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Abstract— A graph labeling problem is an assignment of labels to the vertices or edges (or both) of a graph G
satisfying some mathematical condition. Radio Mean Labeling, a vertex-labeling of graphs with non-negative
integers has a significant application in the study of problems related to radio channel assignment.
The maximum label used in a radio mean labeling is called its span, and the lowest possible span of a radio
mean labeling is called the radio mean number of a graph. In this paper, we obtain the radio mean number of
paths and total graph of paths.

Keywords— Channel assignment problem; Graph theory; Path graph; Radio Mean Labeling; Total graph of a
graph

. INTRODUCTION

For basic graph theory terminology, we refer [16]. The basic principle of a Radio communication network is
transmission and reception of radio signals. Each radio station is assigned a channel number or frequency;
transmitter sends signals; a receiver then picks it up and translates it to the sounds heard through the radio.
However, the reception will be degraded by the unnecessary interference by transmitters of closely related
channel number, if any. Hence the channel assignment problem is to assign radio channels to transmitters with
minimum span in such a way that it minimizes interference between radio stations that are in the same
neighborhood. This problem of Radio channel assignment can be converted into a Graph theoretic problem as
follows: The radio network can be considered as a graph in which vertices corresponds to transmitter locations
and two vertices are adjacent if the locations of the radio stations corresponding to these vertices are close. The
main objective is to label vertices of this graph with minimum span where the labels given to the vertices
determine the channel on which it transmits [15]. Chartrand et al. converted this problem to a vertex labeling
problem as follows: For a connected graph G, radio labeling was defined as a one-to-one function ¢ from V(G) to
Z*, the set of all positive integers where d(u,v)+/ ow)-pv)| > 1 + diam(G),V uyv € V(G). Authors in [17]
studied the Radio labeling of Strong product of Kz and P,. Graphs for which the largest label used is same as the
order of the graph are called radio graceful. In [10], [11] the authors study this concept of radio gracefulness of a
graph.

The idea of radio mean labeling of graphs was conceived the paper [5], published in the year 2015. The radio
mean labeling of a connected graph G was defined as an injective function

f: V(G) — Z* where

(LW 4 d(u,v) > diam(G)+1, Yu,v € V(G).

The radio mean number of f or rmn(f) is the maximum integer assigned to any ve V(G) under this mapping f.
Further the radio mean number of G, denoted by rmn(G) is the smallest value of rmn(f) taken over all radio
mean labelings f of G. It is obvious by the definition that rmn(G) > | V(G) |. If rmn(G) =

| V(G) |, then G is called a radio mean graceful graph [3].

In[5, 6, 7, 8, 9], Ponraj, R., S. Sathish Narayanan and R. Kala have investigated the radio mean labeling of
many classes of graphs including graphs with maximum distance between distinct pairs of vertices either two or
three. The radio mean number of Triangular Ladder graph, corona P, with [1K», corona K, with 7K and corona
W, with K are obtained in [13] by Sunitha, K., C. David Raj and A. Subramanian and that of subdivision
graph of complete graphs, Mongolian tent graph, subdivision of Friendship graphs, and diamond graphs in [10]
by Lavanya Y. and K. N. Meera. Smitha, KM Baby and K. Thirusangu studied the radio mean labeling of
corona Ky with K, , corona Wy, with K, corona star Sm with K, and corona Helm Hy, with Ky in [12]. In
[11], Raj, Deva and Brindha studied the radio mean labeling of Degree Splitting graph of P, , K1, and corona P,
with K. In [4] the mean in the definition is replaced by geometric mean and radio geometric graceful graphs are
studied.
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The total graph of a graph G is a graph whose vertex set is V(G) U E(G), and two vertices are adjacent in the
total graph if and only if they are adjacent or incident in G. We denote total graph of G by 7(G).
II.  RADIO MEAN LABELING OF PATHS

Consider the Path P, on n vertices vi,v,--- ,vn. Note that for path graph Pn, diam(P,) = n — 1. Alabeling

f: V(Pn) — Z*is a Radio mean labeling of Py, if f is injective and satisfies the condition:
f%} + d(v;,v;) > n, for all v;,v; € V(P,).(1)

A. Casel:n=2,3
Define f: V(P,) — Z* defined by f(vi) = i, where vi € V(P,) for each n € {2, 3}. It can easily be seen that paths
P2, Pz admit Radio mean Graceful labeling under the injective mapping f.
B. Casell:n>4
Theorem: 11-B.1
The Path P, , n =4, 5, 6 admits Radio mean labeling with rmn(P,) = 2n — 4.
Proof. For n = 4, 5, 6, define a function f: V(Py) — Z* by f(vi) =n -3, f(v2) =2n -4, f(v3) =n-2, f(vi) = 2n
—i—1:4<i<n. Clearly, fis an injective function. We shall now show that the function f satisfies (1).
Consider any pair (vi, vj) € V(Pn).

