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Abstract: Feature selection has predominant importance in various kinds of applications. However, it is still considered as a 

cumbersome process to identify the vital features among the available set for the problem taken for study. The researchers 

proposed wide variety of techniques over the period of time which concentrate on its own. Some of the existing familiar 

methods include Particle Swarm Optimisation (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA). While some 

of the methods are existing, the emerging methods provide promising results compared with them. This article analyses such 

methods like LASSO, Boruta, Recursive Feature Elimination (RFE), Regularised Random Forest (RRF) and DALEX. The 

dataset of variant sizes is considered to assess the importance of feature selection out of the available features. The results are 

also discussed from the obtained features and the selected features with respect to the method chosen for study. 
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1. Introduction 

 

In a predictive model, feature selection is considered as a process of selecting or choosing or reducing the 

number of attributes. The attributes are synonymously called as features, or input variables. The requirement of 

reducing the number of features is to reduce the computational cost. 

 

 
Figure 1. Taxonomy of feature selection methods 

 

The broad spectrum of feature selection methods is the classification as in figure-1. The unsupervised method 

does not use the target variable hence it is able to remove the redundant variables. In contrast with unsupervised 

method, the supervised method uses the target variable thereby removing the irrelevant variables. The supervised 

method has three further classification. (i) The wrapper method uses the subset of features, then decides either to 

add or to remove the features. Example of such methods include forward selection, backward elimination. (ii) 

The filter methods use statistical tests to find the correlation between the variables. Some of the statistical tests 

like Chi-Square, Pearson and ANOVA falls into this category. (iii) Intrinsic methods or embedded methods have 

in-built feature selection method. The Least Absolute Shrinkage and Selection Operator (LASSO) is a familiar 

method under this category. 

 

 

 

2. Related Works 
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This section describes the works carried out by the researchers over a period of time. 

Category Citation Observation 

Survey / 

Review related 

works 

[1] 

The big data era has voluminous of data. It is required to find the necessary 

data for the research problem. This paper is an exhaustive survey of methods 

used for feature selection. It also discusses about the future direction in this 

research. 

[2] 

This paper summarises the earlier work carried out by the researchers to 

select and extract the features which are applicable for text classification 

problem. 

[3] 

Mutual information (MI) measures the presence or absence of the amount of 

term used to make classification (c) correctly over the number of terms (t) 

available. This paper is a comprehension about how MI can be used in 

different applications. 

Methodology 

related works 

[4] 

It combines the filter-based feature selection method with wrapper-based 

method. In support of evaluating the combination of methods, the paper used 

two benchmarked datasets. The performance is also discussed in the paper. 

[5] 

Unsupervised machine learning is a classification model. This paper used the 

strategy of masking the unwanted or irrelevant feature and thereby choosing 

the required features which are unmasked. 

[6] 

Feature ranking score strategy for the global features is a strategy used in this 

paper. As claimed by the authors, the proposed method can be used for both 

supervised and unsupervised models, as it doesn’t have any parameter. 

[7] 

Image processing research heavily relies on feature selection. This paper 

discusses how to apply deep convolutional neural network can be used for 

feature selection as an image processing application by constructing tree 

classifier. The proposed method was tested over different datasets. 

[8] 

Feature selection is considered as an optimisation problem, as it needs to 

minimise the number of features by the corresponding method. Particle 

swarm optimisation (PSO) is one such method which is traditionally used for 

feature selection. This paper used the mutual information along with PSO in 

order to minimise the number of features. 

[9] 

Causality-based feature selection is a type of method for finding the essential 

features amongst the available set. This paper provides an exhaustive 

collection that held over the past. A new package was also developed as an 

outcome of this research. 

[10] 
This paper compares three correlation-based feature selection methods and 

the results are also discussed about the performance. 

[11] 
This paper summarises the spectrum of AI techniques that can be used to 

find the variable which will have impact over the dataset. 

[12] 

In order to reduce or minimise the number of variables, this paper discusses 

the streaming concept of selection process. It will select the importance of 

variables without taken into consideration of the entire available attributes in 

the dataset. 

