Research Article

gn - Separation Axioms In Topological Spaces

K. Sumathi¹, T. Arunachalam², D. Subbulakshmi³, K. Indirani⁴

¹Associate Professor, Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, India, ksumathi@psgrkcw.ac.in.

² Professor, Department of Mathematics, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India, tarun_chalam@yahoo.com.

³Assistant Professor, Department of Mathematics, Rathnavel Subramaniam College of Arts and Science, Coimbatore, Tamilnadu, India, <u>subbulakshmi169@gmail.com</u>.

⁴ Associate Professor, Department of Mathematics, Nirmala College for Women, Coimbatore, Tamilnadu, India, <u>indirani009@ymail.com</u>.

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

ABSTRACT: In this paper a new class of separation axioms in topological spaces is used in $g\eta$ -closed sets. The concept of $g\eta$ -T_k spaces for $k = 0, 1, 2, g\eta$ -D_k spaces for k = 0, 1, 2 and $g\eta$ -R_k spaces for k = 0, 1 and some of their properties are investigated.

Keywords gq-closed sets, gq-open sets, $gq-T_k$ spaces for k = 0, 1, 2 gq-D_k spaces for k = 0, 1, 2 and $gq-R_k$ spaces for k = 0, 1.

1. INTRODUCTION

In recent years a number of generalizations of open sets have been developed by many mathematicians. In 1963, Levine [5] introduced the notion of semi-open sets in topological spaces. In 1984, Andrijevic [1] introduced some properties of the topology of α -sets. In 2016, Sayed and Mansour introduced [6] new near open set in Topological Spaces. The aim of this paper is to introduce new types of separation axioms [2, 3, 4, 7] via gη-open sets, and investigate the relations among these concepts.

2. PRELIMINARIES

Definition : 2.1

A subset A of topological space (X, τ) is called

(i) η -open set if $A \subseteq int(cl(int(A))) \cup cl(int(A)), \eta$ -closed set if $cl(int(cl(A))) \cap int(cl(A)) \subseteq A$.

(ii) gη-closed set if $\eta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

Definition : 2.2

A topological space (X, τ) is said to be

(i) $g\eta$ -T₀ if for each pair of distinct points x, y in X, there exists a $g\eta$ -open set U such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.

(ii) $g\eta$ -T₁ if for each pair of distinct points x, y in X, there exist an two $g\eta$ -open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.

(iii) $g\eta$ -T₂ if for each pair of distinct points x, y in X, there exist an two disjoint $g\eta$ -open sets U and V containing x and y respectively.

Example :2.3

(i) Let $X = \{a, b, c\}$ with the topology $\tau = \{X, \phi, \{b, c\}\}$. Here $g\eta$ -open sets are $\{X, \phi, \{b\}, \{c\}, \{b, c\}\}$. Since for the distinct points $\{b\}$ and $\{c\}$, there exist a $g\eta$ -open set $U = \{b\}$ such that $b \in U$ and $c \notin U$ or $U = \{c\}$ such that $b \notin U$ and $c \in U$. Therefore X is $g\eta$ -T₀ space.

(ii) Let $X = \{a, b, c\}$ with the topology $\tau = \{X, \phi, \{a\}\}$. Here $g\eta$ -open sets are $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$. For the distinct points $\{a\}$ and $\{c\}$ there exist an two $g\eta$ -open sets $U = \{a\}$ and $V = \{c\}$ such that $a \in U$ but $c \notin U$ and $a \notin V$ but $c \in V$. In a similar manner for any two distinct points $g\eta$ -open sets may be found out. Therefore X is $g\eta$ -T₁ space.

(iii) Let $X = \{a, b, c\}$ with the topology $\tau = \{X, \phi, \{a\}\}$. Here $g\eta$ -open sets are $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$. Since for the distinct points $\{a\}$ and $\{c\}$ there exist an two disjoint $g\eta$ -open sets $U = \{a\}$ and $V = \{c\}$ containing $\{a\}$ and $\{c\}$ satisfying $g\eta$ -T₂ conditions. And this is true for other pairs of distinct points. Therefore X is $g\eta$ -T₂ space. **Remark : 2.4** Let (X, τ) be a topological space, then the following statements are true:

(i) Every $g\eta$ -T₂ space is $g\eta$ -T₁.

