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Abstract: A Subset S of vertices of a Graph G is called a vertex cover if S includes at least one end point of every edge of the 
Graph. A Vertex cover S of G is a connected vertex cover if the induced subgraph of S is connected. The minimum cardinality 
of such a set is called the connected vertex covering number and it is denoted by    . A Vertex cover S of G is a total vertex 
cover if the induced subgraph of S has no isolates. The minimum cardinality of such a set is called the total vertex covering 

number and it is denoted by  .In this paper a few properties of connected vertex cover and total vertex covers are studied and 
specific values of   and   of some well-known graphs are evaluated. 
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1. Introduction  

By a graph 
( , )G V E=

 we mean a finite, undirected and connected graph with neither self  loops nor multiple 

edges. The order and size of G  are denoted by n and m respectively. For graph theoretic terminology, we refer 

to Chartrand and Lesniak [1]. 

We start with following definitions and theorems. 

1. A subset S of vertices of a graph G is called a vertex cover if S includes at least one end point of every edge 

of the graph and the minimum cardinality of such a vertex cover is called vertex covering number and it is 

denoted by 
( )G

. 

2. A subset S of vertices of a graph G is called a dominating set of a graph if each vertex not in S  is adjacent 

with some vertex in S. The domination number 
( )G

 is the minimum cardinality of a dominating set of G. 

3. A dominating set S of a connected graph is called connected dominating set if the induced subgraph of S is 

connected and the minimum cardinality of such a set is called connected domination number and it is denoted 

by 
( )c G

. 

4. A Total dominating set S of a graph G is a dominating set in which the induced subgraph of S  has no isolates 

and the minimum cardinality of such a set is called the Total domination number and it is denoted by 
( )t G

. 

5. A set S of vertices in a graph is said to be an independent set if no two vertices in S are adjacent. A maximal 

independent set is an independent set to which no other vertex can be added to it without destroying its 

independence property. The number of vertices in the largest independent set is called the independence 

number and it is denoted by 
( )G

. 

6. A property P of a set of vertices is said to be hereditary if whenever a set S has property P, so does every 

proper subset 'S S . A property P is super hereditary if whenever a set S has property P, so does every proper 

superset 'S S . 

7. Let P denote an arbitrary property of a set of vertices S in a graph
( , )G V E=

. If a set S has property P, then 

we say that S is a P-set; otherwise it is a P -set. 

8. A P-set S is a maximal P-set if every proper super set 'S S  is a P -set that is 'S  does not have property P. 

A P-set S is a 1-maximal P-set if for every vertex 
 ,u V S S u − 

is a P -set. 

9. A P-set S is a minimal P-set if every proper subset 'S S  is a P -set. A P-set S is a 1-minimal P-set if for 

every vertex 
 ,v S S v −

is a P -set. 

10. A matching is any independent set of edges. A maximal matching is a matching in X so that V-V(X) is an 

independent set of vertices. 
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11. A perfect matching in a graph G is a matching X so that V(X)=V(G).Let  1( )G
 denote the size of a 

maximum in G. The number of edges in a smallest maximal independent set of edges in G is denoted by 
'

1 ( )G
. 

12. A split graph is a graph in which the vertices can be partitioned into a clique and an independent set. 

 

Cockayne et al [2] obtained the following fundamental results for hereditary and super hereditary properties. 

Proposition 1.1 [2] Let 
( , )G V E=

 be a graph and let P be a hereditary property. Then a set S is maximal P-

set if and only if S is a 1-maximal P-set. 

Proposition 1.2 [2] Let 
( , )G V E=

 be a graph and let P be a super hereditary property. Then a set S is minimal 

P-set if and only if S is a 1-minimal P-set. 

Theorem 1.3 [3] For any graph G of order n, then 
( ) ( )G G n + =

. 

A vertex cover S of G is a connected vertex cover if the induced subgraph of S is connected. The minimum 

cardinality of such a set is called the connected vertex covering number and it is denoted by  
( )c G

.  

A vertex cover S of G is a total vertex cover if the induced subgraph of S has no isolates. The minimum 

cardinality of such a set is called the total vertex covering number and it is denoted by 
( )t G

.              

In this paper a few properties of connected vertex cover and total vertex covers are studied and specific values 

of 
( )c G

 and 
( )t G

 of some well-known graphs are evaluated. 

