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I INTRODUCTION

The fuzzy set was introduced by L.A.Zadeh in 1965, where each element had a degree of membership.
The concept of fuzzy topological space was introduced by C.L.Chang in 1968. The notion of intuitionistic fuzzy
set introduced by K.Atanassov is one of the generalisation of the notion of fuzzy set. The concept of
Neutrosophic set was introduced by Smarandache. Neutrosophic operations were introduced by A.A.Salama.
The concept of Neutrosophic (3-open set was given by I.Arokiarani and R.Dhavaseelan[4].The concept of Baire
space in fuzzy setting was introduced by G.Thangaraj and S.Anjalmose[10].The idea of Fuzzy g Baire spaces
was given by G.Thangaraj and R.Palani[11]. The idea of Neutrosophic Baire space was introduced by
R.Dhavaseelan, S.Jafari, R.Narmada Devi[6].

Il. PRELIMINARIES

In this work by a Neutrosophic Topological space we mean that a non-empty set X together with a
Neutrosophic Topology N, and denote it by (X, N;). The interior, closure and the complement of a Neutrosophic
set P will be denoted by int(P), cI(P) and 1-P (or)P respectively.
Definition 2.1. [7,8] Let T,I,F be real standard or non standard subsets of ]07,1%[, with sup; = tg,, ,
in T = tinf
Sup; = isup ,infy = iinf
SUpr = Fsup infp = finf
n—Sup = toyy, + lsyp + foup
n —inf = tiyr + iing + fins - T,1,F are neutrosophic components.
Definition 2.2. [7,8] Let X be a nonempty fixed set. A neutrosophic set [briefly Neu.Set] P is an object having
the form P= {(x, up(x),0p(x),yp(x)):x € X} where up(x),0p(x)and yp(,, represents the degree of
membership function, the degree of indeterminacy and the degree of nonmembership respectively of each
element x € X to the set P.
Remark 2.1. [7,8]
(1) A NeuSet P = {{x,up(x),0p(x),yp(x)):x € X} can be identified to an ordered triple (up,gp,yp) in
107, 1" [ on X.
(2) For the sake of simplicity we shall use the symbol P = (up,op,vp) for the NeuSet P =
{(x' ”P(x)IO-P(x)' VP(x)>:x € X}
Definition 2.3 . [7,8] Let X be a nonempty set and the Neu.Sets P and Q in the form P=
{x, up (x), 0p (%), vp (x)): x € X},
Q= {(x, to(x), 09 (x),7o(x)): x € X}. Then
(@)P < Qiff pup(x) < po(x), op(x) < 0q(x),and yp(x) = yqo(x) forallx € X;
(b)P=Qiff P Qand Q S P;
(©) P = {{x,yp(x), 0p (), up (x)): x € X}
(P N Q = {(x, 1p () A 19 (x), 05 (x) A 5 (1), Yp () V V() ): x € X};
(€)P U Q = {{x, up(x) V pg(x), 0 (¥) V 0o (), Yo () AYq(¥) ): x € X};
(f) []P = {(X,,LLP(X), O_P(x)' 1- IJP(x)) ‘X E X},
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@) ( P ={x,1-yp(x),0p(x),yp(x)) : x € X}.
Definition 2.4.[7,8] Let {P; : i € J} be an arbitrary family of neutrosophic sets X. Then
(@) NP = {(xA pp, (x),A 0p, (X),V vp,(X)): x € X};
(b)) U P; = {(x,V pup, (X),V 0p, (x),A yp,(x)): x € X}.
Since our main purpose is to construct the tools for developing Neutrosophic topological spaces (Neu.T.S), we
introduce the Neu. sets 0, and 1, in X as follows:
Definition.2.5.[7,8] 0y = {{x,0,0,1) : x € X} and 1y = {(x,1,1,0) : x € X}.
Definition 2.6.[13] A Neu. topology(N;) on a nonempty set X is a family 7 of Neu.Sets in X satisfying the
following axioms:
(i)Oy, 1y €T
(i)Gy NG, ET.
(iii)UG; € T for arbitrary family {G;/i € A} S 7.
In this case the ordered pair (X,N;) or simply X is called a neutrosophic topological space (briefly Neu.T.S) and
each Neu. Set in T is called a neutrosophic open set (briefly Neu.0.S) . The complement P of a Neu.O.S P in X
is called a neutrosophic closed set (briefly Neu.C.S) in X.
Definition 2.7.[13] Let P be a Neu. Set in a Neu.T.S (X, N;) . Then Neu.int(P) = u{G/ G is a Neu.O.Set in X
and G < P } is called the neutrosophic interior of P.
Neu.cl(P) =n{G/G isaNeu.C.Setin X and G 2 P} is called the neutrosophic closure of P.
It can also be shown that Neu.int(P) is Neu.O.Set and Neu.cl(P) is Neu.C.Set in X.
a) P is Neu.O.Set if and only if P = Neu.int(P).
b) P is Neu.C.Set if and only if P = Neu.cl(P)
Proposition 2.1[13] For any Neu.Set P in (X,N;) we have
a) Neu.int(C(P))=C(Neu.cl(P)).
b) Neu.cl(C(P))=C(Neu.int(P)).
Definition 2.8. [6] Let X be a nonempty set. If r, t, s be a real standard or non standard subsets of ]0~, 1*[ then
the Neu. set x, . ; is called a Neu. point (in short Neu.P) in X given by
(r,t,s) if x =x,