(ii) Every $g\eta$ -T₁ space is $g\eta$ -T₀.

Theorem :2.5 A topological space (X, τ) is $g\eta$ -T₀ if and only if for each pair of distinct points x, y of X, $g\eta$ -cl({x}) $\neq g\eta$ -cl({y}).

Proof:

Necessity: Let (X, τ) be a $g\eta$ -T₀ space and x, y be any two distinct points of X. There exists a $g\eta$ -open set U containing x or y, say x but not y. Then X – U is a $g\eta$ -closed set which does not contain x but contains y. Since $g\eta$ -cl({y}) is the smallest $g\eta$ -closed set containing y, $g\eta$ -cl({y}) \subseteq X – U and therefore x $\notin g\eta$ -cl({y}). Consequently $g\eta$ -cl({x}) $\neq g\eta$ -cl({y}).

Sufficiency: Suppose that x, $y \in X$, $x \neq y$ and $g\eta$ -cl({x}) $\neq g\eta$ -cl({y}). Let z be a point of X such that $z \in g\eta$ -cl({x}) but $z \notin g\eta$ -cl({y}). We claim that $x \notin g\eta$ -cl({y}). For if $x \in g\eta$ -cl({y}) then $g\eta$ -cl({x}) $\subseteq g\eta$ -cl({y}). This contradicts the fact that $z \notin g\eta$ -cl({y}). Consequently x belongs to the $g\eta$ -open set $X - g\eta$ -cl({y}) to which y does not belong to. Hence (X, τ) is a $g\eta$ -T₀ space.

Theorem : 2.6 In a topological space (X, τ) , if the singletons are $g\eta$ -closed then X is $g\eta$ -T₁ space and the converse is true if $g\eta$ -O(X, τ) is closed under arbitrary union.

Proof: Let $\{z\}$ is $g\eta$ -closed for every $z \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in Y$

 $X - \{x\}$. Hence $X - \{x\}$ is a gn-open set that contains y but not x. Similarly $X - \{y\}$ is a gn-open set containing x but not y. Therefore X is a gn-T₁ space.

Conversely, let (X, τ) be $g\eta$ -T₁ and x be any point of X. Choose $y \in X - \{x\}$ then $x \neq y$ and so there exists a $g\eta$ -open set U such that $y \in U$ but $x \notin U$. Consequently $y \in U \subseteq X - \{x\}$, that is $X - \{x\} = \cup \{U_y : y \in X - \{x\}\}$ which is $g\eta$ -open. Hence $\{x\}$ is $g\eta$ -closed.

Theorem : 2.7 Let (X, τ) be a topological space, then the following statements are true: (i) X is gn-T₂.

(ii) Let $x \in X$. For each $y \neq x$, there exists a gn-open set U containing x such that $y \notin gn-cl(\{U\})$.

(iii) For each $x \in X$, $\cap \{ g\eta$ -cl($\{U\}\} : U \in g\eta$ -O(X, τ) and $x \in U \} = \{x\}$.

Proof:(i) \Rightarrow (ii) Let $x \in X$, and for any $y \in X$ such that $x \neq y$, there exist disjoint gn-open sets U and V containing x and y respectively, since X is $g\eta$ -T₂. So $U \subseteq X - V$. Therefore, $g\eta$ -cl({U}) $\subseteq X - V$. So $y \notin g\eta$ -cl({U}).

