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Abstract— the nonlinear reaction-diffusion cycle in the thin membrane that describes the chemical reactions 

involving three species is studied. The model consists of the system of on nonlinear reaction-diffusion 

equations. The closed type of analytical expression of concentrations for the enzyme was developed by solving 

equations using the Taylor series formula. This results in the mixed Dirichlet and Neumann boundary 

conditions. Taylor series method similar to exponential function method. This technique provides approximate 

and simple solutions that are quick, easy to compute, and efficiently correct. These estimated findings are 

compared to the nuxmerical results. There is a good agreement with the simulation results. 

Keywords—Mathematical modelling; Non-linear reaction-diffusion equation; Thin membrane; Taylor series 

method; Numerical Simulation.  

 

I.  INTRODUCTION  

According to the reaction mechanism                                   product, a diffusion-controlled 

chemical reaction between two species A and B is considered to be a product. The reaction path consists of a 

coupled pair of simple, irreversible and fast reaction mechanisms [4].  

              (1) 

             (2) 

 where   and   denote the binary reaction rates.                   Ariel et al. [1] used the HPM to measure the 

steady laminar flow of the third-grade fluid through a circular tube. Seidman et al. [2, 3] and Kalacheve et al. [ 

4] presented a detailed singular perturbation analysis of the steady-state problem. The corresponding non-steady 

state system of this problem was perceived by Haario Seidman [5] to describe the reactions in the film for the 

gas/liquid interface under the complex boundary conditions. Recently, Butuzov et al. [6, 7] have addressed 

many issues related to this problem using a variety of techniques. Rajendranet al. [8] and Ananthaswamy et al. 

[9] developed approximate analytical expressions for steady-state concentrations using the homotopy 

perturbation and homotopy analysis methods. 

 

Nomenclature 

 

)(u  Dimensionless concentration of chemical species A 

)(v  Dimensionless concentration of chemical species B 

)(w  Dimensionless concentration of chemical species C 

  Dimensionless distance  
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  Dimensionless parameter  

  Fixed concentration of the species  

  Fixed concentration of the species 
  Fixed concentration of the species 
q  Dimensionless reaction rate  

m Dimensionless Parameter  

n Dimensionless Parameter  

II.  MATHEMATICAL FORMULATION OF THE PROBLEM 

 The diffusion coefficients of three species are considered to have an equal diffusion coefficient which is 

equal to one. The non-linear diffusion reaction equation in the thin membrane is described by the following non-

dimensional format [4]: 
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 where )(and)(),(  wvu denote the concentrations of the chemical species A, B and C respectively. We 

assume that the specie A is supplied with a given fixed concentration 0  at 0 , and the specie B with 

0  at 1 . This results in the mixed Dirichlet and Neumann boundary conditions for the above Eqns. (3) - 

(5) can be expressed as 

0at,0,  


 w
d

dv
u             (6) 

1at0,,0  
dx

dw
v

dx

du
            (7) 

The reaction rate q is given by  

)()(  vuq                                                        (8) 

III. CONCENTRATIONS IN THIN MEMBRANE USING TAYLOR’S SERIES METHOD 

 He [15, 16] suggests Taylor’s series method to solve the Lane-Emden equation. This method also extended 

to all non-linear differential equation in fractional calculus [17, 18].  He recently proposed the exp-function 

method for solving the non-linear equations [18]. Visuvasam et al. [19] have derived the analytical expression 

for concentration profile and current using a hyperbolic function method and the Taylor series method. We can 

also obtain concentrations )(),(  vu  )(and w  using Taylor’s series method (Appendix D) as follows:   
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The analytical expression for reaction rate q becomes, 
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A higher order in Taylors series provides a better approximation. Table-1 offers different estimated analytical 

representations of the concentrations and reaction rate available in the literature. 

 

Table 1: Various approximate analytical expression of concentrations of )(and)(),(  wvu . 

 The various approximate analytical solutions of concentration of )(and)(),(  wvu  Homotopy 

Perturbation method [8], Homotopy Analysis Method [9] and our results are solved Taylor Series Method.  
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The analytical expression for reaction rate q becomes, 

)()(  vuq   

 

IV. NUMERICAL SIMULATION 

 The nonlinear differential equation is solved numerically to investigate the accuracy of this analytical 

method. The detailed Matlab program for numerical simulation is provided in Appendix B. Figure 1 compares 

our empirical findings with the simulation results. In Tables2 to 4, our results are also compared with previous 

analytical results obtained using HPM and HAM.  There is no significant difference in error percentage between 

the numerical and our analytical methods when the parameter  .1   The error percentage between the 

numerical other previous analytical methods is 8%. Also, our method has the simplest form when compared to 

all other previous methods.       