Many variants of connected domination and total domination number have been already studied. 

2. Connected and Total Vertex Covering In Graphs 

The property of being a connected vertex cover is a super hereditary property. Hence a connected vertex cover 

is minimal if and only if it is 1-minimal. 

Theorem 2.1 

A connected vertex covering S is a minimal connected vertex covering if and only if for each v S , one of 

the following holds. 

(a) ‘v’ is a cut vertex in 
S

 

(b) There exists a vertex u V S −  such that 
( )uv E G

. 

Proof: 

 Let S be a minimal connected vertex covering of a graph G. Then for every vertex v S , 
{ }S v−

 is not 

a connected vertex covering. This means that either
{ }S v−

 is not connected or an edge in V S−   is not covered 

by 
{ }S v−

. This implies that either v is a cut vertex in 
S

 or there exists a vertex u V S −  such that 

( )uv E G
. 

 Conversely suppose that S is a connected vertex covering of a graph G and for each v S , one of the 

stated conditions hold. We show that S is a minimal connected vertex covering of a graph. Suppose S is not a 

minimal connected vertex covering, then there exists a vertex v S  such that 
{ }S v−

 is a connected vertex 

covering. Hence 
{ }S v−

 is connected and v is not a cut vertex of 
S

. Also if 
{ }S v−

 is a connected vertex 

covering, then there is no edge in 
 { }V S v− −

 which is not covered by 
{ }S v−

. This means that there is no 

vertex u V S −  such that 
( )uv E G

. Hence S is a minimal connected vertex covering of a graph G.  

 We observe that the property of being a total vertex covering is a super hereditary property. Hence the 

total vertex covering S is minimal if and only if it is 1-minimal. 

Theorem 2.2 

A Total vertex covering S is a minimal total vertex covering if and only if for each u S , one of the following 

conditions hold: 

(a) there exists a vertex w S  such that 
( )  N w S u =

. 

(b) there exists a vertex v V S −  such that 
( )uv E G

. 

Proof 

Let S be a minimal total vertex covering of a graph G. Then for every u S , 
{ }S u−

 is not a total vertex 

covering. This means that 
{ }S u−

 has an isolate or an edge in 
( )  V S u− 

 is not covered by 
{ }S u−

. This 

https://en.wikipedia.org/wiki/Clique_(graph_theory)
https://en.wikipedia.org/wiki/Independent_set_(graph_theory)
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means that there exists a vertex w S  such that 
( )  N w S u =

 or there exists a vertex v V S −  such that  

( )uv E G
. 

Conversely suppose that S is a total vertex covering and for each u S , one of the stated conditions hold. We 

show that S is a minimal total vertex covering of a graph G. Suppose S is not a minimal total vertex covering, 

then there exists a vertex u S  such that 
{ }S u−

 is a total vertex covering and hence 
{ }S u−

 has no isolates. 

Then there is no vertex w S  such that 
( )  N w S u =

.  Also if 
{ }S u−

 is a total vertex covering, then there 

is no edge in 
( )  V S u− 

 which is not covered by 
{ }S u−

 and hence there is no vertex v V S −  such that 

( )uv E G
. Hence S is a minimal total vertex covering of a graph G. 

Observations 2.3 

(i) 
( ) 1c G =

 if and only if G is star. 

(ii) Since every connected vertex cover is a connected dominating set, we have 
( ) ( )c cG G 

. 

(iii) Since every total vertex covering is a total dominating set,  
( ) ( )t tG G 

. 

(iv) Since every connected vertex cover is a total vertex cover of G, 
( ) ( )t cG G 

. 

(v) There is no relation between 
( )t G

 and 
( )c G

. 

 

For example, 

If G is a star 1,nK
, then  

( ) 2t G =
 and 

( ) 1c G =
. 

 Here
( ) ( )t cG G 

. 

If G is a path of length 10, then 
( ) 6t G =

 and
( ) 8c G =

. 

Here
( ) ( )t cG G 

. 

Hence there is no relation between 
( )t G

 and
( )c G

. 

 

Theorem 2.4 

For any graph G, 
( ) ( )0c G G n + 

. 

Proof 

Let S be a connected vertex covering of G. Then S is a vertex cover of G implies that V S− is independent.  