(ii) \Rightarrow (iii) If possible for some $y \neq x$, $y \in \cap \{ g\eta\text{-cl}(\{U\}) : U \in g\eta\text{-O}(X, \tau) \text{ and } x \in U \}$. This implies $y \in g\eta\text{-cl}(\{U\})$ for every $g\eta$ -open set U containing x, which contradicts (ii). Hence $\cap \{ g\eta\text{-cl}(\{U\}) : U \in g\eta\text{-O}(X, \tau) \text{ and } x \in U \} = \{x\}.$

(iii) \Rightarrow (i) Let x, y \in X and x \neq y. Then there exists a gn-open set U containing x such that y \notin gn-cl({U}). Let V = X - gn-cl({U}), then y \in V and x \in U and also U \cap V = φ . Therefore X is gn-T₂.

Definition : 2.8 A subset A of a topological space X is called a $g\eta$ -difference set (briefly $g\eta$ -D set) if there exists U, $V \in g\eta$ -O(X, τ)such that $U \neq X$ and A = U - V.

Theorem : 2.9 Every proper gη-open set is a gη-D set.

Proof: Let U be a gn-open set different from X. Take $V = \varphi$. Then U = U - V is a gn-D set. But, the converse is not true as shown in the following example.

Example :2.10 Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$. Here $g\eta$ -O(X, τ) = $\{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then $U = \{a, b\} \neq X$ and $V = \{a, c\}$ are $g\eta$ -open sets in X. Let $A = U - V = \{a, b\} - \{a, c\} = \{b\}$. Then $A = \{b\}$ is a $g\eta$ -D set but it is not $g\eta$ -open.

Definition : 2.11 A topological space (X, τ) is said to be

(i) $g\eta$ -D₀ if for any pair of distinct points x and y of X there exists a $g\eta$ -D set of X containing x but not y or a $g\eta$ -D set of X containing y but not x.

(ii) $g\eta$ -D₁ if for any pair of distinct points x and y of X there exists a $g\eta$ -D set of X containing x but not y and a $g\eta$ -D set of X containing y but not x.

(iii) $g\eta$ -D₂ if for any pair of distinct points x and y of X there exists two disjoint $g\eta$ -D sets of X containing x and y, respectively.

Remark :2.12 For a topological space (X, τ) , the following properties hold:

- (i) If (X, τ) is $g\eta$ -T_k, then it is $g\eta$ -D_k, for k = 0, 1, 2.
- (ii) If (X, τ) is $g\eta$ -D_k, then it is $g\eta$ -D_{k-1} for k = 1, 2.
- (iii)

Theorem :2.13 A topological space (X, τ) is $g\eta$ -D₀ if and only if it is $g\eta$ -T₀.

Proof: Suppose that X is $g\eta$ -D₀. Then for each distinct pair x, $y \in X$, at least one of x, y say x, belongs to a $g\eta$ -D set P but $y \notin P$. As P is $g\eta$ -D set, P can be written as $P = U_1 - U_2$ where $U_1 \neq X$ and $U_1, U_2 \in g\eta$ -O(X, τ). Then $x \in U_1$, and for $y \notin P$ we have two cases: (i) $y \notin U_1$, (ii) $y \in U_1$ and $y \in U_2$. In case (i), $x \in U_1$ but $y \notin U_1$. In case (ii), $y \in U_2$. Thus in both the cases, we obtain that X is $g\eta$ -T₀.

Conversely, if X is $g\eta$ -T₀, by Remark 2.12 (i) X is $g\eta$ -D₀.

Theorem : 2.14 Suppose $g\eta$ -O(X, τ) is closed under arbitrary union, then X is $g\eta$ -D₁ if and only if it is $g\eta$ -D₂. **Proof:**

Necessity: Let x, $y \in X$ and $x \neq y$. Then there exist a $g\eta$ -D sets P₁, P₂ in X such that $x \in P_1$, $y \notin P_1$ and $y \in P_2$, $x \notin P_2$. Let $P_1 = U_1 - U_2$ and $P_2 = U_3 - U_4$, Where U_1 , U_2 , U_3 and U_4 are $g\eta$ -open sets in X. From $x \notin P_2$, the following two cases arise: Case (i): $x \notin U_3$. Case (ii): $x \in U_3$ and $x \in U_4$.