 

V. DISCUSSION 

       Equations (9) and (11) are the new closed and simple approximate analytical expressions of the 

concentrations of species )(and)(),(  wvu  for all parameter values  and,, . Fig.1a represent the 

normalized steady‐ state concentration species )(u   for various values of the dimensionless parameter   and 

some fixed values other parameters.  From this figure, it is evident that the values of the concentration of species 

A decrease when dimensionless parameter  increases at 1 .Figure 1b shows concentration )(v  for different 

dimensional parameter   and some fixed values for other parameters. From this figure, it is inferred that the 

value of the concentration will increase, when the dimensionless parameter   decreases at 0
.
Fig.1c 

illustrates the concentration )(w  for distinct parameter values. From this figure, as the dimensionless 

parameter  decreases, the value of the concentration will increase.           Figs. (2a-2d). shows the 

dimensionless reaction rate q using for various values of   . Thus, it is concluded that there is a simultaneous 

increase in the values of the reaction rate as well as in   for the fixed value of .and,   
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Fig.1. Normalized steady‐ state concentration  )(and)(),(  wvu versus the dimensionless distance  using 

eqns.(9-11) for various values of the dimensionless parameter  and fixed values for 

5.0,4.0   01.0and  . Lines represent the analytical solution whereas the dotted lines for the numerical 

solution. 

 
 

Fig. 2. Dimensionless reaction rate q versus the dimensionless distance   using (13) for the value of the 

dimensionless  parameter  when 01.0and5.0,4.0   . Lines represent the analytical solution whereas 

the dotted lines for the numerical solution.   

 

VI. CONCLUSION 

 In that paper a simple and efficient approach is introduced to solve the system of nonlinear reaction-

diffusion equation in a thin membrane. Compared to other approaches the solution process is very simple and 

straightforward. Also, it can be extended to other boundary value problems in a thin membrane without any 

difficulty. Analytical expressions of the concentrations of species are derived by using the Taylor series method.  

Analytical and numerical simulation results are compared. Concentration and reaction rate, when the parameter 

 is less than one, give satisfactory agreement with simulation results. 

 

A. Appendix A:  Approximate analytical solution of the equations (3-5) using Taylor series method  
 Approximate analytical solution of the equations (3-5) using Taylors series method Taylor series method is 

accessible to all students and engineers; it might be the simplest analytical method [20-22]. More recently He 

[15] solved the convection-diffusion equation for E reaction arising in RDE using Taylors series method. The 

system of steady-state non-linear differential equations (3) - (5) in ECE reactions can be written as follows: 

0)()()()()("   wuvuu                                       (A1)   
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0)()()("   vuv                                                           (A2) 

0)()()()()("   vuwuw                                    (A3) 

The given boundary conditions for the above equations are 

  )0(,0)0(',)0( wvu                                                  (A4) 

0)1(',)1(,0)1('  wvu                                                    (A5) 

Now assume that  

mu )0('                                                                 (A6) 

The Eqn.(A.1) at  0  we obtained  

0)0()0()0()0()0("  wuvuu                                    (A7) 

)()0("   nu                                                     (A8) 

Now assume that  

nv )0(                                                                  (A9) 

The Eqn.(A.2) at  0  we find  

0)0()0()0("  vuv                                                  (A10) 

nv )0("                                                          (A11) 

Now assume that 

pw )0('                                                               (A12) 

when 0  we obtained that the Eqn.(A.3) is  

)0()0()0()0()0(" vuwuw                                           (A13) 

)()0(" nw                                                            (A14) 

The Taylor series solution of (A.1), (A.2) and (A.3) is 
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Now applying 1  is series solution of  ),(u  )(v and )(w in Using equations (A.15) - (A.17) we get the 

constant pnm and, .Differentiating the Eqn.(A.15) and using the boundary condition  0)1(' u  we get 

constant  

 )(  nm                                                               (A18) 

The Eqn.(A.16) and using the boundary condition  )1(v  we find constant 













2
1




n                                                                      (A19) 

Differentiating the Eqn.(A.17) and using the boundary condition  0)1(' w  we obtained constant   

)( np                                                                    (A20) 

