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1 Introduction 

Smarandache’s neutrosophic framework have wide scope of constant applications for the fields of Computer Science, 

Information Systems, Applied Mathematics, Artificial Intelligence, Mechanics, dynamic, Medicine, Electrical & 

Electronic, and Management Science and so forth [1, 2, 3, 4, 19, 20]. Topology is an classical subject, as a 

generalization topological spaces numerous kinds of topological spaces presented throughout the year. Smarandache 

[13] characterized the Neutrosophic set on three segment Neutrosophic sets (T-Truth, F-Falsehood, I-Indeterminacy). 

Neutrosophic topological spaces (nts’s) presented by Salama and Alblowi [10]. Lellies Thivagar et al. [8] was given 

the geometric existence of N topology, which is a non-empty set equipped with N arbitrary topologies. Lellis Thivagar 

et al. [9] introduced the notion of Nn-open (closed) sets in N neutrosophic crisp topological spaces. Al-Hamido et al. 

[5] investigate the chance of extending the idea of neutrosophic crisp topological spaces into N-neutrosophic crisp 

topological spaces and examine a portion of their essential properties. In 2008, Ekici [6] introduced the notion of e-

open sets in topology. In 2020, Vadivel and John Sundar [16] introduced N-neutrosophic δ-open, N-neutrosophic δ-

semiopen and Nneutrosophic δ-preopen sets are introduced. The purpose of this paper is to introduce and study the 

notion of NncZ∗o-sets. Also, some characterizations of these notions are presented. 

2 Preliminaries 

Salama and Smarandache [12] presented the idea of a neutrosophic crisp set in a set X and defined the inclusion 

between two neutrosophic crisp sets, the intersection (union) of two neutrosophic crisp sets, the complement of a 

neutrosophic crisp set, neutrosophic crisp empty (resp., whole) set as more then two types. And they studied some 

properties related to nutrosophic crisp set operations. However, by selecting only one type, we define the inclusion, 

the intersection (union), and neutrosophic crisp empty (resp., whole) set again and discover a few properties. 

Definition 2.1 Let X be a non-empty set. Then H is called a neutrosophic crisp set (in short, ncs) in X if H has the 

form 

H = (H1,H2,H3), where H1,H2, and H3 are subsets of X, 

The neutrosophic crisp empty (resp., whole) set, denoted by ϕ n (resp., Xn) is an ncs in X defined by ϕ n = (ϕ ,ϕ ,X) 

(resp. 

Xn = (X,X,ϕ )). We will denote the set of all ncs’s in X as ncS(X). 

In particular, Salama and Smarandache [11] classified a neutrosophic crisp set as the followings. 

A neutrosophic crisp set H = (H1,H2,H3) in X is called a neutrosophic crisp set of Type 1 (resp. 2 & 3) (in short, ncs-

Type 

1 (resp. 2 & 3) ), if it satisfies H1 ∩ H2 = H2 ∩ H3 = H3 ∩ H1 = ϕ  (resp. H1 ∩ H2 = H2 ∩ H3 = H3 ∩ H1 = ϕ  and H1 ∪ H2 

∪ H3 = X & H1 ∩ H2 ∩ H3 = ϕ  and H1 ∪ H2 ∪ H3 = X). ncS1(X) (ncS2(X) and ncS3(X)) means set of all ncs Type 1 (resp. 

2 and 3). 
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Definition 2.2 Let H = (H1,H2,H3),M = (M1,M2,M3) ∈ ncS(X). Then H is said to be contained in (resp. equal to) M, 

denoted by H ⊆ M (resp. H = M), if H1 ⊆ M1,H2 ⊆ M2 and H3 ⊇ M3 (resp. H ⊆ M and M ⊆ H), Hc , 



Nnc Z∗-open Sets in Nnc Topological Spaces 

364 

H ∩ M = (H1 ∩ M1,H2 ∩ M2,H3 ∪ M3), H ∪ M = (H1 ∪ M1,H2 ∪ M2,H3 ∩ M3). Let (Aj)j∈J ⊆ ncS(X), where Hj = 

(Hj1,Hj2,Hj3). Then ∩ Hj (simply ∩Hj) = (∩Hj1,∩Hj2,∪Hj3); ∪ Hj (simply ∪Hj), = (∪Hj1,∪Hj2,∩Hj3). 

 j∈J j∈J 

The following are the quick consequence of Definition 2.2. 

