Research Article

On t-Neighbourhoods in Trigonometric Topological Spaces

¹S. Malathi, ²Dr. R. Usha Parameswari& ³S. Malathi

¹Research Scholar ,(Reg. No: 19222072092001),

² Assistant Professor, ^{1,2}Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur, Affiliated to Manonmaniam Sundaranar University, Abishekapatti,

 $Tirunelveli-627\ 012,\ India.\ ^{1}malathis 2795 @gmail.com\ ,\ ^{2}rushaparameswari@gmail.com$

³Assistant Professor, Department of Mathematics, Wavoo Wajeeha Women's College of Arts and Science, Kayalpatnam-628 204, India.

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract: In this paper we introduce a new type of neighbourhoods, namely, t-neighbourhoods in trigonometric topological spaces and study their basic properties. Also, we discuss the relationship between neighbourhoods and t-neighbourhoods. Further, we give the necessary condition for t-neighbourhoods in trigonometric topological spaces.

Keywords: t-open; t-closed; t-neighbourhood

1. Introduction

In this paper, we introduce t-neighbourhoods in Trigonometric topological spaces. These spaces are based on Sine and Cosine topologies. In a bitopological space we have consider two different topologies but in a trigonometric topological space the two topologies are derived from one topology. From this, we observe that trigonometric topological space is different from bitopological space.

Section 2 deals with the preliminary concepts. In section 3, t-neighbourhoods are introduced and study their basic properties.

2. Preliminaries

Throughout this paper X denotes a set having elements from $[0, \frac{\pi}{2}]$. If (X, τ) is a topological space, then for any subset A of X, X\A denotes the complement of A in X. The following definitions are very useful in the subsequent sections.

Definition: 2.1 [2] Let X be any non-empty set having elements from $[0, \frac{\pi}{2}]$ and τ be the topology on X. Let SinX has the set consisting of the Sine values of the corresponding elements of X. Define a function f X. SinX

SinX be the set consisting of the Sine values of the corresponding elements of X. Define a function $f_s:X \rightarrow SinX$ by $f_s(x)=Sin x$. Then f_s is a bijective function. This implies, $f_s(\varphi)=\varphi$ and $f_s(X)=Sin X$. That is, $Sin \varphi=\varphi$.

Let τ_s be the set consisting of the images (under f_s) of the corresponding elements of τ . Then τ_s form a topology on $f_s(X)$ =SinX. This topology is called a Sine topology (briefly, Sin-topology) of X. The space (SinX, τ_s) is said to be a Sine topological space corresponding to X.

The elements of τ_s are called Sin-open sets. The complement of Sin-open sets is said to be Sin-closed. The set of all Sin-closed subsets of SinX is denoted by τ_s^c .

Definition: 2.2 [2] Let X be any non-empty set having elements from $[0, \frac{\pi}{2}]$ and τ be the topology on X. Let CosX be the set consisting of the Cosine values of the corresponding elements of X. Define a function $f_c:X \rightarrow CosX$ by $f_c(x)=Cos x$. Then f_c is bijective. Also, $f_c(\varphi)=\varphi$ and $f_c(X)=CosX$. This implies, $Cos\varphi=\varphi$.

Let τ_{cs} be the set consisting of the images (under f_c) of the corresponding elements of τ . Then τ_{cs} form a topology on CosX. This topology is called Cosine topology (briefly, Cos-topology) of X. The pair (CosX, τ_{cs}) is called the Cosine topological space corresponding to X. The elements of τ_{cs} are called Cos-open sets. The complement of the Cos-open set is said to be Cos-closed. The set of all Cos-closed subsets of Cos X is denoted by τ_{cs}^c .

Definition: 2.3 [2] Let X be a non-empty set having elements from $[0, \frac{\pi}{2}]$. Define $T_u(X)$ by $T_u(X)=SinX \cup CosX$ and $T_i(X)$ by $T_i(X)=SinX \cap CosX$.

Definition: 2.4 [2] Let X be a non-empty set having elements from $[0, \frac{\pi}{2}]$ and τ be the topology on X. We define a set $\mathcal{T}=\{\phi, U\cup V\cup T_i(X) : U\in\tau_s \text{ and } V\in\tau_{cs}\}$. Then \mathcal{T} form a topology on $T_u(X)$. This topology is called trigonometric topology on $T_u(X)$. The pair $(T_u(X),\mathcal{T})$ is called a trigonometric topological space. The elements of \mathcal{T} are called trigonometric open sets (briefly, t-open sets). The complement of a trigonometric open set is said to be a trigonometric closed (briefly, t-closed) set. The set of all trigonometric closed sets is denoted by \mathcal{T}^c .