xrs(%p) = {(0,0,1), if x # xp}
for x,, € X is called the support of x,., ;. where r denotes the degree of membership value, t denotes the degree
of membership value, t denotes the degree of indeterminacy and s denotes the degree of non-membership value.
Proposition 2.2[16]. Let (X,N;) be a Neu.T.S and P, Q be the two Neu.Sets in X. Then the following properties
hold:
a) Neu.int(P)<P.
b) P=Neu.cl(P).
¢) P€Q= Neu.int(P) SNeu.int(Q).
d) P€Q= Neu.cl(P) SNeu.cl(Q).
e) Neu.int(Neu.int(P))=Neu.int(P).
f) Neu.cl(Neu.cl(P))=Neu.cl(P).
g) Neu.int(PuQ) 2 Neu.int(P) U Neu.int(Q).
h)Neu.int(PNQ) = Neu.int(P) N Neu.int(Q).
i) Neu.cl(PuQ)= Neu.cl(P) U Neu.cl(Q).
j) Neu.cl(PNnQ)< Neu.cl(P) n Neu.cl(Q).
k) Neu.int(0y) =0y .
I) Neu.int(1y) =1y.
m) Neu.cl(0y) =0y.
n) Neu.cl(1y) =1y.
0) P€Q= C(Q) =C(P).
Definition 2.9[7]. A Neu.Set P in Neu.T.S (X,N;) is called neutrosophic dense(Neu.D) if there exists no
neutrosophic closed set Q in (X,N;) such that PcQc 1.
Definition 2.10[7]. A Neu. set P in Neu.T.S (X,N;) is called neutrosophic nowhere dense set (Neu. N.D.Set) if
there exists no Neu.O.Set Q in (X,N;) such that Q cNeu.cl(P) that is Neu.int(Neu.cl(P))=0y.
Proposition 2.3. If P is a Neu.N.D.Set in (X,N,),then P is a Neu.D.set in (X,N,).
Definition 2.11[4] A Neu.Set P in Neu.T.S X is said to be a neutrosophic B-open set (Neu.p OS) if P <

Ncl(Nint(Ncl(P))) and neutrosophic S-closed set(Neu. SCS) if. Nint (Ncl(Nint(P))) cP.

Definition 2.12. Let P be a Neu.Setina Neu.T.S in (X,N;). Then

Neu.gint(P) = U{G/ G isa Neu.0O.Sin X and G < P } is called the Neutrosophic g interior of P.
Neu.Bcl(P) = n{G/G isa Neu.fC.Sin X and G 2 P} is called the Neutrosophic Bclosure of P.
Theorem 2.13. Ina Neu.T.S (X,N,) the following are valid.
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a) P is Neu. 8 —open if and only if Neu.gint(P)=P.
b) P is Neu. 8 —closed if and only if Neu.Scl(P)=P.
Result 2.14. Let P be a Neu.Set in a Neu.T.S (X,N;). Then

Neu.Bcl(P) =Pu Nint(Ncl(Nint(P))).