Proposition 2.1 [7] Let L,M,O ∈ ncS(X). Then 

(i) ϕ n ⊆ L ⊆ Xn, 

(ii) if L ⊆ M and M ⊆ O, then L ⊆ O, 

(iii) L ∩ M ⊆ L and L ∩ M ⊆ M, 

(iv) L ⊆ L ∪ M and M ⊆ L ∪ M, 

(v) L ⊆ M iff L ∩ M = L, 

(vi) L ⊆ M iff L ∪ M = M. 

Likewise the following are the quick consequence of Definition 2.2. 

Proposition 2.2 [7] Let L,M,O ∈ ncS(X). Then 

(i) L ∪ L = L, L ∩ L = L (Idempotent laws), 

(ii) L ∪ M = M ∪ L, L ∩ M = M ∩ L (Commutative laws), 

(iii) (Associative laws) : L ∪ (M ∪ O) = (L ∪ M) ∪ O, L ∩ (M ∩ O) = (L ∩ M) ∩ O, 

(iv) (Distributive laws:) L ∪ (M ∩ O) = (L ∪ M) ∩ (L ∪ O), L ∩ (M ∪ O) = (L ∩ M) ∪ (L ∩ O), 

(v) (Absorption laws) : L ∪ (L ∩ M) = L, L ∩ (L ∪ M) = L, 

(vi) (DeMorgan’s laws) : (L ∪ M)c = Lc ∩ Mc, (L ∩ M)c = Lc ∪ Mc, 

(vii) (Lc)c = L, 

(viii) (a) L ∪ ϕ n = L, L ∩ ϕ n = ϕ n, 

(b) L ∪ Xn = Xn, L ∩ Xn = L, 

(c) Xn
c = ϕ , ϕ c

n = Xn, 

(d) in general, L ∪ Lc ≠ Xn, L ∩ Lc ≠ ϕ n. 

Proposition 2.3 [7] Let L ∈ ncS(X) and let (Lj)j∈J ⊆ ncS(X). Then 

Lcj, 

(ii) L ∩ (∪Lj) = ∪(L ∩ Lj), L ∪ (∩Lj) = ∩(L ∪ Lj). 

Definition 2.3 [11] A neutrosophic crisp topology (briefly, ncts) on a non-empty set X is a family τ of nc subsets of X 

satisfying the following axioms 

(i) ϕ n, Xn ∈ τ. 

(ii) H1 ∩ H2 ∈ τ ∀ H1 & H2 ∈ τ. 

(iii) ∪Ha ∈ τ, for any {Ha : a ∈ J} ⊆ τ. 

a 

Then (X,τ) is a neutrosophic crisp topological space (briefly, ncts ) in X. The τ elements are called neutrosophic crisp 

open sets (briefly, ncos) in X. A ncs C is closed set (briefly, nccs) iff its complement Cc is ncos. 

Definition 2.4 [5] Let X be a non-empty set. Then ncτ1, ncτ2, ···, ncτN are N-arbitrary crisp topologies defined on X and 

the 

 N N 

collection Nnc , Hj,Lj ∈ ncτj} is called N neutrosophic crisp (briefly, Nnc)-

topology on 

X if the axioms are satisfied: 

(i) ϕ n, Xn ∈ Nncτ. 

Nnc  Nncτ. 

n j=1 

(iii) ∩ Aj ∈ Nncτ ∀ {Aj}nj=1 ∈ Nncτ. 

Then (X,Nncτ) is called a Nnc-topological space (briefly, Nncts) on X. The Nncτ elements are called Nnc-open sets (Nncos) 

on X and its complement is called Nnc-closed sets (Nnccs) on X. The elements of X are known as Nnc-sets (Nncs) on X. 