B. Appendix B:  Numerical solution of nonlinear equations (3)-(5).   

function sol =ex6 

solinit=bvpinit(linspace(0,1),[0 0 0 0 0 0]); 

sol=bvp5c(@ex6ode,@ex6bc,solinit); 

end 

function dydx=ex6ode(x,y) 

a=0.4;b=0.5;g=0.01;l=0.01 

dydx=[y(2) 

l* y(1)* y(2) +y(2)*y(3) 

y(4) 
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l*y(1)* y(2)  

y(6)  

y(1)* y(3)-l*y(1)*y(3)   ]; 

end 

function res = ex6bc(ya,yb) 

res=[ya(2)-a 

ya(4) 

ya(5)-g 

yb(1) 

yb(3)-b 

yb(5)          ]; 

end 

 

%Coding to run the programme 

 

% 1st give this %  

solution=ex6;x=solution.x;y=solution.y;y1=solution.y(1,:);y2=solution.y(2,:);y3=solution.y(3,:);y4=solution.y(4

,:);y5=solution.y(5,:);y6=solution.y(6,:); 

 

% 2nd give this %plot(x,y1); 

 

% To find dw/dx at x=0 run plot(x,y6); in MATLAB command window and find 

 

% the value at x=0 in that graph note the point for comparison 

 

ACKNOWLEDGMENT  

 The Authors are also thankful to Shri J. Ramachandran, Chancellor, Col. Dr. G. Thiruvasagam, Vice-

Chancellor, Academy of Maritime Education and Training (AMET), Deemed to be University, Chennai, for 

their constant encouragement. The authors are also grateful for their continuous encouragement to 

Dr.K.Sridharan, Chancellor, Dr.S.Shasi Anand , Vice- President, and Prof. Dr. R. Nagaraj , Vice-Chancellor, 

Kalasalingam Academy of Research and Education (KARE),  Deemed to be University, Srivilliputhur-626126, 

India. 

 

REFERENCES 

 

1. Ariel P. D., “Homotopy Perturbation Method and Natural Convection Flow of a Third Grade Fluid Through 

Circular Tube,” Nonlinear. Sci. Lett. A.1 , 43‐  52., 2010.  

2. Seidman T. I., and Kalachev L. V., “A One Dimensional Reaction /Diffusion System with a Fast Reaction,” 

J. Math. Anal. Appl.209, pp. 392 – 414, 1997.  

3. Seidman T. I., and Soane A. M., and Gobbert M. K. Numerical Exploration of a System of Reaction –

Diffusion with Internal and Transient Layers. Nonlinear Analysis: Real World Applications, vol. 6, pp. 914 

– 934, 2005.  

4. Kalachev L. V., and Seidman T. I., “Singular Perturbation Analysis of a Stationary Diffusion/Reaction 

System whose Solution Exhibits a Corner‐ Type Behavior in the Interior of the Domain”. J. Math. Anal. 

Appl., vol.288, pp.722‐ 743, 2003. 

5. Haario H., Seidman T. I., “Reaction and Diffusion at Gas / Liquid Interface II”. SIAM J. Math. Anal., 

Vol.25,pp.1069-1084, 1994.  

6. Butuzov V. F., Nefedov N. N., and Schneider K. R., “Singularly Perturbed Boundary Value Problems in 

case of Exchange of Stabilities,” J. Math. Anal. Appl., Vol.229, pp.543‐ 562, 1999.  

7. Butuzov V. F., Nefedov N. N., and Schneider K. R, “Singularly Perturbed Reaction‐ Diffusion System in 

case of Exchange of Stabilities,” Natural Resource Modeling, vol.13, pp.247‐ 269, 2000.  

8. L. Rajendran, V. Ananthaswamy, A. Eswari, “Analytical solution of system of non-linear reaction-diffusion 

equations in a thin membrane: Homotopy perturbation approach,” Physical Chemistry: An Indian Journal, 

vol.5(2), pp. 97-102, 2010.  

9. V. Ananthaswamy, A. Eswari, L. Rajendran, “Non‐ Linear Reaction‐ Diffusion Process in a Thin 

Membrane and Homotopy Analysis Method,” International Journal of Automation and Control 

Engineering, vol.2 (1), 2013. 

10. P.G. JansiRani , M. Kirthiga, Angela Molina, E. Laborda, L. Rajendran, “Analytical solution of the 

convection-diffusion equation for uniformly accessible rotating disk electrodes via the homotopy 

perturbation method,” J. Electroanal. Chem., vol. 799 , pp.175, 2017. 



