
Turkish Journal of Computer and Mathematics Education Vol.12 No.1S (2021), 233-238

 Research Article

233

Maintainability Evaluation for Object Oriented Software Metrics Using Tool Cohesion

Inheritance (COIN)

Amit Sharma1, Prabhat Kumar Vishwakarma2

amit.krsharma123@gmail.com1, prapoo2012@gmail.com2

Article History: Received: 10 November 2020; Revised: 12 January 2021; Accepted: 27 January 2021;

Published online: 05 April 2021

Abstract: In modern era, maintainability is an important part for software development that covers approx. 70-75% of

development cost of the software system. It can allow the customer to adapt the software quickly and easily in an agile

manner. Object oriented software metrics plays an important role for the designing of software development. Its features can

be categorized into the object oriented metrics and the hierarchies of the class. In this paper, a tool named as COIN can help

for evaluating the maintainability factors of object oriented software system using metrics like cohesion, coupling, inheritance

and other object oriented metrics as well as through which we can analyzed the all metrics for the software system for

evaluating the maintainability factors and testability also.

Keywords: Maintainability, Object-Oriented, Software.

1. Introduction

There are many examples of the software system that have not met with consideration of the users and have

been consigned to forgetfulness or some immense activities on the plan and the accomplishment of the software

systems. There are many examples that can be modified and updated multiples times and still not accepted by the

users in current scenario the computation of software system from the end of developer can be done at developer

end and after deliver the product in the market the maintainability can be measured by the end user in the market

end. On these they defined as the computer software “is measured by how easily and how effectively it can be

used by the precise set of users”, that provide various kind of support and finally gives the different approach for

the working environment. Now, in modern era multiple concurrency was plays an important role where multiple

this eras gives numerous sorts of supports, for the conduction of finite tasks and these tasks will be performing

on different type of workplace.

In modernization, every user is too much busy and time plays an important for the user to develop the

software, to access the same with too much comfort and also wants to access the same software from other

workspace. They think towards the different one. In the above context the maintainability is a main approach

through which the success ration and the failure ration can be evaluated with the help of feedback of the end user

over the software system. Multiple types of software matrices are analyses and investigated for evaluating the

maintainability, reliability and other aspects of object oriented software system. These metrics are cohesion,

coupling, inheritance, and quality metrics and so on. Most of the researchers can predicting the maintainability

and software quality using the same [1], [2], [3], [4], [6], reliability [7], [8], testability [10], [11] and reusability

[13].

Cohesion and inheritance are coupled together to compute the reusability of classes and class hierarchy. It is

too much common that when the system is cohesive then the feature of metrices are easily inherited from the

class and reuse in the universal manner. However, it is very hard to inherit the completely coupled software

systems. Such designs are by and large reused by means of launch of the classes called verbatim reuse [13]. Daly

et al [14] has been performed a study on the relationship between the depth of inheritance and the maintainability

for the object oriented Software systems. According to their detection, three kinds of inheritance of legacy end

up being preferable viable over five levels of inheritance. On another finding, Rachel Harrison et al [8] suggested

that deeper inheritance trees in general leads to increased maintainability. However, Harrison et al revealed a

different result through their study in [2]. Their results indicate the software systems are very easy to understand

of manipulate their versions either the three or five levels of inheritance. It also shoes that the large systems in

general suffer from low degree of understandability with or without inheritance. Dallal [15], Alshayeb [16],

Ahmed [17] have already studied the effect of cohesion and coupling for software systems on software

maintenance efforts and it is easily can be modifiable and scalable. consider an object oriented java project that

generate an abstract syntax and can help for the measurement for every one of the classes and class hierarchy. the

cohesion inheritance (COIN) tool is an augmentation of the class IN tool that is similar for comparable reason in

[20].

Amit Sharma, Prabhat Kumar Vishwakarma

234

The COIN device works for Java tasks and helps in recognizing class hierarchy orders that might be more

intricate according to the perspective of programming maintainability.

Principle highlights of COIN are as per the following.

a. It gives cohesion, coupling, and its metrics of a given Java project at class level and furthermore at class

hierarchy of importance level.

b. It sends out the metric informational collection into an accounting page (Excel-sheet) for investigation.

c. It shows the various leveled construction of various class hierarchy of command in the given task.

d. It gives a graphical perspective on practicality components of class hierarchy.

e. It gives a rundown of estimations of object oriented maintainability factors (modifiability, understandability

and testability) of all the class hierarchy of the software systems.

This tool is very valuable in recognizing class hierarchies and for the measurement of the maintainability cost. It

could be noticed that recognizing such progressions right off the bat in the plan stage would help create cost

effective programming arrangements.