Definition 2.5 [5] Let (X,Nncτ) be Nncts on X and H be an Nncs on X, then the Nnc interior of H (briefly, Nncint(H)) and 

Nnc closure of H (briefly, Nnccl(H)) are defined as 

(i) Nncint(H) = ∪{A : A ⊆ H & A is a Nncos in X} & Nnccl(H) = ∩{C : H ⊆ C & C is a Nnccs in X}. 

(ii) Nnc-regular open [14] set (briefly, Nncros) if H = Nncint(Nnccl(H)). 

(iii) Nnc-pre open set (briefly, NncPos) if H ⊆ Nncint(Nnccl(H)). 

(iv) Nnc-semi open set (briefly, NncSos) if H ⊆ Nnccl(Nncint(H)). 
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(v) Nnc-α-open set (briefly, Nncαos) if H ⊆ Nncint(Nnccl(Nncint(H))). 

(vi) Nnc-γ-open set[14] (briefly, Nncγos) if H ⊆ Nnccl(Nncint(H)) ∪ Nncint(Nnccl(H)). 

(vii) Nnc-β-open set [15] (briefly, Nncβos) if H ⊆ Nnccl(Nncint(Nnccl(H))). 

The complement of an Nncros (resp. NncSos, NncPos, Nncαos, Nncβos & Nncγos) is called an Nnc-regular (resp. Nnc-semi, 

Nnc-pre, Nnc-α, Nnc-β & Nnc-γ) closed set (briefly, Nncrcs (resp. NncScs, NncPcs, Nncαcs, Nncβcs & Nncγc)) in X. 

The family of all Nncros (resp. Nncrcs, NncPos, NncPcs, NncSos, NncScs, Nncαos, Nncαcs, Nncβos, Nncβcs, Nncγos & 

Nncγcs,) of X is denoted by NncROS(X) (resp. NncRCS(X), NncPOS(X), NncPCS(X), NncSOS(X), NncSCS(X), NncαOS(X), 

NncαCS(X), NncβOS(X), NncβCS(X), NncγOS(X) & NncγCS(X)). 

Definition 2.6 [16] A set H is said to be a 

(i) Nncδ interior of H (briefly, Nncδint(H)) is defined by Nncδint(H) = ∪{A : A ⊆ H & A is a Nncros}. 

(ii) Nncδ closure of H (briefly, Nncδcl(H)) is defined by Nncδcl(H) = ∪{x ∈ X : Nncint(Nnccl(L)) ∩ H ≠ ϕ , x ∈ L & 

L is a Nncos}. 

Definition 2.7 [16] A set H is said to be a 

(i) Nncδ-open set (briefly, Nncδos) if H = Nncδint(H). 

(ii) Nncδ-pre open set (briefly, NncδPos) if H ⊆ Nncint(Nncδcl(H)). 

(iii) Nncδ-semi open set (briefly, NncδSos) if H ⊆ Nnccl(Nncδint(H)). 

(iv) Nnca open set (briefly, Nncaos) if H ⊆ Nncint(Nnccl(Nncδint(H))). 

(v) Nncδβ-open set or Nnce∗-open set (briefly, Nncδβos or Nnce∗os) if H ⊆ Nnccl(Nncint(Nncδcl(H))). 

The complement of an Nncδos (resp. NncδPos, NncδSos, Nncaos & Nnce∗os) is called an Nncδ (resp. Nncδ-pre, Nncδ-semi, 

Nnca ) & Nnce∗ closed set (briefly, Nncδcs (resp. NncδPcs, NncδScs, Nncδ acs & Nnce∗cs)) in Y . 

The family of all Nncδos (resp. Nncδcs, NncδPos, NncδPcs, NncδSos, NncδScs, Nncaos, Nnc acs, Nnce∗os & Nnce∗cs ) of 

X is denoted by NncδOS(X) (resp. NncδCS(X), NncδPOS(X), NncδPCS(X), NncδSOS(X), NncδSCS(X), NncaOS(X), 

NncaCS(X), Nnce∗OS(X) & Nnce∗CS(X)). 

Definition 2.8 [17] Let H be an Nncs on a Nncts X. Then H is said to be a 

(i) Nnce-open (briefly, Nnceo) set if H ⊆ Nnccl(Nncδint(H)) ∪ Nncint(Nncδcl(H)). 