Thus 
( )0V S G− 

 

( ) ( )0cn G G  − 
 

( ) ( )0c G G n + 
. 

 We illustrate this with an example. Consider the complete bipartite graph 4,5K
. 

 

Here 
( ) ( )05, 5c G G = =

. 

Thus 
( ) ( )0 5 5 10 9c G G + = + = 

. 

Hence 
( ) ( )0c G G n + 

. 

 

Observations 2.5 

We have 
( ) ( )0 G n G = −

 where  is the minimum degree of graph G.  

Thus 
( ) ( )0c G G n + 

 

( ) ( ) ( ) ( )0c G n G n n G     − = − − =
 

Hence for any connected graph we have 

V1 V2 V3
V4

V5 V6 V7
V8 V9
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( ) ( ) 1cG G n   −

 
Both the bounds are sharp. 

 

We observe that 
( ) 1c G n = −

 if G is a complete graph or cycle on ‘n’ vertices and 
( )c G =

if G is a star 

1,nK
. 

 

Theorem 2.6 

Let a and b be two positive integers such that 2 a b  . Then there exists a graph G with 

( ) ( ),c cG a G b = =
. 

 

Proof 

Case (i): a b=  

Let us take a path on ‘a’ vertices denoted by aP
. Consider corona of path aP

. That is 1aP K
 . For this graph 

( ) ( ),c cG a G b a = = =
 

Case (ii): a b  

 Consider the path on ‘a’ vertices say 
( )1 2, ,...a aP v v v=

. Attach 
( )2 b a−

 pendent vertices to 1v
 and let it 

be ( )1 2 2
, ,...

b a
u u u

−  and attach two pendents to all other vertices and then join the vertices 1 2 3 4, , ,u u u u
 and 

( ) ( )5 6 2 1 2
, ,... ,

b a b a
u u u u

− − − . 

 Clearly 
( ) ( ) ( ),c cG a G a b a b = = + − =

 

  

 Let us illustrate this construction with examples. 

Example (1): Take  4a b= = . Then 4 1P K
 is  

 

 Here 
( ) ( )4, 4c cG G = =

 

Example (2): Take  5, 8a b= = .  

Then 5P
 is  

 

Attach 
2( )b a−

 pendent vertices to v1 and two pendent vertices to all other vertices. Then the graph G will 

be  

 

Clearly  
( ) ( )5, 5 3 8c cG G = = + =

 

( )c G
 AND 

( )t G
 FOR SOME GRAPHS 

 (1) For complete graph nK
, 

    
( ) ( )1, 1c tG n G n = − = −

. 

 (2) For star 1,nK
, 

( ) ( )1, 2c tG G = =
. 

 (3) For Bistar 1 2,n nK
, 

( ) ( )2, 2c tG G = =
. 

 Next, we characterise graphs for which 
( ) 2c G =

 and 
( ) 2t G =

. 

Theorem 3.1 

v1
v2 v3 v4

u1 u2 u3 u4

v1
v2 v3 v4 v5

u1 u2 u3 u4

v1
v2 v3 v4 v5

u5 u6 u7 u8 u9 u10 u11 u12 u13 u14
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For any graph G of order n, 
( ) 2c G =

 if and only if G is a split graph with the split partition S and V-S such 

that 
2, 2S V S n= − = −

 with 2S K=
 and 

V S−
 is independent. 

Proof 

 Suppose 
( ) 2c G =

. 

 Let S be a connected vertex covering of G with 2 vertices. Since S is connected, S is isomorphic to K2. 

Since S is a vertex cover, V-S is independent. Hence G is isomorphic to a split graph with split partition S and 

V-S such that 2S K=
 and 

V S−
 is independent and converse is obvious. 

 Similarly, we have the following Theorem. 

Theorem 3.2 

For any graph G of order n, 
( ) 2t G =

 if and only if G is a split graph with the split partition S and V-S such 

that 
2, 2S V S n= − = −

 with 2S K=
 and 

V S−
 is independent. 

Open Problems 

1. Characterise graphs for which
( ) ( )c tG G =

. 

2. Obtain upper bounds for 
( )c G

 and 
( )t G

 for special types of graphs like Trees, Petersen graph, etc. 

3.  Find bounds for 
( )c G

 and 
( )t G

? 
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