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Abstract— the nonlinear reaction-diffusion cycle in the thin membrane that describes the chemical reactions
involving three species is studied. The model consists of the system of on nonlinear reaction-diffusion
equations. The closed type of analytical expression of concentrations for the enzyme was developed by solving
equations using the Taylor series formula. This results in the mixed Dirichlet and Neumann boundary
conditions. Taylor series method similar to exponential function method. This technique provides approximate
and simple solutions that are quick, easy to compute, and efficiently correct. These estimated findings are
compared to the nuxmerical results. There is a good agreement with the simulation results.
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. INTRODUCTION
According to the reaction mechanism ZA + B — product, a diffusion-controlled
chemical reaction between two species A and B is considered to be a product. The reaction path consists of a
coupledlpair of simple, irreversible and fast reaction mechanisms [4].

A+B=C (1)
i}
A+ C — product ©)
where 4 and u denote the binary reaction rates. Ariel et al. [1] used the HPM to measure the

steady laminar flow of the third-grade fluid through a circular tube. Seidman et al. [2, 3] and Kalacheve et al. [
4] presented a detailed singular perturbation analysis of the steady-state problem. The corresponding non-steady
state system of this problem was perceived by Haario Seidman [5] to describe the reactions in the film for the
gas/liquid interface under the complex boundary conditions. Recently, Butuzov et al. [6, 7] have addressed
many issues related to this problem using a variety of techniques. Rajendranet al. [8] and Ananthaswamy et al.
[9] developed approximate analytical expressions for steady-state concentrations using the homotopy
perturbation and homotopy analysis methods.

Nomenclature

u(y) Dimensionless concentration of chemical species A
v(y) Dimensionless concentration of chemical species B
w(y) Dimensionless concentration of chemical species C
X Dimensionless distance
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Dimensionless parameter
Fixed concentration of the species
Fixed concentration of the species
Fixed concentration of the species
Dimensionless reaction rate
Dimensionless Parameter
Dimensionless Parameter
Il. MATHEMATICAL FORMULATION OF THE PROBLEM

The diffusion coefficients of three species are considered to have an equal diffusion coefficient which is
equal to one. The non-linear diffusion reaction equation in the thin membrane is described by the following non-
dimensional format [4]:

SiS|lox ||~

%—ﬂ W) V(r) ~u(r) W(z) =0 3)
VD uv(n) =0 4)
dy

%—u(x) W(z)+ 4 u(z)V(z) =0 (5)

where u(y), v(y) and w(y) denote the concentrations of the chemical species A, B and C respectively. We
assume that the specie A is supplied with a given fixed concentration «>0 at y =0, and the specie B with
B >0 at y=1. This results in the mixed Dirichlet and Neumann boundary conditions for the above Eqgns. (3) -
(5) can be expressed as

v

Uu=a, —=0, w=y a y=0

a dy 4 X (6)
du dw
—=0, v=4, —=0 at y=1
ix B ix b4 (7
The reaction rate q is given by
a=Au(y) v(x) (8)

I11. CONCENTRATIONS IN THIN MEMBRANE USING TAYLOR’S SERIES METHOD
He [15, 16] suggests Taylor’s series method to solve the Lane-Emden equation. This method also extended
to all non-linear differential equation in fractional calculus [17, 18]. He recently proposed the exp-function
method for solving the non-linear equations [18]. Visuvasam et al. [19] have derived the analytical expression
for concentration profile and current using a hyperbolic function method and the Taylor series method. We can
also obtain concentrations u(y), v(y) andw(y) using Taylor’s series method (Appendix D) as follows:

W) =arm g s 2 EATED © 0
v(z)=n +%ﬂn (10) 0

2 (_ 11
W(z)=7+bz+w (11) (11)

The analytical expression for reaction rate g becomes,

a=Au(x) v(x)=4 (a+m 1+Mj

2
(12)
2
(n-i-l aln]
2

where

24
m=—a(An+y), n= yb=a (An-y)) (13)

2+a l

A higher order in Taylors series provides a better approximation. Table-1 offers different estimated analytical
representations of the concentrations and reaction rate available in the literature.