(ii) Nnce-closed (briefly, Nncec) set if Nnccl(Nncδint(H)) ∩ Nncint(Nncδcl(H)) ⊆ H. 

The complement of an Nnceo set is called an Nnce closed (briefly. Nncec) set in X. The family of all Nnceo (resp. Nncec) 

set of X is denoted by NnceOS(X) (resp. NnceCS(X)). The Nnc e-interior of H (briefly, Nnceint(H)) and Nnc e-closure of 

H (briefly, Nncecl(H)) are defined as Nnceint(H) = ∪{G : G ⊆ H and G is a Nnceo set in X} & Nncecl(H) = ∩{F : H ⊆ 

F and F is a Nncec set in X}. 

Lemma 2.1 [16] Let A, B be two subsets of (X,Nncτ). Then: 

(i) A is Nncδ-open iff A = Nncintδ(A), 

(ii) X\(Nncintδ(A)) = Nncclδ(X\A) and Nncintδ(X\A) = X\(Nncclδ(A)), 

(iii) Nnccl(A) ⊆ Nncclδ(A)( resp. Nncintδ(A) ⊆ Nncint(A)), for any subset A of X, 

(iv) Nncclδ(A ∪ B) = Nncclδ(A) ∪ Nncclδ(B),Nncintδ(A ∩ B) = Nncintδ(A) ∩ Nncintδ(B). 

Proposition 2.4 Let A be a subset of a space (X,Nncτ). Then: 

(i) Nncscl(A) = A ∪ Nncint(Nnccl(A)),(Nncsint(A) = A ∩ Nnccl(Nncint(A)) 

(ii) Nncpcl(A) = A ∪ Nnccl(Nncint(A)),Nncpint(A) = A ∩ Nncint(Nnccl(A)) (iii) Nncsclδ(X\A) = X\δ − 

(Nncsint(A),Nncsclδ(A ∪ B) ⊆ Nncsclδ(A) ∪ Nncsclδ(B) 

(iv) Nncpclδ(X\A) = X\Nncpintδ(A),Nncpclδ(A ∪ B) ⊆ Nncpclδ(A) ∪ Nncpclδ(B). 

Lemma 2.2 [17] Let H be an Nncs on a Nncts X. Then the following are hold. 

(i) NncδPcl(H) = H ∪ Nnccl(Nncδint(H)) and NncδPint(H) = H ∩ Nncint(Nncδcl(H)), 

(ii) NncδSint(H) = H ∩ Nnccl(Nncδint(H)) and NncδScl(H) = H ∪ Nncint(Nncδcl(H)), 

(iii) Nnccl(Nncδint(H)) = Nncδcl(Nncδint(H)), (iv) Nncint(Nncδcl(H)) = Nncδint(Nncδcl(H)). 

3 NncZ∗-open sets and NncZ∗-closed sets 

Definition 3.1 Let (X,Nncτ) be a Nncts. Let A be an Nncs in (X,Nncτ). Then A is said to be a 

(i) NncZ∗-open (briefly, NncZ∗o) if A ⊆ Nnccl(Nncint(A)) ∪ Nncint(Nncclδ(A)), 

(ii) NncZ∗-closed (briefly, NncZ∗c) if Nncint(Nnccl(A)) ∩ Nnccl(Nncintδ(A)) ⊆ A. 

The family of all NncZ∗o (resp. NncZ∗c ) subsets of a space (X,Nncτ) will be as always denoted by NncZ∗OS(X) (resp. 

NncZ∗CS(X)). 

Remark 3.1 The following holds for a space (X,Nncτ). 

(i) Every Nncγo (resp. Nnceo) set is NncZ∗o, 

(ii) Every NncZ∗o set is Nnce∗o. 

But not conversely. 