Approximate Solution Of Non-Linear Reaction-Diffusion In A Thin Membrane: Taylor Series 

Method 
 

592 

11. J. Visuvasam, A. Molina, E. Laborda, L. Rajendran, “Mathematical models of the infinite porous rotating 

disk electrode,” Int. J. Electrochem. Sci.,vol.13, pp.9999, 2018. 

12. Liao S. J., “On the Homotopy Analysis Method for Non‐ Linear Problems”. Appl. Math. Comput., vol. 

147, pp.499‐ 513, 2004.  

13. Liao S. J., “An Optimal Homotopy Analysis Approach for Strongly Non‐ Linear Differential Equations,” 

Commun. Nonlinear Sci. Numer. Simulat., vol.15, pp.2003‐  2016, 2010.  

14. Liao S. J., “The Homotopy Analysis method in Non‐ Linear Differential Equations,” Springer and Higher 

Education press, 2012. 

15. J.-H. He, “A simple approach to one-dimensional convection-diffusion equation and its fractional 

modification for E reaction arising in rotating disk electrodes,” Journal of Electroanalytical Chemistry, Vol. 

854,                pp. 113565, 2019. 

16. Ji-Huan He, “A Fractal Variational Theory for One-dimensional Compressible Flow in a Microgravity 

Space,” Fractals, Vol. 28(2), pp.2050024, 2020. 

17. Chun-Hui He, Yue Shen, Fei-Yu Ji, Ji-Huan He, “Taylor Series Solution For Fractal Bratu-Type Equation 

Arising In Electrospinning Process,” Fractals, Vol. 28(1), Pp.2050011, 2020. 

18. Ji-Huan He, Xu-Hong Wu, “Exp-function method for nonlinear wave equations,”Chaos, Solitons and 

Fractals., Vol.30, pp.700–708, 2006.  

19. J. Visuvasam, A. Meena, L. Rajendran, “New analytical method for solving nonlinear equation in rotating 

disk electrodes for second-order ECE reactions,” Journal of Electroanalytical Chemistry, 

Vol.869, pp.114106, 2020. 

20. J. H. He, F.Y. Ji., “Taylor series solution for Lane-Emden equation,” Journal of Mathematical Chemistry, 

vol.57, pp.1932–1934, 2019.  

21. He, J.H., “The simplest approach to nonlinear oscillators,” Results in Physics, vol. 15pp.102546, 2019. 

22. He, J.H., “The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators,” 

Journal of Low Frequency Noise, Vibration and Active Control, vol.38, pp.1252-1260, 2019.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://electrochemsci.org/papers/vol13/131009999.pdf
http://electrochemsci.org/papers/vol13/131009999.pdf
https://www.sciencedirect.com/science/journal/15726657/854/supp/C
https://www.sciencedirect.com/science/journal/15726657/854/supp/C
https://www.worldscientific.com/doi/10.1142/S0218348X20500115
https://www.worldscientific.com/doi/10.1142/S0218348X20500115
https://www.worldscientific.com/doi/10.1142/S0218348X20500115
https://www.worldscientific.com/doi/10.1142/S0218348X20500115
https://www.worldscientific.com/worldscinet/fractals
https://ur.booksc.org/book/3483728/c86438
https://www.sciencedirect.com/science/journal/15726657/869/supp/C


1J. Visuvasam, 2A. Meena, 3K. Nirmala, 4L. Rajendran 

593 

Table. 2. Comparison between the analytical results and the simulation results for the concentrations of )(u  

  

01.0,01.0,5.0,4.0    5.0,01.0,5.0,4.0    1,01.0,5.0,4.0    

Nume 

rical 

Taylor 
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eqn. 
(17) 
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HPM   
eqn.(9) 

Previous 

results 

HAM   
eqn.(13) 
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error 
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HPM   
eqn.(9) 
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results 

HAM   
eqn.(13) 
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eqn.(9) 
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results 

HAM   
eqn.(13) 

Nume 
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eqn. 
(17) 

Previous 

results 

HPM  
eqn.(9) 

Previous 

results 

HAM   
eqn.(13) 

Taylor 

series 

error 
eqn.(17) 

Previous 

results 

HPM   
eqn.(9) 

Previous 

results 

HAM   
eqn.(13) 

0 0.4000 0.4000 0.4000 0.4000 0.0000 0.0000 0.0000 0.4000 0.4000 0.4000 0.4000 0.0000 0.0000 0.0000 0.4000 0.4000 0.4000 0.4000 0.0000 0.0000 0.0000 

