 +

9𝜉𝜂

2
−

9𝜂

2
, 

𝑁7
(3)(𝜉, 𝜂) =

27𝜂3

2
+ 27𝜉𝜂2 −

45𝜂2

2
+

27𝜉2𝜂

2
−

45𝜉𝜂

2
+ 9𝜂, 

𝑁8
(3)(𝜉, 𝜂) =

27𝜉3

2
+ 27𝜉2𝜂 +

27𝜉𝜂2

2
−

45𝜉2

2
−

45𝜉𝜂

2
+ 9𝜉, 

𝑁9
(3)(𝜉, 𝜂) = −

27𝜉3

2
−

27𝜉2𝜂

2
+ 18𝜉2 +

9𝜉𝜂

2
−

9𝜉

2
, 

𝑁10
(3)(𝜉, 𝜂) = −27𝜉𝜂2 − 27𝜉2𝜂 + 27𝜉𝜂. 

The subparametric transformations which maps the global coordinates of two sided straight and one sided curved triangular 

element to the local coordinates of the standard triangular element for cubic order is given in Fig.1. 

 
Figure 1: Mapping of curved triangular element onto standard triangular element for cubic order. 

On applying standard formulae for dividing a line segment in a given ratio Eq. (10) reduces to, 

𝑡 = 𝑡3 + (𝑡1 − 𝑡3)𝜉 + (𝑡2 − 𝑡3)𝜂 +
9

4
[(𝑡4 + 𝑡5) − (𝑡1 + 𝑡2)]𝜉𝜂,  (11) 

The above subparametric transformations is incorporated into MATLAB code in terms of 𝑥 and 𝑦 co-ordinate. 

 

4. DISCRETIZATION DETAILS OF AXISYMMETRIC DOMAINS 

Meshing is one of the important steps in FEM especially for some arbitrary curved domains. The proposed meshing scheme 

technique is based on a distmesh2d MATLAB code developed by [1] for linear triangular elements which is simple and produces 

high-quality meshes. The geometrical description as defined by [1] of the domain use up few terms as input such as signed 

distance function 𝑓𝑑, edge length function 𝑓ℎ, mesh size ℎ0, bounding box 𝑏𝑜𝑥, fixed nodal position 𝑓𝑖𝑥𝑒𝑑 and additional 

parameters to the function 𝑓𝑑 and 𝑓ℎ as varargin arguments. In addition, the scheme uses the nodal relationship from 

subparametric transformations developed by [6] for curved triangular elements. The physical domain under study in the field of 

FEM may possess axisymmetric geometry. Since, the solution domain and boundary conditions are axisymmetric we can 

illuminate just the axisymmetric part of the solution domain that gives the data of the entire domain which can be expected to give 

symmetric solution. The meshing has been carried out for p-refinement scheme i.e., keeping the number of elements same and 

increasing the order of the polynomial. Some of the axisymmetric geometries are discertized for cubic (10 - noded) ordered 
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curved triangular elements in Figs. 2 - 3. Meshing of the domain finds advantageous in the fields like stress analysis in structural 

industry, torsional twist (shear strength) in manufacturing industry, evaluation of stress intensity factor for quarter elliptical crack 

in pressure vessels in equipment industry, Prandtl stress distribution [13] etc. 

 
Figure 2: Discretization of quarter ellipse for cubic order. 

 
Figure 3: Discretization of quarter circle for cubic order. 

Output data for meshing of quarter circle Fig. 4 for cubic order curved triangular element. The number of nodes 𝑁𝑛, nodal 

position 𝑛𝑝, element connectivity 𝑒 and boundary points 𝑏𝑝 are tabulated in Table 1.  

 
Figure 4: Discretization of quarter circle for cubic order curved triangular element with node number. 

Table 1: Output data for meshing of quarter circle for cubic order curved triangular element with  number of nodes 𝑁𝑛, nodal 

position 𝑛𝑝, element connectivity 𝑒 and boundary points 𝑏𝑝. 

Nn  =   184 

np  = 

 

   0.000000000000000   0.000000000000000 

   0.000000000000000   1.000000000000000 

   0.000000000001409   0.193786105984292 

   0.000000000001994   0.615283116552708 

    … 

   0.482702128967774   0.790436309516721 

   0.529965734372101   0.675946366298430 
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e = 

    21    23    18     28     29     30    31     33     32     34 

     3      7       6     35     36     37    38     40     39     41 

    21    18    15     32     33     42    43     45     44     46 

    ... 

    20    16   13     181   182   176   177  179   180   183 

    18    20   13      67     66    180   179  167   168   184 

bp = 

          2, 10, 16, 20, 23, 25, 26, 27, 57, 56, 161, 160, 182, 181, 

68, 69, 62, 61, 77, 76, 113, 112 

 

5. NUMERICAL EXAMPLE 

 A. Elliptical Domain 

Consider a two dimensional Poisson's equation, 

                          
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = −2    𝑤𝑖𝑡ℎ𝑖𝑛    Ω                     (12)                                                    

subject to the boundary conditions,   

𝑢 = 0  𝑜𝑛  𝑐𝑢𝑟𝑣𝑒  𝜕Ω , 

                                      
𝜕𝑢

𝜕𝑛
= 0  𝑜𝑛  𝑥 − 𝑎𝑥𝑖𝑠  𝑎𝑛𝑑  𝑦 − 𝑎𝑥𝑖𝑠                        (13)                   

