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Abstract—the synthesis of N-aminopiperidine (NAPP) using hydroxylamine-O-sulfonic acid (HOSA) is based 

on system of nonlinear rate equations. The new approach to homotopy perturbation method is applied to solve 

the nonlinear equations. A simple analytical expression for concentrations of hydroxylamine-O-sulfonique acid 

(HOSA), piperidine (PP), N-aminopiperidine (NAPP), sodium hydroxide (NaOH) and diazene (N2H2) along 

with NAPP yield is obtained and is compared with numerical result. Satisfactory agreement is obtained in the 

comparison of approximate analytical solution and numerical simulation. The obtained analytical result of 

NAPP yield is compared with the experimental results. The influence of reagents ratio p and rate constants ratio 

r on yield has been discussed. 

Keywords—Kinetic modelling; Nonlinear rate equations; Mathematical modelling; Synthesis of NAPP; 

Homotopy perturbation method 

I.  INTRODUCTION  

Several problems in biology and chemistry (both theoretical and experimental) involve the solution of 

reaction equations, including nonlinear chemical kinetics. Most of them do not have a precise analytical 

solution, so these nonlinear equations should be solved using approximate methods. For a great overview of 

nonlinear differential equations, see the books by L. Rajendran, R. Swaminathan and M. Chitra Devi [1] and L. 

Rajendran, M. Chitra Devi, C. Fernandez and Q. Peng with a particular focus on mathematical resolution.  

Residual method [3], variational iteration method [4], Adomian decomposition method [5], homotopy 

perturbation method (HPM) [6] are some of the techniques that can be used to solve nonlinear differential 

equations. Combining the traditional perturbation method and the homotopy in topology given rise to the 

homotopy perturbation method. It provides an approximate analytical solution to a variety of nonlinear problems 

in applied sciences [7,8]. This HPM has also been successfully used to solve Laplace equations, heat radiation 

equations, nonlinear integral equations, nonlinear heat conduction and convection equations, nonlinear 

oscillators, nonlinear wave equations and nonlinear rate equations [9]. 

He and El‑ Dib [10] solved the singular Duffing-like oscillator problem more effectively using homotopy 

perturbation method. For the nonlinear problems in nano/microelectromechanical systems, Naveed and He [11] 

applied the homotopy perturbation and He-Laplace technique. Yue Wu and He [12] showed that the homotopy 

perturbation method could be effectively applied to nonlinear oscillators with no linear term or negative linear 

term by the parameter expansion method. 

Abbasbandy [13] applied HPM to obtain the Laplace transform. He's homotopy-perturbation method was 

introduced to overcome the difficulties arising in calculating Adomian polynomials [14]. M. Rafei, D.D. Ganji 

and H. Daniali [15] used the HPM to determine an approximation of the epidemic model's solution. Yildirim 

and Ozis also applied the homotopy perturbation method to solve the problem of singular IVPs of the Lane-

Emden-type [16]. Yildirim [17] also derived the exact solutions of nonlinear differential-difference equations 

using the homotopy perturbation method. R. Singh, S. Singh and A.M. Wazwaz [18] solved nonlinear and 

singular time-dependent Emden–Fowler type equations with the Neumann and Dirichlet boundary conditions 

using a new modification of the homotopy perturbation method. 
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R. Swaminathan, K. Lakshmi Narayanan, V. Mohan, K. Saranya and L. Rajendran [19] reported the usage of 

new approaches to solving nonlinear partial differential equations in microdisk biosensors using the homotopy 

perturbation method (HPM) for the first time. K. Saranya, V. Mohan, R. Kizek, C. Fernandez and L. Rajendran 

[20] discussed the theoretical model of glucose oxidation and hydrogen peroxide production in the chitosan-

alginate microsphere and also obtained approximate analytical expression for the concentration of glucose, 

oxygen, gluconic acid and hydrogen peroxide using HPM. K. Saranya, V. Mohan, R. Kizek, C. Fernandez and 

L. Rajendran [21] solved the mathematical problem corresponding to a one-electron reversible electron transfer 

at a rotating disk electrode by using HPM under transient and steady-state conditions.  

E. Labarthe, A.J. Bougrine, V. Pasquet and H. Delalu [22] developed the mathematical model of N-

Aminopiperidine (NAPP) synthesis and solved the nonlinear equations using Runge-Kutta methods. To the 

author’s knowledge no analytical expression for concentration in NAPP synthesis and yield has been reported. 