0.2 0.3990 0.3989 0.3989 0.3998 0.0125 0.0127 0.2038 0.3822 0.3829 0.3813 0.3963 0.1906 0.2376 3.6809 0.3692 0.3693 0.3633 0.3855 0.0202 1.6049 4.4015 

0.4 0.3982 0.3981 0.3981 0.3996 0.0237 0.0241 0.3617 0.3682 0.3696 0.3667 0.3933 0.3789 0.4111 6.8191 0.3452 0.3454 0.3347 0.3741 0.0523 3.0376 8.3828 

0.6 0.3976 0.3975 0.3975 0.3995 0.0325 0.0329 0.4741 0.3582 0.3601 0.3563 0.3913 0.5463 0.5197 9.2363 0.3279 0.3283 0.3143 0.3661 0.1158 4.1533 11.6252 

0.8 0.3973 0.3971 0.3971 0.3994 0.0381 0.0386 0.5414 0.3521 0.3544 0.3501 0.3900 0.6682 0.5711 10.7714 0.3175 0.3181 0.3021 0.3612 0.1977 4.8424 13.7859 

1 0.3972 0.3970 0.3970 0.3994 0.0400 0.0405 0.5638 0.3500 0.3525 0.3480 0.3896 0.7162 0.5824 11.3020 0.3139 0.3147 0.2980 0.3596 0.2458 5.0638 14.5606 

 Average error   0.0245 0.0248 0.3575 Average error   0.4167 0.3870 6.9683 Average error   0.1053 3.1170 8.7927 

 Table.3. Comparison between the analytical results and the simulation results for the concentrations of )(v  

Table.4.  Comparison between the analytical results and the simulation results for the concentrations of )(w
 

  

01.0,01.0,5.0,4.0    5.0,01.0,5.0,4.0    1,01.0,5.0,4.0    

Nume 

rical 

Taylor 

series 

eqn. 
(18) 

Previous 

results 

HPM   
eqn.(10) 

Previous 

results 

HAM   
eqn.(14) 

Taylor 

series 

error 
eqn.(18) 

Previous 

results 

HPM   
eqn.(10) 

Previous 

results 

HAM   
eqn.(14) 

Nume 

rical 

Taylor 

series 

eqn. 
(18) 

Previous 

results 

HPM   
eqn.(10) 

Previous 

results 

HAM   
eqn.(14) 

Taylor 

series 

error 
eqn.(18) 

Previous 

results 
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eqn.(10) 

Previous 

results 

HAM   
eqn.(14) 
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rical 

Taylor 

series 

eqn. 
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eqn.(10) 

Previous 

results 

HAM   
eqn.(14) 

Taylor 

series 

error 
eqn.(18) 

Previous 

results 

HPM   
eqn.(10) 

Previous 

results 

HAM   
eqn.(14) 

0 0.4990 0.4990 0.4990 0.4998 0.0004 0.0000 0.1603 0.4565 0.4545 0.4500 0.4900 0.4282 1.4239 7.3384 0.4224 0.4167 0.4000 0.4800 1.3573 5.3030 13.6364 

0.2 0.4990 0.4990 0.4990 0.4998 0.0004 0.0000 0.1539 0.4583 0.4564 0.4520 0.4904 0.4222 1.3744 7.0044 0.4257 0.4200 0.4040 0.4808 1.3370 5.0956 12.9456 

0.4 0.4992 0.4992 0.4992 0.4998 0.0005 0.0001 0.1347 0.4636 0.4618 0.4580 0.4916 0.3856 1.2092 6.0383 0.4353 0.4300 0.4160 0.4832 1.2144 4.4307 11.0074 

0.6 0.4994 0.4994 0.4994 0.4999 0.0006 0.0003 0.1028 0.4723 0.4709 0.4680 0.4936 0.3013 0.9172 4.5027 0.4509 0.4467 0.4360 0.4872 0.9401 3.3057 8.0493 

0.8 0.4996 0.4996 0.4996 0.4999 0.0008 0.0006 0.0583 0.4844 0.4836 0.4820 0.4964 0.1675 0.5053 2.4672 0.4725 0.4700 0.4640 0.4928 0.5194 1.7894 4.3065 

1 0.5000 0.5000 0.5000 0.5000 0.0010 0.0010 0.0010 0.5000 0.5000 0.5000 0.5000 0.0040 0.0040 0.0040 0.5000 0.5000 0.5000 0.5000 0.0035 0.0035 0.0035 

 Average error   0.0006 0.0004 0.1019 Average error   0.2848 0.9057 4.5592 Average error   0.8953 3.3213 8.3248 
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