Table 1: Various approximate analytical expression of concentrations of u( ), v(x) and w( y).
The various approximate analytical solutions of concentration of u(y), v(x) andw(y) Homotopy
Perturbation method [8], Homotopy Analysis Method [9] and our results are solved Taylor Series Method.
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Ref. | Approximate Method
analytical concentrations

8 1 1 HPM
(8] U(x)=a+§ A /3+5amz—/1 afy-ayy
1

V) =p+ar'h f-2 hap

1 1
w(y) = - A ﬂ+§a712

+Aafy-ayry

[9]

2 HAM
2

u(z)—a+ha[w+y](x—"—

v(z):ﬁ{—h“ﬂf‘” )]

wW(y)=ha(y-1p) Z+(

where h=0.2

ha(Ap-ay)r’
2

2
_ y (@in+ay) TSE
u()()fa+m;(+—2
7iain

2

v(r)=n+

(—ain+ay)

wW(y)=y+by+ >

This work

where

m=—a(An+y), n= 2p yb=a (An-y))
2+a A

The analytical expression for reaction rate g becomes,
q=4Au(x) v(x)

IV. NUMERICAL SIMULATION

The nonlinear differential equation is solved numerically to investigate the accuracy of this analytical
method. The detailed Matlab program for numerical simulation is provided in Appendix B. Figure 1 compares
our empirical findings with the simulation results. In Tables2 to 4, our results are also compared with previous
analytical results obtained using HPM and HAM. There is no significant difference in error percentage between
the numerical and our analytical methods when the parameter A1<1. The error percentage between the
numerical other previous analytical methods is 8%. Also, our method has the simplest form when compared to
all other previous methods.

V. DISCUSSION
Equations (9) and (11) are the new closed and simple approximate analytical expressions of the
concentrations of speciesu(y), v(y) andw(y) for all parameter values «, B, y and A. Fig.1la represent the

normalized steady- state concentration species u(y) for various values of the dimensionless parameter 4 and

some fixed values other parameters. From this figure, it is evident that the values of the concentration of species
A decrease when dimensionless parameter 1 increases at y =1.Figure 1b shows concentration v( y) for different

dimensional parameter A and some fixed values for other parameters. From this figure, it is inferred that the
value of the concentration will increase, when the dimensionless parameter 1 decreases at y =0 Fig.1c
illustrates the concentration w(y) for distinct parameter values. From this figure, as the dimensionless

parameter 1 decreases, the value of the concentration will increase. Figs. (2a-2d). shows the
dimensionless reaction rate g using for various values of 2 . Thus, it is concluded that there is a simultaneous

increase in the values of the reaction rate as well as in A for the fixed value of «, B and y.
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(b)

(Adecreases)
A=01,009 25

Dimensionless concentration a(y)

Dimensionless concentration v(y)

o 02 0.4 0.6 08 1 ] 0.2 0.4 06 0.8 1

Dimensionless distance z Dimensionless distance z

A=0.1,009, 2,5
15}

Dimensionless concentration w(y)

0 02 04 X7 08 1
Dimensionless distance x

Fig.1. Normalized steady- state concentration u(y), v(y) and w( y) versus the dimensionless distance y using

eqns.(9-11) for various values of the dimensionless parameter 1and fixed values for
a=04, =05 and y=0.01. Lines represent the analytical solution whereas the dotted lines for the numerical

solution.

x10’ (@) )
2

=Auv
Auv

s =
s =
2 8

17
2
b

Dimensionless raction rate g

A=001

02 0.4 0.6 0.8 1 o 0.2 0.4 0.6 08 1
Dimensionless distance y Dimensionless distance y

3
b
Dimensionless raction rate ¢ =
s
s
%

e
@
]

=

Dimensionlessraction rate g =2 u v

s
0 0.2 04 0.6 08 1
Dimensionless distance y

Fig. 2. Dimensionless reaction rate q versus the dimensionless distance » using (13) for the value of the
dimensionless parameter Awhen «=0.4, =05 and y =0.01. Lines represent the analytical solution whereas
the dotted lines for the numerical solution.

VI. CONCLUSION
In that paper a simple and efficient approach is introduced to solve the system of nonlinear reaction-
diffusion equation in a thin membrane. Compared to other approaches the solution process is very simple and
straightforward. Also, it can be extended to other boundary value problems in a thin membrane without any
difficulty. Analytical expressions of the concentrations of species are derived by using the Taylor series method.
Analytical and numerical simulation results are compared. Concentration and reaction rate, when the parameter

A is less than one, give satisfactory agreement with simulation results.