Case (i): $x \notin U_3$. By $y \notin P_1$ we have two sub cases:

(a) $y \notin U_1$. Since $x \in U_1 - U_2$, it follows that $x \in U_1 - (U_2 \cup U_3)$, and since $y \in U_3 - U_4$ we have $y \in U_3 - (U_1 \cup U_4)$, and $(U_1 - (U_2 \cup U_3)) \cap (U_3 - (U_1 \cup U_4)) = \varphi$.

(b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1 - U_2$ and $y \in U_2$, and $(U_1 - U_2) \cap U_2 = \varphi$.

Case (ii): $x \in U_3$ and $x \in U_4$. We have $y \in U_3 - U_4$, and $x \in U_4$. Hence $(U_3 - U_4) \cap U_4 = \varphi$. Thus both case (i) and in case (ii), X is $g\eta$ -D₂.

Sufficiency: Follows from Remark 2.12(ii).

Corollary :2.15 If a topological space (X, τ) is $g\eta$ -D₁, then it is $g\eta$ -T₀.

Proof: Follows from 2.12 (ii) and Theorem 2.13.

Definition :2.16 A point $x \in X$ which has only X as the $g\eta$ -neighbourhood is called a $g\eta$ -neat point.

Proposition:2.17 For a $g\eta$ -T₀ topological space (X, τ) which has at least two elements, the following are equivalent: (i) (X, τ) is $g\eta$ -D₁ space.

(ii) (X, τ) has no gy-neat point.

Proof:(i) \Rightarrow (ii): Since (X, τ) is a $g\eta$ -D₁ space, each point x of X is contained in a $g\eta$ -D set A = U - V and thus in U. By definition $U \neq X$. This implies that x is not a $g\eta$ -neat point. Therefore (X, τ) has no $g\eta$ -neat point.

(ii) \Rightarrow (i): Let X be a $g\eta$ -T₀, then for each distinct pair of points x, $y \in X$, atleast one of them, x (say) has a $g\eta$ -neighbourhood U containing x and not y. Thus U which is different from X is a $g\eta$ -D set. If X has no $g\eta$ -neat point, then y is not $g\eta$ -neat point. This means that there exists a $g\eta$ -neighbourhood V of y such that $V \neq X$. Thus $y \in V - U$ but not x and V - U is a $g\eta$ -D set. Hence X is $g\eta$ -D₁.

Definition :2.18 A topological space (X, τ) is said to be gη-symmetric if for any pair of distinct points x and y in X, $x \in g\eta$ -cl({y}) implies $y \in g\eta$ -cl({x}).

Theorem :2.19 If (X, τ) is a topological space, then the following are equivalent:

- (i) (X, τ) is a gη-symmetric space.
- (ii) $\{x\}$ is gη-closed, for each $x \in X$.

Proof:(i) \Rightarrow (ii): Let (X, τ) be a g η -symmetric space. Assume that $\{x\} \subseteq U \in g\eta$ -O (X, τ) , but $g\eta$ -cl $(\{x\}) \not\subset U$. Then $g\eta$ -cl $(\{x\}) \cap (X - U) \neq \phi$. Now, we take $y \in g\eta$ -cl $(\{x\}) \cap (X - U)$, then by hypothesis $x \in g\eta$ -cl $(\{y\}) \subseteq X - U$ that is, $x \notin U$, which is a contradiction. Therefore $\{x\}$ is $g\eta$ -closed, for each $x \in X$.

(iii) \Rightarrow (i) Assume that $x \in g\eta$ -cl({y}), but $y \notin g\eta$ -cl({x}). Then {y} $\subseteq X - g\eta$ -cl({x}) and hence $g\eta$ -cl({y}) $\subseteq X - g\eta$ -cl({x}). Therefore $x \in X - g\eta$ -cl({x}), which is a contradiction and hence $y \in g\eta$ -cl({x}). (iv)

Corollary :2.20 Let $g\eta$ -O(X, τ) be closed under arbitrary union. If the topological space (X, τ) is a $g\eta$ -T₁ space, then it is $g\eta$ -symmetric.