3. t-neighbourhoods

In this section we study about t-neighbourhoods in Trigonometric topological spaces. Throughout this section $T_u(X)$ denotes the trigonometric topological space with trigonometric topology \mathcal{T} .

Definition: 3.1 Let $T_u(X)$ be a trigonometric topological space. A subset N of $T_u(X)$ is said to be a t-neighbourhood (briefly, t-nbd) of $y \in T_u(X)$ if there exists a t-open set M such that $y \in M \subseteq N$.

Definition: 3.2 Let $T_u(X)$ be a trigonometric topological space. A subset N of $T_u(X)$ is said to be a t-neighbourhood (briefly, t-nbd) of a subset A of $T_u(X)$ if there exists a t-open set M such that $A \subseteq M \subseteq N$.

Example: 3.3 Let $X = \{\frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{2}\}$ with topology $\tau = \{\phi, \{\frac{\pi}{6}\}, \{\frac{\pi}{2}\}, \{\frac{\pi}{6}, \frac{\pi}{2}\}, X\}$. Then $T_u(X) = \{\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}, 1, 0\}$ and $\mathcal{T} = \{\phi, T_i(X), \{\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}\}, \{0, \frac{1}{\sqrt{2}}\}, \{\frac{1}{2}, \frac{1}{\sqrt{2}}\}, \{1, \frac{1}{\sqrt{2}}\}, CosX, \{\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}\}, \{\frac{1}{2}, \frac{1}{\sqrt{2}}, 0\}, \{1, \frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}\}, \{1, \frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}, 0\}, \{1, \frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}\}, \{1, \frac{1$

Proposition: 3.4 Let $T_u(X)$ be a trigonometric topological space. If N is a proper subset of $T_i(X)$, then N is not a t-nbd of any point of $T_u(X)$.

Proof: Assume that N is a proper subset of $T_i(X)$. Suppose that N is a t-nbd of $y \in T_u(X)$. Then there exists a topen set M such that $y \in M \subseteq N$. This implies, M is a proper subset of $T_i(X)$. This contradicts the fact that every topen set containing $T_i(X)$. Therefore, N is not a t-nbd of any point of $T_u(X)$.

Definition: 3.5 Let $T_u(X)$ be a trigonometric topological space and N be a subset of X. Define the set N* by $N*=SinN\cup CosN\cup T_i(X)$. Then N* is a subset of $T_u(X)$.

Proposition: 3.6 Let T_u(X) be a trigonometric topological spaces and N,M be a subset of X. Then

- 1. If N is open in X, then N* is t-open in $T_u(X)$,
- 2. If $N \subseteq M$, then $N^* \subseteq M^*$.

Proof: The proof follows directly from the definition.

Proposition: 3.7 Let $T_u(X)$ be a trigonometric topological space. If N is a neighbourhood of x, then N* is a t-nbd of Sin x and Cos x.

Proof: Assume that N is a neighbourhood of x. Then there exists an open set M such that $x \in M \subseteq N$. This implies, Sin $x \in S$ in $M \subseteq S$ in N and Cos $x \in C$ os $M \subseteq C$ os N. This implies, Sin $x \in S$ in $M \cup C$ os $M \cup T_i(X) \subseteq S$ in $N \cup C$ os $N \cup T_i(X)$ and Cos $x \in S$ in $M \cup C$ os $M \cup T_i(X) \subseteq S$ in $N \cup C$ os $N \cup T_i(X)$. That is, Sin $x \in M^* \subseteq N^*$ and Cos $x \in M^* \subseteq N^*$. Since M is open in X, we have M* is t-open. Therefore, N* is a t-nbd of Sin x and Cos x.

Proposition: 3.8 Let $T_u(X)$ be a trigonometric topological space. If N is a neighbourhood of any point $x \in X$, then N* is a t-nbd of every point of $T_i(X)$.

Proof: Assume that the subset N of X is a neighbourhoods of x. Then N* is a t-nbd of Sin x and Cos x. Then by Proposition 3.7, N* contains $T_i(X)$. Therefore, for each $y \in T_i(X)$, we have $y \in T_i(X) \subseteq N^*$. Hence N* is a t-nbd of every point of $T_i(X)$.

Proposition: 3.9 Let $T_u(X)$ be a trigonometric topological space. Then $T_i(X)$ is a t-nbd of each of its points. **Proof:** For each point $x \in T_i(X)$, there exists a t-open set $T_i(X)$ such that $x \in T_i(X) \subseteq T_i(X)$. Therefore, $T_i(X)$ is a t-nbd of each of its points.

Proposition: 3.10 Let $T_u(X)$ be a trigonometric topological space. Then N is a t-open set if and only if N is a t-nbd of each of its points.