Remark 3.2 The following diagram holds for a Nnc set of a Nncts X: 
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Example 3.1 Let X = {a,b,c,d}, ncτ1 = {ϕN,XN,A,B,C,D}, ncτ2 = {ϕN,XN,E,F}. A = ⟨{a},{ϕ},{b,c,d}⟩, B = 

⟨{c},{ϕ},{a,b,d}⟩, C = ⟨{a,c},{ϕ},{b,d}⟩, D = ⟨{a,c,d},{ϕ},{b}⟩, E = ⟨{a,b},{ϕ},{c,d}⟩, F = ⟨{a,b,c},{ϕ},{d}⟩, 
then we have 2ncτ = {ϕN,XN,A,B,C,D,E,F}. The set 

(i) ⟨{b,c},{ϕ},{a,d}⟩ is a 2ncZ∗os but not 2ncγos. 

(ii) ⟨{a,d},{ϕ},{b,c}⟩ is a 2ncZ∗os but not 2nceos. 

(iii) ⟨{b,d},{ϕ},{a,c}⟩ is a 2nce∗os but not 2ncZ∗os. 

Proposition 3.1 Let (X,Nncτ) be a Nncts. Then the Nncδ-closure of a NncZ∗o set of (X,Nncτ) is NncδSo. 

Proof. Let A ∈ NncZ∗OS(X). Then Nncclδ(A) ⊆ Nncclδ(Nnccl(Nncint(A)) ∪ Nncint(Nncclδ(A))) ⊆ Nncclδ(Nnccl(Nnc 

int(A)))∪Nncclδ(Nncint(Nncclδ(A))) ⊆ Nncclδ(Nncint(A))∪Nncclδ(Nncint(Nncclδ(A))) = Nncclδ(Nncint(Nncclδ(A))) = 

Nncclδ(Nncintδ(Nncclδ(A))) = Nnccl(Nnc intδ(Nnccldelta(A))). Therefore Nncclδ(A) ∈ NncδSOS(X). 

Lemma 3.1 Let (X,Nncτ) be a Nncts. Then the following statements are hold. 

(i) The union of arbitrary NncZ∗o sets is NncZ∗o, 

(ii) The intersection of arbitrary NncZ∗c sets is NncZ∗c. 

Proof. (i) It is clear.  

Remark 3.3 By the following we show that the intersection of any two NncZ∗o sets is not NncZ∗o. 

Example 3.2 In Example 3.1, the sets ⟨{a,d},{ϕ},{b,c}⟩ and ⟨{b,c,d},{ϕ},{a}⟩ are NncZ∗o sets but the intersection 

⟨{d},{ϕ}, {a,b,c}⟩ is not NncZ∗o set. 

Definition 3.2 Let (X,Nncτ) be a Nncts. Then: 

(i) The union of all NncZ∗o sets of X contained in A is called the NncZ∗-interior of A and is denoted by NncZ∗int(A), 

(ii) The intersection of all NncZ∗c sets of X containing A is called the NncZ∗-closure of A and is denoted by NncZ∗cl(A). 

Theorem 3.1 Let A, B be two subsets of a Nncts (X,Nncτ). Then the following are hold: 

(i) NncZ∗cl(X\A) = X\NncZ∗int(A), 

(ii) NncZ∗int(X\A) = X\NncZ∗cl(A), 

(iii) If A ⊆ B, then NncZ∗cl(A) ⊆ NncZ∗cl(B) and NncZ∗int(A) ⊆ NncZ∗int(B), 

(iv) x ∈ NncZ∗cl(A) iff for each a NncZ∗o set U contains x, U ∩ A ≠ ϕ , 

(v) x ∈ NncZ∗int(A) iff there exist a NncZ∗o set W such that x ∈ W ⊆ A, 

(vi) A is NncZ∗o set iff A = NncZ∗int(A), 

(vii) A is NncZ∗c set iff A = NncZ∗cl(A), 

(viii) NncZ∗cl(NncZ∗cl(A)) = NncZ∗cl(A) and NncZ∗int(NncZ∗int(A)) = NncZ∗int(A), 

(ix) NncZ∗cl(A) ∪ NncZ∗cl(B) ⊆ NncZ∗cl(A ∪ B) and NncZ∗int(A) ∪ NncZ∗int(B) ⊆ NncZ∗int(A ∪ B), (x) NncZ∗int(A ∩ B) 

⊆ NncZ∗int(A) ∩ NncZ∗int(B) and NncZ∗cl(A ∩ B) ⊆ NncZ∗cl(A) ∩ NncZ∗cl(B). 