f(wi) + f(vy) flvr) + flva)

( B 1 + d('i,-‘,j- 'L-'_;‘) = |— B -| + d(?.-‘_]_ .'E.-';g)
> rn—.'HQ—n.—Z]JrQ
> n—24+2
> n

Under this labeling f, every pair of vertices in Pn, n = 4, 5, 6 satisfies radio mean condition and hence f is a
radio mean labeling of P,. The maximum integer used as a label under this function f is 2n — 4 and so rmn(f) =
2n —4. When n =4, f is a graceful labeling and so rmn(P,) =2n — 4 =n and forn=5, 6, rmn(P,) <2n—4.

It is clear from the definition of f that any radio mean labeling of P,, n = 5, 6 whose range consists of only
integers greater than n — 3 has a span greater than that of f. Let us now consider any radio mean labeling h of P,
,N=56,h:V(Pn) —{n—4 n-3 n-2 -} Thenit follows from the Radio mean condition that any vertices
receiving labels n — 4 and n — 3 are at least n — 2 distance apart, any vertices receiving labels n — 3 and n — 2 are
at least n — 3 distance apart and any vertices receiving labels n—4 and n—2 are at least n — 2 distance apart. A
labeling of P, using integers {n — 4, n — 3, n — 2} satisfying the above constraints on distance is not feasible.
This indicates that not all of the integers {n—4, n—3, n—2} are in the Range of h and so span of h is greater than
2n—>5. In other words, rmn(h) > 2n — 4. Thus, we can show that any radio mean labeling of P,, n =5, 6 whose
range set consists of integers less than n — 3 has span greater than or equal to 2n — 4. Hence, rmn(P,) =2n — 4, n
=5, 6. Hence, for path Py, n =4, 5, 6 we have rmn(P,) =2n — 4.

Lemma: I11-B.1
Suppose n is any integer which belongs to an interval of the form : [4+Sy, 6+Sk +k] where Sy = 3+4+5+. -

+(3+k—1)and k=1, 2,3, - - -. Then there exists a Radio mean labeling of Pn, n > 7 with radio mean number,
rmn(Py) = 2n—k—4.

Proof. Suppose n € [4+Sk, 6+Sk+K] where Sy =3+4+5+ - - -+ (3+k—-1)and k=1, 2,3, - - -. Letus define a
function f,

f:V(P,) — Z™" using indices d;,ds, - - - ,dp1o where d; =

Landd; =di_1+n— f(vg,_,)—1;i=2,3,--- ,k+2.
The function f is given by
(7)) fln)= flog,)=n—k-3
(7i)  flva,) = flva,) +i—1=n—k+i—4,
ifi=23 - k+2
(1)  f(vi) = flvdgp,)+n—i+1=2n—1i—1,
if (dpa2)+1<i<n
(iv) f(vi)=  [flva4+ny) +di —i,if i € (d—1,d))
where l € {k+2,k+1,k,---,3,2}

Clearly, f is an injective function. We shall now show that the f satisfies (1). Following are the different cases we
consider:
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(1) Consider the pair (v;,v;) where 5,05 €
{1"‘dl s Vdy sttt 1"‘dk+2}
ELDRELLD P R AR (R
+d(va,, va,)
> flvg,)+1+ds—1
> n
(2) Consider the pair (v;,v;) where (dp;2) + 1 < i and
JEn,i#].
d(v;,v;)
> n

(3) Consider the pair (v;,v;) where i € {dy,da, -, dri2}
and (dpy2)+1<j<n
én + d_ E —

2 2

%

[M] + d(vi, v;)
> n

(4) Consider the pair (v;,v;) where v,v; € V(P,) \

({va,, vay, -+ s Vdyyn } U{1'!(dk+2]+l 1 U(dpp2)4+2-7 " ,Un})
flv) + flv;
DI 4 d ) > fwsas) + o vy)
> 2n—dpyo —2
+d(?.!i, Uj)
Z n
(5) Consider the pair (v;,v;) where v; € {vg,,- -, Va..,}
and
vj € V(Fn) \ {{1-"111? Tt 5Udk+2} U{'i"'[dk+2)+1! s ,'i.-'n})
flvi) + f(v;) n—3+2n—dyis
ploReiU) S N e
+1
> |.<Sn — d;;g - S).| 1
Z n