In this paper, we find a consistent approximate analytical expression of concentrations and yield in the synthesis 

of NAPP using a new approach to homotopy perturbation method for all values of rate constant and time. The 

obtained analytical results is used to predict the evolution of the system (yield) as a function of the reagent 

concentrations ratio and  rate constants ratio. The accuracy of the derived expressions for concentration is 

compared with MATLAB generated numerical simulations and satisfactory agreement is noted. In the next 

section, the basic concept of the new approach to homotopy perturbation method is described. 

II. BASIC CONCEPT OF NEW APPROACH TO HOMOTOPY PERTURBATION METHOD 

The HPM was proposed first by He [8] for solving differential and integral equations, both linear and 

nonlinear. In this section, we present a new approach to homotopy perturbation method (NAHPM) as a tool for 

solving nonlinear ordinary differential equations with initial conditions. HPM provides an approximate solution 

to a wide range of nonlinear problems, but NAHPM provides the approximate analytical solution with a 

minimum number of iterations. Consider a general system of nonlinear equation in the form: 
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where A is any differential operator and B is a boundary operator and Γ is the boundary of the domain Ω. 

f(u,v)  and g(u,v) are nonlinear terms. In this method, first we can write u(t) in Taylor series expression. 
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Using this Taylor series expression, we can bring the nonlinear equation (1) into the linear form. Now we 

can construct the homotopy u∶ Ω×[0,1]→R & v∶ Ω×[0,1]→R 
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where p ∈ [0,1] is an impeding parameter, t ∈ Ω and u0(t) is the initial approximation to the solution of (1) 

that satisfies the boundary conditions. The NAHPM uses the parameter p as a small parameter, and assumes that 

the solutions of (5) can be written as a power series in p: 

 







0
...)(2

2
)(1)(0)(),(

j
tuptpututju

j
pptu       (7) 

 







0
...)(2

2
)(1)(0)(),(

j
tvptpvtvtjv

j
pptv

       

(8) 

where u0, u1, u2, … and v0, v1, v2,… are unknown functions to be determined. Substituting (7) and (8) into (5) 

and (6) and matching identical powers of p terms, provides the values of the sequence u0, u1, u2, … and v0, v1, 

v2,… iteratively. Then, as p → 1, the solution of (1) and (2) is given by: 
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Here we can apply this method to solve the nonlinear problem in NAPP synthesis. 

III. MATHEMATICAL FORMULATION OF NAPP SYNTHESIS PROBLEM 

N-aminopiperidine (NAPP) is used for plant protection, in cosmetology and photographic chemistry. Other 

uses include the manufacturing of paper and transparent recording films, inhibitor composition, and amine-
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based solvent-resistant compounds. The synthesis process of hydroxylamine-O-sulfonique acid (HOSA) has 

many advantages: it is as pure as the Raschig (water chemistry with no pollutant reagents) process. HOSA is 

more durable than monochloramine, easier to transport, more condensed solutions can be stored, and the 

synthesis can be operated batch-wise or continuously in a thinner fashion. 

E. Labarthe, A.J. Bougrine, V. Pasquet and H. Delalu [22] developed the kinetic modelling of synthesis of 

NAPP from HOSA and piperidine (PP) using differential equations. A reaction sequence for the NAPP 

synthesis with HOSA is described as follows: 
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NAPP synthesis using hydroxylamine-O-sulfonic acid and piperidine is described by the system of nonlinear 

differential equations as follows [22]: 
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The initial conditions are  
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where x,a,u,b and f are the concentrations of hydroxylamine-O-sulfonique acid (HOSA), piperidine (PP), N-

aminopiperidine (NAPP), sodium hydroxide (NaOH) and diazene(N2H2), at instant t, respectively and k1 and k2 

are rate constants. From (11) and (14), it is evident that  
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From (11), (12) and (15), it is noticeable that 
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From the above equation we get, 
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Using this relation, the system of five ordinary differential equations (11)-(15) can be reduced to just three: 

       

)()(2)()(1

)(
tutxktatxk

dt

tdx


       

(21) 

   

)()(1

)(
tatxk

dt

tda
           (22) 



An Approximate Analytical Solution Of Nonlinear Equations In N-Aminopiperidine Synthesis: New 

Approach Of Homotopy Perturbation Method) 
 

598 

                  

)()(2)()(1

)(
tutxktatxk

dt

tdu
                  (23) 

with initial conditions 
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This is the nonlinear differential equation system that we are going to solve analytically using the new approach 

to homotopy perturbation method in a simple and closed form. The NAPP yield is defined as [22]: 
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where uss denotes the steady state concentration of NAPP. 