Remark 3.4 By the following example we show that the inclusion relation in parts (ix) and (x) of the above theorem 

cannot be replaced by equality. 

Example 3.3 Let X = {a,b,c,d,e}, ncτ1 = {ϕN,XN,A,B,C}, ncτ2 = {ϕN,XN}. A = ⟨{c},{ϕ},{a,b,d,e}⟩, B = 

⟨{a,b},{ϕ},{c,d,e}⟩, C = ⟨{a,b,c},{ϕ},{d,e}⟩, then we have 2ncτ = {ϕN,XN,A,B,C}. Then, the sets 

(i) A = ⟨{a,b},{ϕ},{c,d,e}⟩ and B = ⟨{c,d},{ϕ},{a,b,e}⟩, then A∪B = ⟨{a,b,c,d},{ϕ},{e}⟩. 2ncZ∗cl(A) = 

⟨{a,b},{ϕ}, {c,d,e}⟩, 2ncZ∗cl(B) = ⟨{c,d},{ϕ},{a,b,e}⟩ and 2ncZ∗cl(A ∪ B) = X. Thus 2ncZ∗cl(A ∪ B) ̸⊂ 

2ncZ∗cl(A) ∪ 2ncZ∗cl(B). 

(ii) C = ⟨{a,c},{ϕ},{b,d,e}⟩ and D = ⟨{c,d},{ϕ},{a,b,e}⟩, then C∩D = ⟨{c},{ϕ},{a,b,d,e}⟩. 2ncZ∗cl(C) = 

⟨{a,c,d,e}, {ϕ},{b}⟩, 2ncZ∗cl(D) = ⟨{c,d},{ϕ},{a,b,e}⟩ and 2ncZ∗cl(C ∩ D) = ⟨{c},{ϕ},{a,b,d,e}⟩. Thus 

2ncZ∗cl(C) ∩ 2ncZ∗cl(D) ̸⊂ 2ncZ∗cl(C ∩ D). 

(iii) E = ⟨{a,d},{ϕ},{b,c,e}⟩ and F = ⟨{b,d},{ϕ},{a,c,e}⟩, then E ∪ F = ⟨{a,b,d},{ϕ},{c,e}⟩. 2ncZ∗int(E) = 

⟨{a},{ϕ},{b,c,d,e}⟩, 2ncZ∗int(F) = ⟨{b},{ϕ},{a,c,d,e}⟩ and 2ncZ∗int(E ∪ F) = ⟨{a,b,d},{ϕ},{c,e}⟩. Thus 2ncZ∗ 

int(E ∪ F) ̸⊂ 2ncZ∗int(E) ∪ 2ncZ∗int(F). 

Theorem 3.2 Let A, B be two Nnc sets of a Nncts (X,Nncτ). Then the following are hold: 

(i) NncZ∗cl(Nnccl(A) ∪ B) = Nnccl(A) ∪ NncZ∗cl(B), 

(ii) NncZ∗int(Nncint(A) ∩ B) = Nncint(A) ∩ NncZ∗int(B). 

   

   

   

        

       

   
 

 

  eo 
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Proof. (i) NncZ∗cl(Nnccl(A) ∪ B) ⊇ NncZ∗cl(Nnccl(A)) ∪ NncZ∗cl(B) ⊇ Nnccl(A) ∪ NncZ∗cl(B). The other inclusion, 

Nnccl(A) ∪ B ⊆ Nnccl(A) ∪ NncZ∗cl(B) which is NncZ∗c. Hence, NncZ∗cl(Nnccl(A) ∪ B) ⊆ Nnccl(A) ∪ NncZ∗cl(B). 

Therefore, NncZ∗cl(Nnccl(A) ∪ B) = Nnccl(A) ∪ NncZ∗cl(B). 

 (ii) It is follows from (i).  

Theorem 3.3 Let (X,Nncτ) be a Nncts and A ⊆ X. Then A is a NncZ∗o set iff A = (Nncsint(A)) ∪ Nncpintδ(A). 

Proof. It is clear.  