(6) Consider the pair (v;,v;) where
Vi € {U(dy0)+15 V(dpsa)+2: " s Un} and

vj € V(P") \ |{'{""""4’1? U ?Ud:c+2} U{1'!(dk+2)+1: T s'i"'n})
2f(V(dys)1) +1

2 2
+2
> f(V(dpsa)+1) +3
> 2n— (dpy2+1)+2
> n

From all the above cases it follows that f satisfies Radio mean condition for all pairs of vertices of P,, n> 7. The
maximum number assigned to any vertex of P, under this mapping is 2n — k — 4. Hence the radio mean number
of f, rmn(f) =2n—k — 4.

Theorem: 11-B.2
For any Path P, ,n €[4 + Sy, 6 + S + k] where Sy = 3+ 4+ 5+ - + B3+k—1)and k=1, 2,3, -+ -asin
previous lemma the radio mean number of Py is 2n — k — 4.

345



Radio Mean Labeling Of Paths And Its Total Graph

Proof. It is clear from the function f defined in previous lemma that any radio mean labeling of P, whose range
contains only integers greater than n — k — 3 has a span greater than that of f. Now we shall investigate about the
span of radio mean labelings of P, whose range consists of integers less than n — k — 3. It is observed that under
the labeling f,

d(vd,, Ve, ) +d(vdy, vay )+ -+ d(vg, |, Va, )+ < diam(Py,)

e (k+2)+(k+1)+k+---+2+1=4+5-1<n-1
Consider any radio mean labelingh of P, h: V(Py) >fn —k—4,n—k—3,n—k— 2, ---}. Then it follows
from Radio mean condition that any vertices receiving labels n — k — 4 and n — k — 3 must be at least k + 3
distance apart, any vertices receiving labels n — k — 3 and n — k — 2 must be at least k + 2 distance apart, any
vertices receiving labels n —k — 2 and n — k — 1 must be at least k + 1 distance apart, - - -, any vertices receiving
labels (n —k — 3) + k and (n —k — 3) + (k + 1) must be at least 2 distance apart. If {(n—k—4),(n—k—-3),(n—k
=2), - -,(n—k—-3)+k(mk—3)+ (k+ 1)} are in the Range of h, then we must have

(k+3) + (k+2) + (k+1) -+ +3+2+1<n-1
That implies (k + 3) + 4 + Sy — 1 <n — 1, a contradiction since 4 + Sy <n < 6 + Sk + k. This means not all of the
integers

Fig:1 Path on 8 vertices

{n—k—4),n—k-3),n—k—2), - - -,(n—k—3) +k,(n—k —3) + (k + 1)} are in the Range of h which implies
that the maximum integer assigned to any vertex of P, under the mapping h, rmn(h) > 2n — k — 5. In other
words, rmn(h) >2n—k — 4.

Similarly, we can show that any radio mean labeling of P, whose range set includes integers less than n — k —
3 has span greater than or equal to 2n — k — 4. Therefore, for path Pp, 4 + Sc<n<6 + Sk + k, rmn(Pp) =2n—k —
4.

I1l. RADIO MEAN LABELING OF TOTAL GRAPH OF PATHS
The total graph of a path Py is a graph whose vertex set consists of the vertices and edges of P, and two vertices
are adjacent in 7' (Py) if and only if their corresponding elements are either adjacent or incident in P,. Let P, be a
path of n vertices namely vi,vs, - ,vnh and edges e, e, ---, en. Then the total graph of P, denoted by T (P,) is the
graph with vertex set .
{v1, 02, , U} U{v), Vg, s Up_1}

Where vi’ is the vertex corresponding to edge e; of P, and two vertices of T (P,) are adjacent if their
corresponding elements are adjacent in Py. It is obvious that the diameter of T (Py) is equal to n — 1. A labeling
f: V(T (Pn) — Z* is a radio mean labeling of T (P.), if T (Pn) is injective and satisfies the condition

flu) + f(v),

[ 5 + d(u,v) > n,for all u,v € V(T(F,))- (2)

A. Casel:n=2,3,4

Theorem: 111-A.1
The total graph 7 (P,) of Path Pn, n =2, 3, 4 admits Radio mean graceful labeling.
Proof. Define f: V(T (Pn)) — Z* as follows.

flor) = 2, f(vn) = 1,
flvi) = 242(i-1):2<i<n,
flo)) = 3+42i-1):1<i<n-—1

Clearly, f is an injective function. We shall now show that the f satisfies (2). Following are the different cases
we consider:
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(1) Consider the pair (?..'1-.,1..1;) where v;, -i,-‘_; e V(T(P))