Proof: In a $g\eta$ -T₁ space, every singleton set is $g\eta$ -closed by theorem 2.6 therefore, by theorem 2.19, (X, τ) is $g\eta$ -symmetric.

Corollary :2.21 If a topological space (X, τ) is $g\eta$ -symmetric and $g\eta$ -T₀, then (X, τ) is $g\eta$ -T₁ space. **Proof:** Let $x \neq y$ and as (X, τ) is $g\eta$ -T₀, we may assume that $x \in U \subseteq X - \{y\}$ for some τ). Then $x \notin g\eta$ -cl($\{y\}$) and hence $y \notin g\eta$ -cl($\{x\}$). There exists a $g\eta$ -open set V such that $y \in V \subseteq X - \{x\}$ and thus (X, τ) is a $g\eta$ -T₁ space.

Corollary : 2.22 For a gη-symmetric space (X, τ) , the following are equivalent:

- (i) (X, τ) is $g\eta$ -T₀ space.
- (ii) (X, τ) is $g\eta$ -D₁ space.
- (iii) (X, τ) is $g\eta$ -T₁ space.

Proof: (i) \Rightarrow (iii): Follows from Corollary 2.21.

(iv) \Rightarrow (ii) \Rightarrow (i): Follows from Remark 2.12 and Corollary 2.15.

Definition :2.23 A topological space (X, τ) is said to be $g\eta$ -R₀ if U is a $g\eta$ -open set and $x \in U$ then $g\eta$ -cl($\{x\}$) $\subseteq U$. **Theorem : 2.24** For a topological space (X, τ) the following properties are equivalent:

(i) (X, τ) is $g\eta$ -R₀ space.

- (ii) For any $P \in g\eta$ -C (X, τ), $x \notin P$ implies $P \subseteq U$ and $x \notin U$ for some $U \in g\eta$ -O (X, τ).
- (iii) For any $P \in g\eta$ -C (X, τ), $x \notin P$ implies $P \cap g\eta$ -cl($\{x\}$) = φ .
- (iv) For any two distinct points x and y of X, either $g\eta$ -cl({x}) = $g\eta$ -cl({y}) or $g\eta$ -cl({x}) $\cap g\eta$ -cl({x}) $\cap g\eta$ -cl({y}) = ϕ .

Proof: (i) \Rightarrow (ii) Let $P \in g\eta$ -C(X, τ) and $x \notin P$. Then by (1), $g\eta$ -cl({x}) $\subseteq X - P$. Set $U = X - g\eta$ -cl({x}), then U is a $g\eta$ -open set such that $P \subseteq U$ and $x \notin U$.

(ii) \Rightarrow (iii) Let $P \in g\eta$ -C(X, τ) and $x \notin P$. There exists $U \in g\eta$ -O(X, τ) such that $P \subseteq U$ and $x \notin U$. Since $U \in g\eta$ -O (X, τ), $U \cap g\eta$ -cl({x}) = φ and $P \cap g\eta$ -cl({x}) = φ .

(iii) \Rightarrow (iv) Suppose that $g\eta$ -cl({x}) \neq $g\eta$ -cl({y}) for two distinct points x, y \in X. There exists $z \in g\eta$ -cl({x}) such that $z \notin g\eta$ -cl({y}) [or $z \in g\eta$ -cl({y}) such that $z \notin g\eta$ -cl({x})]. There exists $V \in g\eta$ -O(X, τ) such that $y \notin V$ and $z \in V$, hence $x \in V$. Therefore, we have $x \notin g\eta$ -cl({y}). By (iii), we obtain $g\eta$ -cl({x}) $\cap g\eta$ -cl({y}) = φ .