Neu.Bint(P) = Pn Ncl(Nint(Ncl(P))).

I1l.  NEUTROSOPHIC B-NOWHERE DENSE SETS

Definition 3.1. A Neu.Set P in a Neu.T.S (X,N;) is called neutrosophic S-dense(Neu. 8. D) if there exists no
Neu. 8.C.Set Q in (X, N;) such that P ¢ Q < 1y That is Neu.fcl(P)=1,.
Definition 3.2. Let (X,N;) be a Neu.T.S. A Neu.Set P in (X,N;) is called a neutrosophic S-nowhere dense
set(Neu.B. N. D) if there exists no non-zero neutrosophic $-open set Q in (X,N;) such that Qc Neu. Bcl(P). That
is Neu. Bint(Neu. Bcl(P)) = Oy.
Example 3.1 Let X={p,q}.Define the Neu. sets P,Q as follows:

P=tx (35r36) () (53755

Q=(x (5 35) - (avas) - (s -
Then N, = {0y, 1n, P, Q} is a Neu. topology on X. Thus (X, N;) is a Neu. Topological space (Neu.T.S). P,Q are
Neu. B-nowhere dense sets.
Proposition 3.1: If P is a Neu. 8. N. D set in (X,N), then P is a Neu. B.D set in (X,N,).
Proof: Let P be a Neu. 8.N.D set in (X, N;). Then Neu. Bint(Neu. Bcl(P)) = Oy.
Now 1- Neu. Bint(Neu. Bcl(P)) = 1 — Oy = 1y and hence
Neu. Bcl(Neu. Bint(1 — P)) = 1y.
But Neu. Bcl(Neu. Bint(1 — P)) < Neu. Bcl(1 — P) implies that 1y < Neu. cl(1 — P).
That is Neu. Bcl(1 — P) = 1y in (X, N;). Therefore,(1-P) is a Neu.3.D set in (X, Np).
Proposition 3.2: If P is a Neu. £.C.Set in (X, N;), then P is a Neu.f.N.D set in (X, N;) if and only if
Neu. Bint(P) = Oy.
Proof: Let P be a Neup.CSet in (X, N;), then Neu.Bcl(P) =P. If Neu.int(P) =0y, Then
Neu. Bint(Neu. Bcl(P)) = Neu. Bint(P) = 0y. So P is a Neu. 8.N.D set in (X, N;). Conversely, let P be a
NeuBN.D set in(X,N;), then Neu.Bint(Neu.Bcl(P)) =0y which implies that Neu.Bint(P) =
Neu. Bint(Neu. Bcl(P)) = Oy,since P is a Neu.SCS, Neu.Bcl(P) = P.
Proposition 3.3: If P is a Neu.8.N.D set in a Neu.T.S(X, N;), then Neu. Bint(P) = Oy.
Proof: Let P be a Neu.£.N.D set in (X, N;). Then Neu. int(Neu. Bcl(P)) = Oy in (X, N;). Now Neu. Bint(P) <
Neu. Bint(Neu. Bcl(P)) implies that Neu. Bint(P) < Oy in (X, N;). (i.e) Neu. Bint(P) = Oy in (X, Np).
Proposition 3.4: If P is a Neu.8.N.D set in a Neu.T.S (X, N;), then Neu. Bcl(P) isa Neu.5.N. D setin (X, N;).
Proof: Let P be a NeuB.ND set in (X N;). ThenNeu Bint(Neu.Bcl(P)) =0yin (X, N,).
Now, Neu. Bint(Neu. Bcl(Neu. Bcl(P))) = Neu. Bint(Neu. Bcl(P)) and hence
Neu. Bint(Neu. Bcl(Neu. Bcl(P))) = Oy in (X, N,).Therefore Neu. Bcl(P) is a Neu.s.N.D set in (X, N,).
Proposition 3.5: If P is a Neu.5.N.D Set in a Neu.T.S (X, N;),then 1-Neu. Bcl(P) is a Neu. §.D.Set in (X, N).
Proof: Let P be a Neu. 8.N.D.Set in (X, N;). Then by proposition 3.4, Neu. Bcl(P) is a Neu.f.N.D set in
(X, N;). By proposition 2.1 1- Neu. Bcl(P) is a Neu.. D set in (X, N;).
Proposition 3.6: If P is a Neu.8.N.D Set in a Neu.T.S (X, N;), then Neu. Bint(1 — P) is a Neu. 8.D.Set in
(X, Np).
Proof: Let P be a Neu. 8.N.D.Set in (X, N;). Then by proposition 3.5, 1-Neu. Bcl(P) is a Neu. 8.D.Set in
(X, N;). Now 1-Neu. Bcl(P)=Neu. Bint(1 —P) in (X,N;) and hence Neu. Bint(1 — P)isa Neu.p.D.Set
(X, Np).
Proposition 3.7: If P is a Neu.f.N.D and Neu.C.Set in a Neu.T.S (X, N;), then P is a Neu.N.D set in (X, N).
Proof: Let P be a Neu. 8.N.D and Neu.CS in (X, N;). Then, Neu. Bint(Neu. Bcl(P)) = Oy and Neu. Bcl(P) = P
in (X, N;). But Neu. int(P) < Neu. Bint(Neu. Bcl(P)), implies that Neu. Bint(P) < Oy (i.€) Neu. Bint(P) = Oy
in (X,N;).We have Neu.int(P) < Neu.Bint(P), and hence Neu.int(P) = Oy.Then Neu.int(cl(P)) =
Neu. int(P) = Oy in (X, N;).Therefore, P is a Neu.N.D set in (X, N,).