A. Appendix A: Approximate analytical solution of the equations (3-5) using Taylor series method
Approximate analytical solution of the equations (3-5) using Taylors series method Taylor series method is
accessible to all students and engineers; it might be the simplest analytical method [20-22]. More recently He
[15] solved the convection-diffusion equation for E reaction arising in RDE using Taylors series method. The
system of steady-state non-linear differential equations (3) - (5) in ECE reactions can be written as follows:

u"(x) — A u()v(x)—u(x)W(x) =0 (A1)
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V' () —Au(x)v(x) =0 (A2)
W' () —u()W(r) + 2 u(x)v(x) =0 (A3)
The given boundary conditions for the above equations are
u(0)=a, v'(0)=0, w(0) =y (A4)
u'()=0,v()=4, w(1)=0 (A5)
Now assume that

u'(0)=m (A6)

The Eqn.(A.1) at y =0 we obtained

u"(0)=A u(0)v(0)+u@)w(0) =0 (A7)
u"'(@)=a (A n+y) (A8)

Now assume that

v(0)=n (A9)

The Eqn.(A.2) at y =0 we find

Vv'(0)=Au(0)v(0)=0 (A10)
V'(0)=2an (A11)

Now assume that

w(0)=p (A12)

when y =0 we obtained that the Eqn.(A.3) is

w'(0) =u(0) w(0) — 4 u(0)v(0) (A13)
wW'@0) =a(y—2A n) (Al4)
The Taylor series solution of (A.1), (A.2) and (A.3) is

u(2) =U(0)+U‘(0)z+%U“(0) P

(A15)
=a+m ;(+—0{(/1 nz—y) Z
V() =v(0) +V'(0) 7 +%v"(0) 7
o (A16)
—nelanx
2
W(z) = W(O0) +W'(0)z+%W”(0) 7
oy (A17)
Cytp l+a(7—ln)x

2
Now applying y =1 is series solution of U(7), v(y)and w(x)in Using equations (A.15) - (A.17) we get the
constant M, N and p.Differentiating the Eqn.(A.15) and using the boundary condition u'@=0 we get
constant

m=—a(An-y)y (A18)
The Eqgn.(A.16) and using the boundary condition v() =g we find constant
no—b8 (A19)

)

2

Differentiating the Eqn.(A.17) and using the boundary condition w'(1) =0 we obtained constant
p=—a(y—An) (A20)

B. Appendix B: Numerical solution of nonlinear equations (3)-(5).
function sol =ex6

solinit=bvpinit(linspace(0,1),[0 0 0 0 0 0]);

sol=bvp5c(@ex6ode, @ex6bc,solinit);

end

function dydx=ex6ode(X,y)

a=0.4;b=0.5;9=0.01;1=0.01

dydx=[y(2)

I y(1)* y(2) +y(2)*y(3)

y(4)
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I*y(1)* y(2)

y(6)

y(1)* y3)-I*y(1)*y(3) 1;

end

function res = ex6bc(ya,yb)
res=[ya(2)-a

ya(4)

ya(5)-g

yb(1)

yb(3)-b

yb(5) I

end

%Coding to run the programme

% 1st give this %
solution=ex6;x=solution.x;y=solution.y;y1=solution.y(1,:);y2=solution.y(2,:);y3=solution.y(3,:);y4=solution.y(4
,);y5=solution.y(5,:);y6=solution.y(6,:);

% 2nd give this %plot(x,y1);

% To find dw/dx at x=0 run plot(x,y6); in MATLAB command window and find

% the value at x=0 in that graph note the point for comparison
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Table. 2. Comparison between the analytical results and the simulation results for the concentrations of u(y)

a=04, =05 y=0.01 1=001 a=04, f=05 =001 1=05 a=04, =05 y=001 1=1
V4 Taylor | Previous | Previous | Taylor Previous | Previous Taylor | Previous | Previous | Taylor Previous | Previous Taylor | Previous | Previous | Taylor Previous | Previous
Nume | series | results results series results results Nume | series | results results series results results Nume | series | results results series results results
rical eqn. HPM HAM error HPM HAM rical eqn. HPM HAM error HPM HAM rical eqn. HPM HAM error HPM HAM
()] eqn.(9) eqn.(13) | egn.(17) | eqn.(9) egn.(13) 17 eqn.(9) eqn.(13) | egn.(17) | eqn.(9) eqn.(13) 17 eqn.(9) eqn.(13) | eqgn.(17) | eqn.(9) eqn.(13)