IV. CONCENTRATIONS IN NAPP SYNTHESIS USING NEW APPROACH TO HOMOTOPY PERTURBATION METHOD 

Consider the functions x(p,t),a(p,t) and u(p,t) of the form: 
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By substituting (26)-(28) into (29)-(31), and matching terms of the same power of p, we can compute the 

functions x0,x1,x2,… , a0,a1,a2,… and u0,u1,u2,… .The explicitly solvable sequence of ODEs can be obtained for 

(29)-(31) as follows: 
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The corresponding initial conditions are 
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Solving (32)-(35) using the boundary conditions (36), the following results can be obtained. 
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where E1 represents exponential integral,
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will be as follows: 

   
)(1)(0)( txtxtx            (42) 

   
)(1)(0)( tatata                 (43) 

       
)(0)( tutu             (44) 

 

 

 

The approximate analytical expressions of b(t) and f(t) can be obtained easily by using x(t) and a(t) in (18) and 

(20) 

V. ANALYTICAL EXPRESSION OF STEADY STATE CONCENTRATIONS 

When t=∞, the concentration of HOSA, PP, NAPP, NaOH and diazene N2H2 are 

0ssx                  (45) 
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The analytical expression of NAPP yield using (25) is  
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only on reagents ratio p and rate constants ratio r which is a function of pH and temperature. 

VI. NUMERICAL SIMULATION 

The system of nonlinear rate equations was solved numerically to examine the accuracy of the solution obtained 

using a new approach to homotopy perturbation method. The numerical solution can be obtained using the 

MATLAB software program. In Figs. (1)-(5), analytical results of concentration of HOSA, PP, NAPP, NaOH 

and diazene are compared with the corresponding numerical results graphically for different values of the 

parameter. The comparison verified that the numerical results match very well with our analytical results 

obtained. The average deviation between the analytical and numerical results using the NAHPM is less than 1% 

(Refer to Table 1). 

 

VII. RESULT AND DISCUSSION 

 

Equations (42)-(44) represent the approximate analytical expressions of concentration of HOSA, PP, 

NAPP. The obtained analytical results are compared with numerical solution, which is provided in Figs. (1)–(6). 

From the figures it is observed that the concentration of NAPP and N2H2 is an increasing function, while that of 

HOSA, PP and NaOH are decreasing functions with respect to time. 

Fig. 1. Concentration of HOSA (x(t)) against time t for various values of rate constants. Solid line represents 

numerical result and dotted line represents analytical result (42). 

The concentrations of HOSA profiles are shown in Figs. 1(a) and 1(b) for different values of rate constant. From 

Fig. 1 it is observed that the concentration of HOSA increases as the rate constants k1 and k2 decreases. Also it is 

noted that at t=100min, the concentration of HOSA reaches its steady-state value. 

 

 

Fig. 2. Concentration of piperidine (a(t)) 

against time t for various values of rate 

constants. Solid line represents numerical 

result and dotted line represents analytical 

result (43). 

Fig. 2 represents the concentration of 

piperidine versus time t for various values of 

rate constant k1 and k2. From Fig. 2, it is 

inferred that the concentration of piperidine 

increases when the rate constant k1 and k2 

decreases for some fixed values of x0
* and a0

*. As time increases it is observed that a(t)  approaches a0*exp(-

x0*/a0*)  and after that it becomes steady. 

 

Fig. 3. Concentration of NAPP (u(t)) against 

time t for various values of rate constants. 

Solid line represents numerical result and 

dotted line represents analytical result (44). 

The effects of rate constant on concentration 

profiles of NAPP are shown in Figs. 3(a) and 

3(b). From Fig. 3(a), it is investigated that the 
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concentration of NAPP increases when k1 increases for some fixed values of x0
* and a0

*. The concentration of 

NAPP reaches the steady-state value when t=20min for different values of k1. From Fig. 3(b), it is noticed  that 

u(t) and k2 are inversely related. When t=150min for varying values of k2, the NAPP concentration approaches 

steady-state value. 

 

 

Fig. 4. Concentration of NaOH (b(t)) against 

time t for various values of rate constants. 

Solid line represents numerical result and 

dotted line represents analytical result (18). 

The concentration profiles of NaOH versus 

time t for different values of reaction parameter 

k1 and k2 are displayed in the Figs. 4(a) and 

4(b). It can be inferred from the figures that 

decrease in rate constants leads to increase in 

concentration of NaOH for some fixed values 

of other parameters.  This concentration 

stabilizes for larger value of t and it is observed 

to be b0*-2x0*.   

Fig. 5. Concentration of diazene (f(t)) against 

time t for various values of rate constants. 