V. NEUTROSOPHIC g — BAIRE SPACE
Definition 4.1: Let (X, N;) be a neutrosophic topological space. A Neu. set P in (X, N,)is called neutrosophic
B — first category(Neu.B.F.C) if P = U2, P;, where P;’s are Neu. 8.N.D set in (X, N;). Anyother Neu.set in
(X, N;) is said to be of neutrosophic § — second category(Neu.5.S.C.).
Definition 4.2: Let P be a Neu.8. F. C setina Neu.T.S (X, N;).Then 1-P is called a neutrosophic 8 — residual set
in (X, Ny).
Example 4.1: Let X={p,q}.Define the Neu. sets P,Q as follows:
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P=0s (225) (35705) (35 735))

Q=0 (37 5e) (35705) (3555

Then N; = {0y, 15, P,Q PUQ,PNQ} is a Neutrosophic topology on X. Thus (X, N;) is a neutrosophic
topological space (Neu.T.S). P,Q,P U Q,P n Q are neutrosophic B-nowhere dense sets and [PUQ UP U Q U
PnQ]=PnQisaNeu.p.F.CSet.

Definition 4.3: Let(X,N;) be a Neu.T.S. Then (X, N;) is called a neutrosophic g — Baire space if
NBint(Uj2, P,) = Oy , where P;’s are neutrosophic f-nowhere dense set in (X, N;).

In Example 4.1, The sets P,Q,P U Q,P N Q are neutrosophic f-nowhere dense sets and Neu.Bint[P U Q U
PUQUPNQ] =NBint(P n Q) =0y is a Neu..B.Space.

Proposition 4.1: If Neu.Bint(Uj2; B;) = Oy, where Neu.Bint(P;) = Oy where P;’s are Neu. f.C.set in a
Neu.T.S (X, N;). Then (X, N;) is a Neu.S. B. space.

Proof: Let P;’s be the Neu.8.C.Sets in a Neu.T.S(X, N;).Since Neu. Bint(P,) = Oy by proposition 3.3, P;’s are
Neu.B.N.D sets in (X, N;), implies that (X, N;) is a Neu. 8.B space.

Proposition 4.2: If Neu. Bcl(N2; B) = 1y, where P;’s are Neu. 8.D and Neu.$.0.Sets in a Neu.T.S (X, Np).
Then (X, N;) is a Neu. B. B space.