Proposition 3.2 Let (X,Nncτ) be a Nncts and A ⊆ X. Then A is a NncZ∗c set iff A = Nncscl(A) ∩ Nncpclδ(A). 

Proof. It follows from Theorem 3.3.  

Proposition 3.3 Let A be a Nnc set of a Nncts (X,Nncτ). Then: 

(i) NncZ∗cl(A) = Nncscl(A) ∩ Nncpclδ(A), 

(ii) NncZ∗int(A) = Nncsint(A) ∪ Nncpintδ(A). 

Lemma 3.2 Let A be a Nnc set of a Nncts (X,Nncτ). Then the following are hold: 

(i) Nncpcl(Nncpintδ(A)) = Nncpintδ(A) ∪ Nnccl(Nncint(A)), 

(ii) Nncpint(Nncpclδ(A)) = Nncpclδ(A) ∩ Nncint(Nnccl(A)). 

Proof. (i) By Lemma 2.2 and Proposition 2.4, Nncpcl(Nncpintδ(A)) = Nncpintδ(A) ∪ Nnccl(Nncint(Nncpintδ(A))) = Nncp 

intδ(A) ∪ Nnccl(Nncint(A ∩ Nncclδ(Nncint(A)))) = Nncpintδ(A) ∪ Nnccl(Nncint(A)). 

 (ii) It follows from (i).  

Proposition 3.4 Let A be a Nnc set of a Nncts (X,Nncτ). Then: 

(i) NncZ∗cl(A) = A ∪ Nncpint(Nncpclδ(A)), 

(ii) NncZ∗int(A) = A ∩ Nncpcl(Nncpintδ(A)). 

Proof. (i) By Lemma 3.2, A ∪ Nncpint(Nncpclδ(A)) = A ∪ (Nncpclδ(A) ∩ Nncint(Nnccl(A))) = (A ∪ Nncpclδ(A)) ∩ (A ∪ 

Nncint(Nnccl(A))) = Nncpclδ(A) ∩ Nncscl(A) = NncZ∗cl(A). 

 (ii) It follows from (i).  

Theorem 3.4 Let A be a Nnc set of a Nncts (X,Nncτ). Then the following are equivalent: 

(i) A is a NncZ∗o set, 

(ii) A ⊆ Nncpcl(Nncpintδ(A)), 

(iii) there exists U ∈ NncδPOS(X) such that U ⊆ A ⊆ Nncpcl(U), 

(iv) Nncpcl(A) = Nncpcl(Nncpintδ(A)). 

Proof. (i) ⇒ (ii). Let A be a NncZ∗o set. Then, A = NncZ∗int(A) and by Proposition 3.4, A = A ∩ Nncpcl(Nncpintδ(A)) and 

hence ,A ⊆ Nncpcl(Nncpintδ(A)). 

(iii) ⇒ (i). Let A ⊆ Nncpcl(pintδ(A)). Then by Proposition 3.4, A ⊆ A ∩ Nncpcl(Nncpintδ(A)) = NncZ∗int(A) and hence 

A = NncZ∗int(A). Thus A is NncZ∗o. 

(ii) ⇒ (iii). It follows from putting U = Nncpintδ(A). 

(iii) → (ii). Let there exists U ∈ NncδPOS(X) such that U ⊆ A ⊆ Nncpcl(U). Since U ⊆ A, then Nncpcl(U) ⊆ 

Nncpcl(Nncpintδ(A)) therefore A ⊆ Nncpcl(U) ⊆ Nncpcl(Nncpintδ(A)). (iv) ⇔ (i). It is clear.  

Theorem 3.5 Let A be a Nnc set of a Nncts X. Then the following are equivalent: (i) A is a NncZ∗c set, 

(ii) Nncpintδ(Nncpcl(A)) ⊆ A, 

(iii) there exists U ∈ NncδPCS(X) such that Nncpint(U) ⊆ A ⊆ U, 

(iv) Nncpint(A) = Nncpint(Nncpclδ(A)). 

Proof. It follows from Theorem 3.4.  

Proposition 3.5 If A is a NncZ∗o set of a Nncts (X,Nncτ) such that A ⊆ B ⊆ Nncpcl(A), then B is NncZ∗o. 
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