(iv) \Rightarrow (i) Let V \in g η -O(X, τ) and x \in V. For each y \notin V, x \neq y and x \notin g η -cl({y}). This shows that g η -cl({x}) \neq g η -cl({y}). By (iv), g η -cl({x}) \cap g η -cl({y}) = ϕ for each y \notin X – V and hence g η -cl({x}) \cap [U g η -cl({y}) : y \in X – V] = ϕ . On the other hand, since V \in g η -O(X, τ) and y \in X – V, we have g η -cl({y}) \subseteq X – V and hence X – V = U {g η -cl({y}) : y \in X – V}. Therefore, we obtain (X – V) \cap g η -cl({x}) = ϕ and g η -cl({x}) \subseteq V. This shows that (X, τ) is a g η -R $_0$ space.

Theorem : 2.25 If a topological space (X, τ) is $g\eta$ -T₀ space and a $g\eta$ -R₀ space then it is $g\eta$ -T₁ space.

Proof: Let x and y be any two distinct points of X. Since X is $g\eta$ -T₀, there exists a $g\eta$ -open set U such that $x \in U$ and $y \notin U$. As $x \in U$, $g\eta$ -cl({x}) $\subseteq U$ as X is $g\eta$ -R₀ space. Since $y \notin U$, so $y \notin g\eta$ -cl({x}). Hence $y \in V = X - g\eta$ -cl({x}) and it is clear that $x \notin V$. Hence it follows that there exist $g\eta$ -open sets U and V containing x and y respectively, such that $y \notin U$ and $x \notin V$. This implies that X is $g\eta$ -T₁ space.

Theorem : 2.26 For a topological space (X, τ) the following properties are equivalent:

(i) (X, τ) is $g\eta$ -R₀ space.

(ii) $x \in g\eta$ -cl({y}) if and only if $y \in g\eta$ -cl({x}), for any two points x and y in X.

Proof: (i) \Rightarrow (ii) Assume that X is $g\eta$ -R₀. Let $x \in g\eta$ -cl({y}) and V be any $g\eta$ -open set such that $y \in V$. Now by hypothesis, $x \in V$. Therefore, every $g\eta$ -open set which contain y contains x. Hence $y \in g\eta$ -cl({x}).

(ii) \Rightarrow (i) Let U be a gn-open set and $x \in U$. If $y \notin U$, then $x \notin gn-cl(\{y\})$ and hence $y \notin gn-cl(\{x\})$. This implies that $gn-cl(\{x\}) \subseteq U$. Hence (X, τ) is $gn-R_0$ space.

Remark :2.27 From Definition 2.18 and Theorem 2.26 the notion of $g\eta$ -symmetric and $g\eta$ -R₀ are equivalent. **Theorem : 2.28** A topological space (X, τ) is $g\eta$ -R₀ space if and only if for any two points x and y in X, $g\eta$ -cl({x}) $\neq g\eta$ -cl({y}) implies $g\eta$ -cl({x}) $\cap g\eta$ -cl({y}) = φ . **Proof:**

Necessity: Suppose that (X, τ) is $g\eta$ -R₀ and x and $y \in X$ such that $g\eta$ -cl({x}) $\neq g\eta$ -cl({y}). Then, there exists $z \in g\eta$ -cl({x}) such that $z \notin g\eta$ -cl({y}) [or $z \in g\eta$ -cl({y}) such that $z \notin g\eta$ -cl({x})]. There exists $V \in g\eta$ -O (X, τ) such that $y \notin V$ and $z \in V$, hence $x \in V$. Therefore, we have $x \notin g\eta$ -cl({y}). Thus $x \in [X - g\eta$ -cl({y})] $\in g\eta$ -O (X, τ), which implies $g\eta$ -cl({x}) $\subseteq [X - g\eta$ -cl({y})] and $g\eta$ -cl({x}) $\cap g\eta$ -cl({y}) = ϕ .