0 | 0.4000 | 0.4000 | 0.4000 0.4000 0.0000 0.0000 0.0000 | 0.4000 | 0.4000 | 0.4000 0.4000 0.0000 0.0000 0.0000 | 0.4000 | 0.4000 | 0.4000 0.4000 0.0000 0.0000 0.0000

0.2 | 0.3990 | 0.3989 | 0.3989 0.3998 0.0125 0.0127 0.2038 | 0.3822 | 0.3829 | 0.3813 0.3963 0.1906 0.2376 3.6809 | 0.3692 | 0.3693 | 0.3633 0.3855 0.0202 1.6049 4.4015

0.4 | 0.3982 | 0.3981 | 0.3981 0.3996 0.0237 0.0241 0.3617 | 0.3682 | 0.3696 | 0.3667 0.3933 0.3789 0.4111 6.8191 | 0.3452 | 0.3454 | 0.3347 0.3741 0.0523 3.0376 8.3828

0.6 | 0.3976 | 0.3975 | 0.3975 0.3995 0.0325 0.0329 0.4741 | 0.3582 | 0.3601 | 0.3563 0.3913 0.5463 0.5197 9.2363 | 0.3279 | 0.3283 | 0.3143 0.3661 0.1158 4.1533 11.6252

0.8 | 0.3973 | 0.3971 | 0.3971 0.3994 0.0381 0.0386 0.5414 | 0.3521 | 0.3544 | 0.3501 0.3900 0.6682 0.5711 10.7714 | 0.3175 | 0.3181 | 0.3021 0.3612 0.1977 4.8424 13.7859

1 ] 0.3972 | 0.3970 | 0.3970 0.3994 0.0400 0.0405 0.5638 | 0.3500 | 0.3525 | 0.3480 0.3896 0.7162 0.5824 | 11.3020 | 0.3139 | 0.3147 | 0.2980 0.3596 0.2458 5.0638 | 14.5606

Average error 0.0245 0.0248 0.3575 Average error 0.4167 0.3870 6.9683 Average error | 0.1053 3.1170 8.7927

Table.3. Comparison between the analytical results and the simulation results for the concentrations of V()

a=04, =05 y=00,1=001 a=04,=05y=00,1=05 a=04, =05y=00,1=1
4 Taylor | Previous | Previous | Taylor Previous | Previous Taylor | Previous | Previous | Taylor Previous | Previous Taylor | Previous | Previous | Taylor Previous | Previous
Nume | series results results series results results Nume | series results results series results results Nume | series results results series results results
rical eqn. HPM HAM error HPM HAM rical eqn. HPM HAM error HPM HAM rical eqn. HPM HAM error HPM HAM
(18) egn.(10) | eqn.(14) | egn.(18) | egn.(10) | eqn.(14) (18) eqn.(10) | eqn.(14) | egn.(18) | eqgn.(10) | eqn.(14) (18) eqn.(10) | eqn.(14) | egn.(18) | eqn.(10) | eqgn.(14)

0 | 0.4990 | 0.4990 0.4990 0.4998 0.0004 0.0000 0.1603 | 0.4565 | 0.4545 0.4500 0.4900 0.4282 1.4239 7.3384 | 0.4224 | 0.4167 0.4000 0.4800 1.3573 5.3030 | 13.6364

0.2 | 0.4990 | 0.4990 0.4990 0.4998 0.0004 0.0000 0.1539 | 0.4583 | 0.4564 0.4520 0.4904 0.4222 1.3744 7.0044 | 0.4257 | 0.4200 0.4040 0.4808 1.3370 5.0956 | 12.9456

0.4 | 0.4992 | 0.4992 0.4992 0.4998 0.0005 0.0001 0.1347 | 0.4636 | 0.4618 0.4580 0.4916 0.3856 1.2092 6.0383 | 0.4353 | 0.4300 0.4160 0.4832 1.2144 4.4307 | 11.0074

0.6 | 0.4994 | 0.4994 0.4994 0.4999 0.0006 0.0003 0.1028 | 0.4723 | 0.4709 0.4680 0.4936 0.3013 0.9172 45027 | 0.4509 | 0.4467 0.4360 0.4872 0.9401 3.3057 8.0493

0.8 | 0.4996 | 0.4996 0.4996 0.4999 0.0008 0.0006 0.0583 | 0.4844 | 0.4836 0.4820 0.4964 0.1675 0.5053 2.4672 | 0.4725 | 0.4700 0.4640 0.4928 0.5194 1.7894 4.3065