[13] 

Graphs are useful to represent various real-time problems. This paper 

discusses how to select the features by representing the problem space as 

graphs. The proposed method was evaluated in terms of the execution time 

and performance. 

[14] 

It is a three-step method to find the important variables. The graph is used to 

model the problem space, find the mutual information and then select the 

variables which are important. This is the strategy followed in this paper. It is 

also evaluated by having some of the datasets over the proposed method. 
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[15] 

The strategy adopted in this proposed method was in converse with the 

existing methods. The difference between the variables which have marginal 

value will be considered as one set and the non-selected variables set are 

measured. This provides the subset of variables which will provide the final 

set of variables as the resultant set. 

[16] 

In this proposed method, the four essential conditions that needs to meet for 

the feature selection algorithm is satisfied, as it claims. It is a tree-based 

variable selection algorithm, used to find the important variables. The 

scalability factor is also satisfied with the proposed method. 

[17] 

In order to enhance the efficiency of the variable optimising method, the 

researchers have proposed randomised algorithms. An automatic breadth 

searching and attention searching adjustment approaches to further speedup 

randomized wrapper-based feature selection was proposed by this research. 

The results are compared with real-time and synthetic datasets. 

[18] 

This paper used matrix factorisation way of splitting the variables and then 

applied to find the important variables over the reduced problem space. It is 

also evaluated against real-time datasets. 

[19] 

Clustering is a machine learning model which is familiarly used to categorise 

the data labels. This strategy is used to find the important variables in this 

paper. The unsupervised graph-based representation technique is used to 

represent the data along with connected components. This will split the 

variables as number of sets – one for important variables and another one is 

not important. 

Compound 

Method 
[20] 

Dimensionality reduction contains two approaches – one is the feature 

selection and another one is the feature extraction. Most of the research work 

is carried out in the area of feature selection, whereas this paper concentrated 

on to combine these two. The authors used a specific method to find two sets 

of variables – original and transformed. 

Application 

related works 

[21] 

Dimensionality reduction plays an important role in finding the subset of 

variables or attributes or features which can be used to improve the 

performance of a machine learning model. This is applied to applications of 

variant domains. This paper applied the feature selection method for music 

emotion recognition. 

[22] 

Sentiment analysis expresses the evaluation of the statements given by the 

users in a common platform such as social networking sites. The number of 

attributes in a dataset plays a critical role to decide the polarity of the 

sentiment. A combination of methods is used in this paper to find the 

required important attributes from the dataset concerned. 

Comparative 

related works 

[23] 
A comparative analysis of four different methods to predict the required 

features of household energy consumption is done in this paper.  

[24] 

The researchers consider the robustness of variable prediction. This paper 

discusses about the stability measures, merits and demerits of feature 

selection methods. It is also provided the comparison by considering some 

experimental datasets.  

 

3. Materials and Methods 

 

There are four different datasets taken from UCI Machine Learning repository, for consideration. The iris 

dataset [25] is widely used for fundamental research in different domains including image processing and 

machine learning. It has four attributes with 150 instances. The Wisconsin Breast Cancer dataset [26] is a 

benchmarking dataset. It has ten attributes and 699 instances. The CT scan slice location is a medical diagnosis 

dataset [27]. It has 386 attributes with 53,500 instances. The QSAR dataset [28] is from the physical sciences 

domain. It has 1024 attributes with 8992 instances. 
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The ID column has been removed from the dataset, if it is in existence, for further processing. It is the pre-

processing step applied over the datasets taken for study. The reason towards this is since it is not going to play 

any role. 

 

The following are the methods considered in this article and they are implemented in R environment along 

with the required package specific to the method. 

(i) Boruta: it is a feature selection algorithm which has basic working principle from random forest. It finds 

the rank for the feature’s existence in the dataset. It decides the importance of the variable which are statistically 

significant. The algorithm runs for some minimum number of times, by default it is 100. It will permute the 

features and runs the algorithm by finding the rank with the specified number of times. 