The exact solution [12] of Eq. (12) with the boundary conditions Eq. (13) is,  

                         𝑢(𝑥, 𝑦) = 11.07 (1 −
𝑥2

36
−

𝑦2

16
)                   (14)                                                                                             

B. Circular Domain 

The Prandtl stress 𝑢(𝑥, 𝑦) distributed on circular plate is given by [13],            

                     
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = −2    𝑤𝑖𝑡ℎ𝑖𝑛    Ω                          (15)                                 

subject to the boundary conditions   

𝑢 = 0  𝑜𝑛  𝑐𝑢𝑟𝑣𝑒  𝜕Ω , 

                                       
𝜕𝑢

𝜕𝑛
= 0  𝑜𝑛  𝑥 − 𝑎𝑥𝑖𝑠  𝑎𝑛𝑑  𝑦 − 𝑎𝑥𝑖𝑠               (16)                                 

The exact solution [13] of Eq. (15) with the boundary conditions Eq. (16) is,  

                                   𝑢(𝑥, 𝑦) = 0.5(1 − 𝑥2 − 𝑦2)             (17)     

                              

 

6. NUMERICAL RESULTS AND INTERPRETATION 

The present meshing scheme produces output data like nodal position, element connectivity and boundary data. These outputs for 

quarter circle has been extracted and given in Fig. 4 and Table 1 for cubic order curved triangular elements. Fig. 4 gives the 

discretization of quarter circle for cubic order with node numbers. Table 1 gives the meshing quantities like number of nodes 𝑁𝑛, 

nodal position 𝑛𝑝, element connectivity 𝑒 and boundary points 𝑏𝑝. One of the aims of this work is to solve the PDEs using output 

data extracted from the meshing scheme explained in this paper by finite element procedure. The numerical experiment detailed 

in section 4 governed by Poisson’s equation for two domains; quarter ellipse and quarter circle are studied. Both the domains are 

discretized with linear, quadratic and cubic order curved triangular elements. The 𝐿2 norm, which gives the overall error in the 

domain and CPU time, which depicts the efficiency of finite element procedure are tabulated in Tables 2 - 3.  

Table 2: Numerical results over quarter ellipse upto cubic order triangular element with mesh size ℎ0 = 0.9 and number of 

elements 𝑒 = 48. 

Order 

(𝒏) 

Linear (𝒏 =
𝟏) 

Quadratic 

(𝒏 = 𝟐) 

Cubic (𝒏 =
𝟑) 

Degree 

of 

Freedom 

(𝑫𝑶𝑭) 

35 117 247 

𝑳𝟐 Norm 1.8646
× 10−1 

1.1819
× 10−2 

6.5927
× 10−3 

CPU 

Time (in 

seconds) 

1.4341 2.6867 8.4467 
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Table 3: Numerical results over quarter circle upto cubic order triangular element with mesh size ℎ0 = 0.21 and number of 

elements 𝑒 = 35.  

Order 

(𝒏) 

Linear (𝒏 =
𝟏) 

Quadratic 

(𝒏 = 𝟐) 

Cubic (𝒏 =
𝟑) 

Degree 

of 

Freedom 

(𝑫𝑶𝑭) 

27 88 184 

𝑳𝟐 Norm 1.4942
× 10−2 

3.0201
× 10−3 

6.9531
× 10−4 

CPU 

Time (in 

seconds) 

1.4526 1.7680 5.6449 

The FEM solution for stresses obtained at different nodal points are found to be convergent with exact solution, which verifies the 

efficiency of the method used. The contour plot shows the comparison of FEM and exact solution for cubic order. Figs. 5a – 5b 

depicts the results of elliptical domain and Figs. 6a – 6b depicts the results of circular domain. 

 

 
      5a. FEM solution for cubic order . 

 

 
5b. Exact solution for cubic order. 

Figure 5: Contour plot for cubic order curved triangular elements for FEM and exact solution of elliptical domain. 

 
6a.  FEM solution for cubic order. 
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6b.  Exact solution for cubic order. 

Figure 6: Contour plot for cubic order curved triangular elements for FEM and exact solution of circular domain. 

 

7. Conclusions 

The conclusions drawn on the numerical experiments are as per the following, 

(i) The present meshing scheme as utilized best discretization procedure for axisymmetric geometries like circle and 

ellipse in Figs. 2 – 3. 

(ii) The meshing quantities like nodal position (𝑛𝑝), element connectivity (𝑒) and boundary points (𝑏𝑝) are obtained as an 

output from the proposed meshing scheme. And these meshing quantities are given in Fig.4 and Table 1 for cubic order. 

(iii) The finite element procedure uses the acceptable quadrature rule and finest subparametric transformations for obtaining 

the solutions of  Poisson’s equation with the output extracted from meshing scheme. 

(iv) The accuracy and efficiency of this meshing scheme is evident from Tables 2 - 3. We have obtained 𝐿2 norm upto three 

decimal accuracy for quarter ellipse and four decimal accuracy for quarter circle for cubic 

order curved triangular elements. The CPU time (in seconds) depicts the efficiency of meshing. 

(v) The exact solution matches very well with the FEM solution can be compared by contour plots Figs. 5a – 5b for quarter 

ellipse and Figs. 6a – 6b for quarter circle. 

 

Subsequently, it is evident from the proposed scheme that it is one of the simple and computationally efficient meshing scheme 

for higher order curved triangular elements. These in turn finds its applications in stress analysis in mechanical engineering, 

torsion twist (shear strength) analysis in civil engineering, evaluation of stress intensity factor for quarter elliptical crack in 

pressure vessels in equipment industry, Prandtl stress distribution etc. 
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