Solid line represents numerical result and 

dotted line represents analytical result (20). 

The influence of rate constant on 

concentration profiles of diazene are shown in 

Figs. 5(a) and 5(b). From these figures, it is 

noted that the concentration of diazene 

increases when k1, k2 increases. As time 

approaches larger value, f(t) approaches a 

constant value which is given in (49). 

Fig. 6. Plot of concentration of HOSA (1), PP (2), 

NAPP (3), NaOH (4) and N2H2 (5) against time t for 

k1=3.39lmol-1min-1, k2=1.17lmol-1min-1, 

x0
*=1.23x10-3mol/l, a0

*=1.23x10-2 mol/l,  

b0
*=5.33x10-2 mol/l. Solid line represents numerical 

result and dotted line represents analytical result 

Fig. 6 illustrates the behaviour of all concentration 

profiles. From this figure, it is observed that the 

concentration of HOSA (x(t)) is a strictly decreasing 

function, whereas the concentration of NAPP (u(t)) 

is a strictly increasing function.  

A. Influence of reagent ratio p & ratio of rate 

constants r on yield 

Fig. 7 (a). Comparison of analytical result (50) of yield with 

experimental result [22] at k1=3.39lmol-1min-1 and 

k1=1.17lmol-1min-1 (b). Effect of ratio of rate constants r and 

reagents ratio p on yield (50)  (c). Profile of yield φu over 

reagent ratio p and ratio of rate constants r. 

The comparison of analytical results of NAPP yield with 

experimental results for fixed values of k1 and k2 is shown in 

Fig. 7(a) The satisfactory agreement is noted. From Fig. 7(b) 

it is observed that yield decreases for a higher ratio of rate 

constants r. The NAPP yield reaches 90% at p=8. For p>8, 

there is a negligible increase in the yield. It is noted that the 

NAPP yield increases for higher reagents ratio p. It can be 

found from Fig. 7(c) that when the rate constant ratio r is very 

small and the reagent ratio p exceeds 15, the peak value of 

yield is obtained. 
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B. Differential sensitive analysis of parameters: ratio of rate constants r and reagents ratio p 

 
Fig. 8. Sensitivity analysis of parameters, ratio of rate constants r and reagents ratio p : Percentage change in 

yield φu. 

Equation (50) represents the new approximate analytical expression for NAPP yield in terms of the parameters 

such as the ratio of rate constants r and reagents ratio p. By differentiating the NAPP yield partially for these 

parameters, the impact of the parameters over NAPP yield can be determined [23, 24]. The percentage of 

change in NAPP yield for r and p are 86% and 14 %. From this, it is evident that the ratio of rate constants r has 

more impact on NAPP yield when it is varied. In contrast, the remaining parameter, reagents ratio p accounts for 

only small changes in yield. The analysis of these results is described in Fig. 8 and confirmed in the Figs. 7(a) – 

7(c). 

VIII. CONCLUSION 

The new analytic approach of the homotopy perturbation method is being used because of the difficulties in 

solving the nonlinear differential equations in NAPP synthesis. In this paper, the time-dependent nonlinear rate 

equation was solved analytically. The obtained results have a good agreement with those numerical and 

experimental results. This work's primary result is a simple approximate calculation of concentration and yield for 

all possible parameters such as the ratio of rate constants r and reagents ratio p. It is beneficial and simple, and 

only a few iterations are needed to find an approximate solution. The analytical results are useful to characterize 

the reaction mechanism and predict the behaviour of NAPP synthesis. 

 

TABLE I.  COMPARISON BETWEEN NUMERICAL AND ANALYTICAL (NAHPM) RESULTS OF CONCENTRATIONS 

OF HOSA, PP  AND NAPP  FOR VARIOUS VALUES OF PARAMETERS. 

t 

(min) 

Concentration of HOSA Concentration of PP Concentration of NAPP 

k1=1 lmol-1min-1, k2=2.5 lmol-1min-1 

x0
*=0.04 mol/l, a0

*=0.05 mol/l, 

b0
*=0.11 mol/l 

k1=0.7 lmol-1min-1, k2=1 lmol-1min-1 

x0
*=0.04 mol/l, a0

*=0.05 mol/l, 

b0
*=0.11 mol/l 

k1=1.6 lmol-1min-1, k2=2 lmol-1min-1 

x0
*=0.04 mol/l, a0

*=0.05 mol/l, 

b0
*=0.11 mol/l 

Numeric

al 

Analytical 

(42) 

% of 

deviation  
Numerical 

Analytical 

(43) 

% of 

deviati

on  

Numeric

al 

Analytical 

(44) 