(ii) moDel Agnostic Language for Exploration and eXplanation (DALEX): It is basically a machine learning 

model that can also be used for feature selection. It can be achieved by finding the link between predicate 

variable and the predictor variable. The working principle of this method is on regression model. 

(iii) Least Absolute Shrinkage and Selection Operator (LASSO): It is a regression based variable selection 

technique. It considers the cost of coefficients for the attributes. Over the evolution of the method, it reduces the 

value of the coefficient thereby reducing the feature from the existing features. It is also an NP-hard feature 

selection method. 

(iv) Recursive Feature Elimination (RFE): It works with the principle of k-fold cross validation process. It 

repeats the same for some specified number of times with the required parameters such as size and control.  

(v) Regularised Random Forest (RRF): It constructs the trees and combines the tree ensembles. At every 

construction of trees, it determines the information gain and this process proceeds until the required gain is more 

for the corresponding feature (attribute). 

 

4. Results 

 

The summary of the datasets is shown in the Table-1. 

 

Table1. Summary of the datasets 

Name of the dataset Number of features Number of instances 

Iris 4 150 

Breast Cancer Wisconsin (Original) 10 699 

CT Scan slice location  386 53,500 

QSAR 1,024 8992 

 

The proposed methods like Boruta, DALEX, LASSO, RFE, and RRF are applied to select the most 

prominent features from the datasets. The results are shown in table-2 and subsequently in figure-X. 

 

Table 2. Number of selected features 

Name of the Dataset Features 
No. of selected features by the Method 

Boruta DALEX Lasso RFE RRF 

Iris 4 4 4 4 4 4 

Breast Cancer Wisconsin (Original) 9 9 9 9 9 9 

CT Scan slice location  386 136 302 274 283 196 

QSAR 1024 293 596 674 729 529 
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Figure 2. Number of selected features over the methods 

 

Please note: the selected features from the iris dataset are invisible in the above figure, as the number of 

features is very less (that is only 4 features). 

 

5. Discussion 

 

This article assesses about some of the emerging methods related to the feature selection. There are five 

different methods such as Boruta, DALEX, Lasso, RFE, and RRF considered for study. The datasets of variant in 

sizes in terms of the number of attributes and the number of instances is considered for study. The number of 

features in the iris dataset and the Breast cancer Wisconsin dataset has no impact over all the methods. The other 

two datasets have variant results in the individual methods of feature selection. The number of features is more 

and the number of selected features is considerably less over the methods. There is a significant reduction in the 

percentage of the features selected with the methods. There is a 65% reduction in Boruta method and around 

50% of reduction in RRF method for the CT Scan slice location dataset. There is a 71% reduction in Boruta and 

around 50% reduction in RRF method for QSAR dataset. There is a reduction at the rate of 42% in DALEX 

method over QSAR dataset, at the same time it has only 22% reduction in CT scan slice location dataset. The 

reduction is not so significant for both the datasets, in RFE whereas It has slight variation in Lasso method. 

There is a marginal reduction in the number of features for these two datasets over the Lasso method. Still, the 

methods adopted in this article would definitely help the researchers to find the appropriate features over the 

dataset they have taken for study and the method which would provide significantly better result. 

 

6. Conclusion 

 

Feature selection is used to find the useful features available in the dataset. It is still considered as a 

cumbersome process. The researchers proposed wide spectrum of methods which can be used for the same 

purpose. At the same time, the individually proposed method concentrates on its own merits. This article tried to 

assess some of the emerging feature selection methods. In order to achieve this, five different methods were used 

over four different datasets of variant in sizes in terms of the number of features (attributes) and the number of 

instances. The results shown that there is no reduction in the number of features over the two datasets whereas it 

shows significant reduction in the number of features that can be selected over the other two datasets. The 

reduction is evident in terms of its percentage for two methods. It has marginal impact for two of the datasets for 

a method. However, the researchers have choices to be considered in order to fit it with the research problem, the 

size of the dataset and the method that needs to be considered while choosing the feature selection. 
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