Sufficiency: Let $V \in g\eta$ -O (X, τ) and let $x \in V$. To show that $g\eta$ -cl($\{x\}$) $\subseteq V$. Let $y \notin V$, that is $y \in X-V$. Then $x \neq y$ and $x \notin g\eta$ -cl($\{y\}$). This shows that $g\eta$ -cl($\{x\}$) $\neq g\eta$ -cl($\{y\}$). By assumption, $g\eta$ -cl($\{x\}$) $\cap g\eta$ -cl($\{y\}$) = φ . Hence $y \notin g\eta$ -cl($\{x\}$) and therefore $g\eta$ -cl($\{x\}$) $\subseteq V$. Hence (X, τ) is $g\eta$ -R₀ space.

Definition:2.29 A topological space (X, τ) is said to be $g\eta$ -R₁ if for x, y in X with $g\eta$ -cl({x}) \neq gη-cl({y}), there exist disjoint gη-open sets U and V such that $g\eta$ -cl({x}) \subseteq U and $g\eta$ -cl({y}) \subseteq V.

Theorem : 2.30 A topological space (X, τ) is $g\eta$ -R₁ space if it is $g\eta$ -T₂ space.

Proof: Let x and y be any two points X such that $g\eta$ -cl({x}) $\neq g\eta$ -cl({y}). By remark 2.4 (i), every $g\eta$ -T₂ space is $g\eta$ -T₁ space. Therefore, by theorem 2.6, $g\eta$ -cl({x}) = {x}, $g\eta$ -cl({y}) = {y} and hence {x} \neq {y}. Since (X, τ) is $g\eta$ -T₂, there exist a disjoint $g\eta$ -open sets U and V such that $g\eta$ -cl({x}) = {x} \subseteq U and $g\eta$ -cl({y}) = {y} $\subseteq V$. Therefore (X, τ) is $g\eta$ -R₁ space.

Theorem : 2.31 If a topological space (X, τ) is gη-symmetric, then the following are equivalent:

(i) (X, τ) is $g\eta$ -T₂ space.

(ii) (X, τ) is $g\eta$ -R₁ space and $g\eta$ -T₁ space.

(iii) (X, τ) is gη-R₁ space and gη-T₀ space.

Proof: (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) obvious.

 $\begin{array}{ll} (iii) \Rightarrow (i) \ \text{Let } x, \ y \in X \ \text{such that } x \neq y. \ \text{Since } (X, \tau) \ \text{is } g\eta\text{-}T_0 \ \text{space. By theorem } 2.5, \qquad g\eta\text{-}cl(\{x\}) \neq g\eta\text{-}cl(\{y\}), \ \text{since } X \ \text{is } g\eta\text{-}R_1, \ \text{there exist disjoint } g\eta\text{-}open \ \text{sets } U \ \text{and } V \ \text{such that } g\eta\text{-}cl(\{x\}) \subseteq U \ \text{and } g\eta\text{-}cl(\{y\}) \subseteq V. \ \text{Therefore, there exist disjoint } g\eta\text{-}open \ \text{set } U \ \text{and } V \ \text{such that } x \in U \ \text{and } y \in V. \ \text{Hence } (X, \tau) \ \text{is } g\eta\text{-}T_2 \ \text{space.} \end{array}$

Remark :2.32 For a topological space (X, τ) the following statements are equivalent.

- (i) (X, τ) is $g\eta$ -R₁ space.
- (ii) If x, $y \in X$ such that $g\eta$ -cl({x}) $\neq g\eta$ -cl({y}), then there exist $g\eta$ -closed sets P_1 and P_2 such that $x \in P_1$, $y \notin P_1$, $y \in P_2$, $x \notin P_2$, and $X = P_1 \cup P_2$.

```
(iii)
```

Theorem : 2.33 A topological space (X, τ) is $g\eta$ -R₁ space, then (X, τ) is $g\eta$ -R₀ space. **Proof:** Let U be a gn-open such that $x \in U$. If $y \notin U$, then $x \notin g\eta$ -cl($\{y\}$), therefore $g\eta$ -cl($\{x\}$) $\neq g\eta$ -cl($\{y\}$). So, there exists a gn-open set V such that $g\eta$ -cl($\{y\}$) \subseteq V and $x \notin V$, which implies $y \notin g\eta$ -cl($\{x\}$). Hence $g\eta$ -cl($\{x\}$) $\subseteq U$. Therefore, (X, τ) is $g\eta$ -R₀ space.