Proof: Now Neu.Bcl(N2; P) = 1y, implies that 1 — Neu.Bcl(N2; P) =1 —1 =0y Then Neu.Bint(1 —
N2, B) = 0y in (X, Ny). This implies that Neu. Bint(U;2;(1 — B)) = 0y.Since P;’s are Neu.8.D in (X, N;)
, Neu.Bcl(P) = 1y and Neu.Bint(1 —P) =1 — Neu.Bcl(P) =1—1=0y and (1 —P)'s are Neu..C sets
in (X, N;).Then by proposition 4.1, the Neu.T.S (X, N;) is a Neu. . B space.

Proposition 4.3: Let (X, N;) be a Neu.T.S.Then the following results are equivalent.

(1) (X, N;) is a Neu. 5.B.space.

(2) Neu. Bint(P) = Oy, for every Neu. B.F.C set P in (X, N;).

(3) Neu. Bcl(Q) = 1y, for every Neu.f — residual set Q in (X, Np).

Proof: (1)=(2),Let P be a Neu. B.F.C set in (X, N;). Then, P = U;2; P, where P;’s are Neu. f.N.D set in
(X, N;). Now Neu.Bint(P) = Neu.Bint(Uj2; P) = 0y (since (X,N;) is a Neu.8.B. space).Therefore,
Neu. Bint(R) = 0y in (X, Ny).

(2) =(3), Let Q be a Neu.p — residual set in (X,N;). Then 1-Q is a Neu. 8.F.C set in (X, N;). By hypothesis,
Neu. Bint(1 — Q) = Oy in (X, N;). This implies that 1 — Neu.Bcl(Q) = Oy and hence Neu.fcl(Q) = 1y in
(X, Ny).

(3)=(1),Let P be a Neu.p.F.C set in (X,N;). Then, P=Uj2,;P; where P;’s are Neu.S.N.
D set in (X,N;). Since P is a Neu.f.F.C set in (X,N;), 1-P is a Neu.f — residual set in (X, N;). By
hypothesis, Neu. Bcl(1 — P) = 1y. Then, 1 — Neu. Bint(P) = 1y in (X, N;). This implies that Neu. Bint(P) =
Oy in (X, N;). Hence Neu.Bint(Uj2; P) = Oy, where P;’s are Neu.f.N.D set in (X, N;). This implies that
(X, N;) is a Neu.8.B. space.

Proposition 4.4: If a Neu.T.S(X, N;) is a Neu.5.B space and if every Neu.. N.D set in (X,N;) is a Neu.C.Set in
(X, N;),Then the Neu.T.S(X, N;) is a Neu.B.space.

Proof: Let (X, N;) be a Neu.8.B. space such that Neu.8.N.D set in (X, N;) is a Neu.C.Set in (X, N;). Since,
(X, N;) is a Neu.B. B space then Neu. Bint(Uj2; P;) = Oy, where P;’s are Neu.8.N.D set in (X, N). Since the
Neu.B.N.D set P;’s in (X, N;) are Neu.C.Sets in (X, N;) by proposition 3.6, P;’s are Neu.N.D sets in(X, N;) in
(X, N;).  Now Neu.int(U2Z; P) < Neu.Bint(U2;B;), and Neu.Bint(Ui2Z,P)=0y, implies that
Neu.int(Ui2; ) = Oy in (X, N;).Thus Neu. int(U{2, B,) = Oy where P;’s are Neu.N.D set in (X, N;), implies
that (X, N;) is Neu.B.space.

Proposition 4.5: If a Neu.T.S (X, N;) is a Neu.B.space and every Neu.N.D.Set P in (X, N;) is a Neu.C.Set, then
(X, N;) is not a Neu.pS. B.space.

Proof: Let (X, N;) be a Neu.B.space such that every Neu.N.D set in (X, N;) is a Neu.C.Set in (X, N;). Since,
(X, N;) is a Neu.B.space, Neu. int(U;2; B;) = Oy ,where P;’s are Neu.N.D set in (X, N;).Since, the Neu.N.D set
(P;)’s in (X, N;) are Neu.C.Set in (X, N;) by proposition 3.6 P;’s are Neu.f.N.D set in (X, N;). Now
Neu.int(Uj2; B) < Neu. Bint(Uj2; B;), and Neu.int(Uj2; P)=0y, implies that Neu.Bint(Uj2; B) # Oy
implies that (X, N;) is not a Neu. 8.B. space.
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