[f("-"i) ; f("-’j)1 +d(vi,vy) > f—f(m) ; f(?'!2)1 +
d(?.!l, ?,'2)
> [ +1=3
> 2
(2) If vi,vj € V(T(Py)),n=3.4
[f(?-’i') _; f("""j)‘| + d('vi:'”j) 2 |’f(1"‘1) ':: f("‘-"n)'l +
d(vy,vn)
= f%} +n—-1
> 24n—1
> n
(3) 1f ?13 e V(T(P,)),n=3,4
f—f(vi) ; A )1 +d(vi,v;) > ff—(”‘) ; f(vg)] +
d(v;, v))
> [“};"1+1=5
> n
(4) If v;,v; € V(T (Pn)),n = 3,4
[f (vi) ; f (""j)} +d(vi,v) > (7)"(1’1) : f(?'!l)] +
d(vn, ?,I;)
> (224124
> n

From all the above cases it follows that f satisfies Radio mean condition for all pairs of vertices of T (Pn), n = 2,
3, 4 and the largest integer utilized in this labeling is n and so rmn(f) = n and f is a graceful radio mean labeling.
B. Casell:n=5,6,7

Theorem: 111-B.1
The total graph T (Py) of path Py, n = 5, 6, 7 admits Radio mean labeling with rmn(T (Py)) = 3n — 6.
Proof. Define f: V(T (Pn)) — Z* using indices do =n, d; =1, d, = 3 as follows:

flv1) = n-3,

flva) = 3n-T1,

flo;)) = n+2i-7:3<i<n-1,
flv,) = n-—4,

f(v)) = 3n—6,

fv;) = n+2i-6:2<i<n-1.

Clearly, f is an injective function. We can also verify as in earlier case that f satisfies (2) and so it follows that f
is a radio mean labeling. Since maximum integer assigned to any vertex under this labeling is 3n — 6, rmn(f) =
3n— 6. When n =5, fis a graceful labeling and so rmn(T (Pn)) =3n—6,n=5. And rmn(T (Pn)) <3n—6,n= 6,
7. 1t is clear from the function f that any radio mean labeling of 7 (P,), n = 6, 7 whose range consists of only
integers greater than n — 4 has a span greater than that of f.
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Let us now consider any radio mean labeling h of T (Pn), n =6, 7, h : V(T (Py) —{n—35, n—4, n—3, - - - }.
Then it follows from Radio mean condition that any vertices receiving labels
n — 5 and n — 4 must be at least 4 distance apart, any vertices receiving labels n — 4 and n — 3 must be at least 3
distance apart, any vertices receiving labels n — 3 and n — 2 must be at least 2 distance apart and any vertices
receiving labels n — 2 and n — 1 must be 1 distance apart. It can easily be seen that it is not feasible to label the
vertices of T (Py) using integers from n — 5 to n — 1 satisfying the above constraints on distance. This indicates
that not all of these integers are in the Range of h which in turn says that the maximum integer assigned to any
vertex under this labeling, rmn(h) > 3n — 7. In other words, rmn(h) > 3n — 6. Thus, we can show that any radio
mean labeling of 7' (Py), n = 6, 7 whose range set consists of integers less than n — 4 has span greater than or equal
to 3n — 6. Hence, rmn(T (Pn)) =3n—6,n=16, 7.

Therefore, for the total graph T (Py) of path Py, n € {5, 6, 7}, rmn(T (Py)) =3n—6.

C. Caselll: n>8

Theorem: 111-C.1

The total graph 7 (Pn), n €[8, 12] admits Radio mean labeling with rmn(7 (P)) = 3n — 7.
Proof. Let n € [8, 12]. Define f: V(T (Py)) — Z* using indices do =n, d; =1, d, =3, d3 =5, da = 5 as follows:

flv1)) = n—4,

flvs) 3n+2i—16:i=2,34,
flvs) = n—2,

flvs) n+42-12:6<i<n-1,
flvp) = n-—5,

flv;) = 3n+2i-13:i=1,2,
flvg) = n-—3,

floy) = 3n-T,

flvs) = n—1,

flv;) = n+2i-11:6<i<n-1.