% of 

deviation  

0 0.0400 0.0400 0.00 0.0500 0.0500 0.00 0.0000 0.0000 0.00 

10 0.0226 0.0225 0.44 0.0396 0.0395 0.25 0.0135 0.0134 0.74 

20 0.0127 0.0125 1.57 0.0336 0.0334 0.60 0.0157 0.0156 0.64 

30 0.0072 0.0071 1.39 0.0299 0.0297 0.67 0.0161 0.0161 0.00 

40 0.0041 0.0041 0.00 0.0276 0.0274 0.72 0.0163 0.0162 0.61 

50 0.0024 0.0024 0.00 0.0261 0.0258 1.15 0.0163 0.0163 0.00 

60 0.0014 0.0014 0.00 0.0251 0.0248 1.20 0.0163 0.0163 0.00 

70 0.0008 0.0008 0.00 0.0243 0.0241 0.82 0.0163 0.0163 0.00 

80 0.0005 0.0005 0.00 0.0238 0.0236 0.84 0.0163 0.0163 0.00 

90 0.0003 0.0003 0.00 0.0233 0.0232 0.43 0.0163 0.0163 0.00 

100 0.0002 0.0002 0.00 0.0229 0.0230 0.44 0.0163 0.0163 0.00 

TABLE II.  FORMATION OF NAPP FOR. 
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p=a0
*/x0

* Real concentration in the reaction medium, mol/l Yield= uss/ 

x0
*% 

Labarthe et 

al.[22] 

(Experimental

) 

 

 Yield= uss/ x0
*% 

(50) 

 

t=0 t=∞ 

p=a0
*/x0

* 

[HOSA]0, 

(x0
*) 

Labarthe  et 

al. [22]& this 

work 

[PP]0, (x0
*) 

Labarthe et 

al. [22] & this 

work 

[NAPP]∞, 

(uss) 

Labarthe et 

al. [22] 

[NAPP]∞, 

(uss) 

This work 

(47) 

1.25 0.04 0.05 0.03 0.0236 65.9 59.06 

1.23 0.13 0.16 0.09 0.0762 66.0 58.58 

1.19 0.21 0.25 0.13 0.1209 64.5 57.56 

3 0.08 0.24 0.07 0.0641 85.9 80.08 

6 0.04 0.24 0.04 0.0358 91.8 89.44 

8 0.03 0.24 0.03 0.0276 93.9 91.96 

12 0.02 0.24 0.02 0.0189 94.6 94.56 

TABLE III.  ANALYTICAL RESULTS OF NAPP YIELD ΦU FOR VARIOUS RATIO OF RATE CONSTANTS R AND 

REAGENTS RATION P. 

p=a0
*/x0

* [pp]0 , (a0
*) [HOSA]0 , (x0

*) 
Yield= uss/ x0

* (50) 

r=0.1 r=0.5 r=2 r=5 r=10 

1.25 0.05 0.04 0.658 0.5525 0.3093 0.1347 0.0624 

1.23 0.16 0.13 0.6538 0.5472 0.3036 0.1311 0.0606 

1.19 0.25 0.21 0.645 0.5364 0.2919 0.1239 0.057 

3 0.24 0.08 0.8356 0.7797 0.6093 0.3957 0.227 

6 0.24 0.04 0.9133 0.8828 0.7797 0.6178 0.4384 

8 0.24 0.03 0.9341 0.9107 0.8296 0.6945 0.5298 
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TABLE IV.  NOMENCLATURE 

Symb

ol 
Description Unit 

x  Concentration of hydroxylamine-O-

sulfonique acid 

mol/l 

a  Concentration of piperidine mol/l 

u  Concentration of N-aminopiperidine mol/l 

b  Concentration of sodium hydroxide mol/l 

f  Concentration of diazene mol/l 

*
0x  

Initial concentration of hydroxylamine-O-

sulfonique acid 

mol/l 

*
0a  

Initial concentration of piperidine mol/l 

*
0b  

Initial concentration of sodium hydroxide mol/l 

ssx  Steady state concentration of 

hydroxylamine-O-sulfonique acid 

mol/l 

ssa  Steady state concentration of piperidine mol/l 

ssu  Steady state concentration of N-

aminopiperidine 

mol/l 

ssb  Steady state concentration of sodium 

hydroxide 

mol/l 

ssf  Steady state concentration of diazene mol/l 
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Symb

ol 
Description Unit 

2,1 kk


 

Rate constants lmol-1 

min-1 

t Time min 

p  Reagents ratio none 

r  Ratio of rate constants none 
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