Theorem:2.34 A topological space (X, τ) is $g\eta$ -R₁ space if and only if $x \in X - g\eta$ -cl({y}) implies that x and y have disjoint $g\eta$ -open neighbourhoods.

Proof:

Necessity: Let (X, τ) be a $g\eta$ - R_1 space. Let $x \in X - g\eta$ - $cl(\{y\})$. Then $g\eta$ - $cl(\{x\}) \neq g\eta$ - $cl(\{y\})$, so x and y have disjoint $g\eta$ -open neighbourhoods.

Sufficiency: First to show that (X, τ) is $g\eta-R_0$ space. Let U be a $g\eta$ -open set and $x \in U$. Suppose that $y \notin U$. Then, $g\eta$ -cl($\{y\}$) $\cap U = \varphi$ and $x \notin g\eta$ -cl($\{y\}$). There exist a $g\eta$ -open sets U_x and U_y such that $x \in U_x$, $y \in U_y$ and and $U_x \cap U_y = \varphi$. Hence, $g\eta$ -cl($\{x\}$) \subseteq $g\eta$ -cl($\{U_x\}$) and $g\eta$ -cl($\{x\}$) $\cap U_y \subseteq g\eta$ -cl($\{U_x\}$) $\cap U_y = \varphi$. [For since U_y is $g\eta$ -open set, U_y^c is $g\eta$ -closed set. So $g\eta$ -cl($\{U_y^c\}$) = U_y^c . Also since $U_x \cap U_y = \varphi$ and $U_x \subseteq U_y$. So $g\eta$ -cl($\{U_x\}$) $\subseteq g\eta$ -cl($\{U_y^c\}$). Thus $g\eta$ -cl($\{U_x\}$) $\subseteq U_y^c$]. Therefore, $y\notin g\eta$ -cl($\{x\}$). Consequently, $g\eta$ -cl($\{x\}$) $\subseteq U$ and (X, τ) is $g\eta$ -R₀ space. Next, (X, τ) is $g\eta$ -R₁ space. Suppose that $g\eta$ -cl($\{x\}$) $\neq g\eta$ -cl($\{y\}$). Then, assume that there exists $z \in g\eta$ -cl($\{x\}$) such that $z \notin g\eta$ -cl($\{x\}$). There exist a $g\eta$ -open sets V_z and V_y such that $z \in V_z$, $y \in V_y$ and $V_z \cap V_y = \varphi$. Since $z \in g\eta$ -cl($\{x\}$), $x \in V_z$. Since (X, τ) is $g\eta$ -R₀ space, we obtain $g\eta$ -cl($\{x\}$) $\subseteq V_z$, $g\eta$ -cl($\{y\}$) $\subseteq V_y$ and $V_z \cap V_y = \varphi$. Therefore (X, τ) is $g\eta$ -R₁ space.

REFERENCES:

- 1. And rijevic D. "Some properties of the topology of α -sets", Mat. Vesnik 36, (1984), 1-9.
- 2. Ekici. E, On R spaces, Int. J. Pure. Appl. Math., 25(2), (2005),163-172.
- 3. Jafari. S, On a weak separation axiom, Far East J. Math. Sci., 3(5), (2001), 779-787.
- 4. Kar. A and Bhattacharyya. P, Some weak separation axioms, Bull. Cal. Math. Soc., 82, (1990), 415-422.
- 5. Levine N., Semi open sets and semi continuity in Topological spaces, Amer. Math. Monthly, 70, (1963), 36-41.

- 6. Sayed MEL and Mansour FHAL, New near open set in Topological Spaces, J Phys Math, 7(4), 1-8, (2016). Re
- Subbulakshmi. D, Sumathi. K, Indirani. K., gη-closed set in topological spaces, International Journal of Recent Technology and Engineering, 8(3),(2019), 8863-8866.