Clearly, fis an injective function. We can also verify that f satisfies (2) and so it follows that f is a radio mean
labeling. Since maximum integer assigned to any vertex under this labeling is 3n—7, rmn(f) = 3n—7. And rmn(T
(Pn)) <3n—7,n € [8, 12]. It is clear from the function f that any radio mean labeling of T (P»), n € [8, 12] whose
range consists of only integers greater than n — 5 has a span greater than that of f. Let us now consider any radio
mean labeling h of 7 (Pn), n € [8,12], h : V(T (Py)) —»{n—6,n—5,n—4, - - - }. Then it follows from Radio
mean condition that any vertices receiving labels n — 6 and n — 5 must be at least 5 distance apart, any vertices
receiving labels n — 5 and n — 4 must be at least 4 distance apart, any vertices receiving labels n — 4 and n — 3
must be at least 3 distance apart and any vertices receiving labels n — 3 and n — 2 must be 2 distance apart. It can
easily be seen that it is not feasible to label the vertices of T (Pn) using integers n — 6 to n — 2 satisfying the above
constraints on distance. This indicates that not all of these integers in the range of h and hence the maximum
integer assigned to any vertex under this labeling, rmn(h) > 3n — 8. In other words, rmn(h) > 3n — 7. Thus, we can
show that any radio mean labeling of T (Py), n € [8, 12] whose range set consists of integers less than n — 5 has
span greater than or equal to 3n — 7. Hence, rmn(7 (Pn)) =3n—7,n € [8, 12].

Lemma: I11-C.1

Suppose n is any integer which belongs to an interval of the form : [8+ Sy, 12+ S¢ +k] where Sy = 5+6+7+ - -
“+(5+k—1) and k = 1, 2, 3, - - -. Then there exists a Radio mean labeling of T (Py), n > 13 with radio mean
number 3n —k — 7.

Proof. Let us define a function f: V(T (Pn)) — Z* using indices do,d1, dz--- where

(i)do = n,

(ii)dy = 1,

(#id)da = n — [f(va,) + 1],

(iv) di =diy +n— [f(vy ) +1], foriisodd, i <k+4,

(v)d; =d;_1+n—[f(vg,_,)+1]—1, foriis even, i < k+4.

The function f is given by
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() foa)=  floa)=n—k—5
(ii) f(n) = flon)+1l=n—-k—-4

(#i7) flvg,) = flog,)+i—-1=n—k+i-5
cif i is odd ;i <k +4
(iv) f(‘d,) = flug)+i—1=n—k+i-5

cifiiseven ,i <k+4
(v) if k+4 is odd:

fw) = flva,,)+ 20— diys)where
dk+3+]_§ifn,—]
f(vi) = f(ﬂkord) + 2(7 - dk+4)Where

dk+,1+lSiSTL—]
if k+4 is even:

flo) = f(va,,,) +2(i — dpya)where
dk+,1+ISiSTL—]
flvi) = f(va,,,) + 2(i — diy3)where
dpis+1<i<n-1
(vi) fv) = f(“‘:}.—l) +2i:1<i<dy
(vit) flv) = flop—)+2(i—1):2<i<ds
(viii) flv) = f(viay—1y) + 2(i — di)where
d <i<dpgal=24---1<k+4
(i) flv) = v, —1)) + 2(i — d;)where

dy <i<dpsl=305 - 1<k+4

Clearly, fis an injective function. We can also verify that f satisfies (2) and so it follows that f satisfies Radio
mean condition for all pairs of vertices of T (P,) where n € [8 + S, 12 + Sk + K] where Sy=5+6+7+ .-+ (5 +
k—1)andk=1,2, 3, ---. The largest integer used under this mapping is 3n — k — 7. Hence the radio mean number
of f, and the rmn(f)=3n—-k — 7.

Theorem: 111-C.2
For T (Pn),n €[8+ S, 12 + Sc+ K] where Sx=5+6+ -+ (S +k—1Dandk=1 2,3, - -as in previous
lemma, the radio mean number rmn(T (Pn))s 3n — k — 7.

Proof: Proof follows from the preceding lemma.

Fig:2 Total graph of Path on 8 vertices

13 15 5 17 7 9 1
</ OO
4 12 14 16 [} 8 10

IV. CONCLUSION

In this paper, authors have obtained Radio mean labelings of Path graph and its total graph with minimum span.
The radio mean number of Py, is given by

i) if n=2,3,
2n —4 if n =4,5,6,
rmn(P,) =< 2n—k—4 ifne[d+ Sk 6+ S+ k|,
ke N,

Sp=3+4+---+(B3+k-1).
And the radio mean number of T (Py) is given by
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(9n — 1 ifn=2,3,4,
3n—=6 if n==6,7,
rmn(T(P,)) = 3n—7 %f n=8,9,10,11,12,
3n—k—7 ifne[8+5,,12+ 5, +kl,
keN,
{ Sp=5+6+---+(B+k-1)
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