1 | 0.5000 | 0.5000 0.5000 0.5000 0.0010 0.0010 0.0010 | 0.5000 | 0.5000 0.5000 0.5000 0.0040 0.0040 0.0040 | 0.5000 | 0.5000 0.5000 0.5000 0.0035 0.0035 0.0035

Average error 0.0006 0.0004 0.1019 Average error 0.2848 0.9057 45592 Average error 0.8953 3.3213 8.3248

Table.4. Comparison between the analytical results and the simulation results for the concentrations of W(y)
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a=04, p=05, =001, 1=001 a=04, =05, y=001 1=05 a=04, =05 y=001, 1=1
. . . . . . | Previ .
Tayl Previ | Previ | Tayl | Previ Previo Tayl | Previo Previ Taylo Previ Previou Tayl Previ ous Taylo Previ Previou
or ous ous or ous Us or Us ous r ous s or ous resul | r ous s
7 | Nu .| result | result | serie | result Nu . result . result . result . result
me | Sere | ¢ s s s results me | Serie results s series | results l\_lume serie | ts series | results
rical 2qn HPM | HAM | error | HPM ;'qAn'\("l rical an quF;]'\Z'l HAM ggﬁ; HPM quAr:'\(Als rical an HPM HA Egﬁz HPM quAn'\("15
(19)' egqn.( | egn.( | eqn.( | egn.( 5) ' (19)' 1) ' eqgn.( 19)' eqn.( ) ' (19)' eqgn.( eqn.( 19)' eqgn.( '
11) 15) 19) 11) 15) 11) 11) 15) 11)
0 0.01 | 0.01 | 0.010 | 0.000 | 0.00 | 0.000 | 100.0 | 0.01 | 0.01 | 0.010 | 0.000 | 0.000 | 0.000 | 100.00 | 0.010 | 0.01 | 0.010 | 0.00 | 0.000 | 0.000 | 100.00
00 00 0 0 00 0 000 00 00 0 0 0 0 00 0 00 0 00 0 0 00
0. | 0.00 | 0.00 | 0.009 | 0.000 | 0.48 | 0.476 | 99.15| 0.02 | 0.02 | 0.027 | 0.003 | 10.92 | 17.99 | 85.092 | 0.033 | 0.03 | 0.045 | 0.00 | 15.77 | 33.46 | 79.230
2 97 96 6 1 40 6 76 31 56 3 4 04 84 7 9 93 3 70 99 53 4
0. | 0.00 | 0.00 | 0.009 | 0.000 | 0.93 | 0.924 | 98.23 | 0.03 | 0.03 | 0.040 | 0.006 | 14.30 | 23.10 | 81.542 | 0.052 | 0.06 | 0.072 | 0.01 | 19.23 | 39.73 | 75.970
4 94 94 4 2 84 9 87 31 78 7 1 60 04 2 0 21 7 25 54 13 5
0. | 0.00 | 0.00 | 0.009 | 0.000 | 1.30| 1.289 | 97.25 | 0.04 | 0.04 | 0.050 | 0.008 | 15.95 | 25.48 | 80.106 | 0.064 | 0.07 | 0.092 | 0.01 | 20.78 | 42.37 | 74.742
6 93 92 2 3 77 6 85 01 65 3 0 99 12 5 8 83 3 64 59 69 3
0. | 0.00 | 0.00 | 0.009 | 0.000 | 154 | 1.527 | 96.23 | 0.04 | 0.05 | 0.056 | 0.009 | 16.71 | 26.56 | 79.547 | 0.072 | 0.08 | 0.104 | 0.01 | 21.38 | 43.43 | 74.280
8 92 90 0 3 85 7 54 43 17 1 1 74 55 3 6 81 1 87 80 84 3
1 0.00 | 0.00 | 0.009 | 0.000 | 1.63 | 1.611 | 95.18 | 0.04 | 0.05| 0.058 | 0.009 | 16.91 | 26.85 | 79.528 | 0.075 | 0.09 | 0.108 | 0.01 | 21.48 | 43.65 | 74.248
91 90 0 4 32 3 99 57 35 0 4 46 64 0 2 13 0 94 78 71 1
Average error 0.98 | 0.971 | 97.68 Average error 12.46 | 20.00 | 84.302 Average error 16.44 | 33.77 | 79.745
53 7 00 97 03 8 62 82 3
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