Proof: Assume that N is t-open. Let $y \in N$. Then N is a t-open set and $y \in N \subseteq N$. This implies, N is a t-nbd of y. Since $y \in N$ is arbitrary, we have N is a t-nbd of each of its points. Conversely, assume that N is a t-nbd of each of its points. Then for each point y_i of N, there exists a t-open set M_i such that $y_i \in M_i \subseteq N$. This implies, N is the union of M_i . Therefore, N is t-open.

Remark: 3.11 If N is a t-nbd of some of its points, then N need not be a t-open set. For example, Consider $X = \{\frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{2}\}$ with $\tau = \{\varphi, X\}$. Then $T_u(X) = \{\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}, 1, 0\}$ and $\mathcal{T} = \{\varphi, T_i(X), SinX, CosX, T_u(X)\}$. Let $N = \{\frac{1}{\sqrt{2}}, 1, 0\}$ be a subset of $T_u(X)$. Then N is a t-nbd of $\frac{1}{\sqrt{2}}$. But it is not a t-open set.

Proposition: 3.12 Let $T_u(X)$ be a trigonometric topological space. If A is a t-closed subset of $T_u(X)$ and $y \notin A$, then there exists a t-nbd N of y such that $N \cap A = \phi$.

Proof: Let A be a t-closed set and $y \notin A$. Let $N=T_u(X)\setminus A$. Then N is a t-open set containing y. Since every t-open set is a t-nbd of each of its points, we have N is a t-nbd of y. Also, $N \cap A=\phi$.

Definition: 3.13 Let $T_u(X)$ be a trigonometric topological space and $y \in T_u(X)$. The set of all t-nbd of y is called the t-nbd system at y and is denoted by t-N(y).

Proposition: 3.14 Let $T_u(X)$ be a trigonometric topological space and $y \in T_u(X)$. Then $t-N(y) \neq \varphi$ for every $y \in T_u(X)$.

Proof: Since $T_u(X)$ is the t-open set, we have $T_u(X)$ is the t-nbd of each of its points. Therefore, for every point y of $T_u(X)$, t-N(y) $\neq \varphi$.

Proposition: 3.15 Let $T_u(X)$ be a trigonometric topological space and $y \in T_u(X)$. If $N \in t-N(y)$, then $y \in N$.

Proof: If $N \in t-N(y)$, then N is a t-nbd of y. This implies, $y \in N$.

Proposition: 3.16 Let $T_u(X)$ be a trigonometric topological space and $y \in T_u(X)$. If $N \in t-N(y)$ and $N \subseteq M$, then $M \in t-N(y)$.

Proof: Assume that $N \in t-N(y)$ and $N \subseteq M$. Then N is a t-nbd of y. Therefore, there exists a t-open set W such that $y \in W \subseteq M$. This implies, M is a t-nbd of y. Hence $M \in t-N(y)$.

Proposition: 3.17 Let $T_u(X)$ be a trigonometric topological space and $y \in T_u(X)$. If $N \in t-N(y)$ and $M \in t-N(y)$, then $N \cup M$, $N \cap M \in t-N(y)$.

Proof: Assume that $N \in t-N(y)$ and $M \in t-N(y)$. Then there exist t-open sets A and B such that $y \in A \subseteq N$ and $y \in B \subseteq M$. This implies, $y \in A \cap B \subseteq N \cap M$ and $y \in A \cup B \subseteq N \cup M$. Since A and B are t-open, we have $A \cap B$ and $A \cup B$ are t-open. Therefore, $N \cap M$ and $N \cup M$ are t-nbd of y. Hence $N \cup M$, $N \cap M \in t-N(y)$.

Proposition: 3.18 Let $T_u(X)$ be a trigonometric topological space and $y \in T_u(X)$. If $N \in t-N(y)$, then there exists $M \in t-N(y)$ such that $M \subseteq N$ and $M \in t-N(x)$ for every $x \in M$.

Proof: Assume that $N \in t-N(y)$. Then there exists a t-open set M such that $y \in M \subseteq N$. Since M is t-open, we have M is a t-nbd of each of its points. Therefore, $M \in t-N(y)$ and $M \in t-N(x)$ for every $x \in M$.

4. Conclusion:

In this paper we have introduced t-neighbourhoods in Trigonometric Topological Spaces and studied some of their basic properties.

References

1. James R. Munkres (2002), "Topology (Second edition)", Prentice-Hall of India Private Limited, New Delhi.

2. S. Malathi and R. Usha Parameswari, "On Trigonometric Topological spaces", Advances in Mathematics: Scientific Journal, Vol. 9, No. 5, (2020), 2477-2488.

3. G.F. Simmons (1968), "Introduction to Topology and Modern Analysis", McGraw-Hill Book Company, New York.