2. Software Metrics Tools

Several open source tools are used and available in the market for the evaluation of the parameters used in the

designing of software system using the design metrics and the class level with their hierarchy and the levels are

used for the packaging, in [21] CKJM tools is uses for the evaluations of various suites of the object oriented

maintainability. On other side the tool, Eclipse plug-in 1.3.6 [22] used for the evaluations of data sets for both the

class and its hierarchy. and supports Martin metrics suite as well. A third tool called JDepend is available as a

Java plugin. JDepend creates plan quality measurements for every Java bundle and encourages in naturally

assessing the plan quality regarding its extensibility, reusability, and practicality to adequately oversee bundle

conditions [19]. (see additionally [18], [12]) Reliance Finder [9] incorporates measurements at different levels,

for example, class level, technique level and bundle level. This aide in deciding reliance between various parts in

a bundle. OOMeter is another device for measuring various qualities ascribes of curios delivered in a product

improvement project. These incorporate plan level models and source codes.

As of late, Zhang [5] has presented a viable mechanized learning based way to deal with anticipate

programming viability utilizing the genuine normal support endeavours, and a thorough arrangement of four-

level progressive code measurements gathered by static code examination instruments. Recently, a survey of

various existing and relevant software metric tools was made by the present authors in [20]. The tools are used

for the analysis are eclipse 1.3.6, Vizz analyzer, object oriented meter, SD Metrics, JMT and dependency finder.

it also includes, a new tool in the name of ClassIn (Class Inheritance) has also been introduced in [20] that

support size and inheritance metrics at class level and class hierarchy level. The present tool ‘COIN’ extends

ClassIn tool with additional metric support such as coupling, cohesion and size metrics. It also enables extracting

metric data for factors like modifiability, understandability and testability at both classes level and hierarchy

level. The existing tools support various size, cohesion, coupling, and package level metrics. However, most of

the tools only focus on one or two types of metrics. For example, the main focus of most of the tools remains

class level design metrics, size metrics, cohesion or coupling. The present tool is designed to give a broad range

of class and level hierarchy of the depth of inheritance metrics, size, coupling metrics and cohesion metrics for

analyzing at one place for the prediction of outside quality attributes, especially the software maintainability.

Maintainability Evaluation for Object Oriented Software Metrics Using Tool Cohesion Inheritance (COIN)

235

3. Classification of Maintainability Metrics

Figure 1. Classification of Metrics

In this phase, we can describe the functionality of the tool. Firstly, we can take the object oriented project as

an input i.e. in file option open project and calculate the object oriented metrices for the class and class hierarchy.

The data will be displayed on the mainframe window. The tool features are-

a) In the tab contained all the object oriented metrics like cohesion, inheritance, coupling and all the class and

class level hierarchy. One may include either inherited attributes or / and inherited methods for measuring the

inheritances cohesion metrics.

b) The ‘Maintainability’ tab contains modifiability, understandability and testability at class level and class

hierarchy level.

c) The ‘Analysis’ tab contains analysis report of the class inheritance hierarchy.

d) The "HELP” button can be used for the user manual.

Amit Sharma, Prabhat Kumar Vishwakarma

236

Figure 2. Understandability of Class Hierarchy Level Snapshot of Tool Page

The above diagram shows that the total number of class and class hierarchy of the object oriented projects. In

which the user can select the metrics data and this data can be displayed in an excel format.

In figure 3, we can show the ‘Average Understandability’ factor for each of the class hierarchies along with

MaxDIT and NOCC values which are highly correlated with understandability factor. In figure 3 we can display

the list of metrics for class inheritance hierarchy. low maintainability and high maintainability will be

represented as the green and red color for the representation of class hierarchy. The highlighted metric data

represents correlation with maintainability factors.

Figure 3. Understandability Factor for Different Hierarchies

Maintainability Evaluation for Object Oriented Software Metrics Using Tool Cohesion Inheritance (COIN)

237

Figure 4. Maintainability Factor Hierarchy Shows List of Metric

4. Tool Architecture

In the figure no 4 the architecture of the tool will be defining in three modules-

Module 1- in this module we can take an object oriented software project considered as an input and can be

easily compute the number of classes in the project using reflection classes. These reflection classes API allow

the code in java for computing the object and classes objects run time and reflection classes also allows for the

inspection of methods, field and classes in the object oriented projects. The abstract syntax tree also records the

java documents and the source code comment that can be stored in the java program.

Module 2-in this module we can calculate the cohesion between the class member using the abstract syntax

tree i.e. AST.

Module 3- in this model the metrics tool calculates the datasets of metrics at class and class hierarchy level

both.

This tool provides the output as in the form of datasets for the metrics in excel format, class hierarchy and the

graph for analyzing the maintainability of the class inheritance hierarchy.

Figure 5. COIN Tool Architecture

5. Illustration

In order to demonstrate the usefulness of COIN tool, two example cases are presented in this section. In the

first case, a class hierarchy is taken with a high value of modifiability, understandability, testability where as in

second case these values are very low.

In case 1, MaxDIT = 6 and NOCC = 132, which is reasonably high. As can be seen from the data in Table III,

maintainability factors are also high due to high depth and width of class hierarchies. Similarly, testability

parameter Tassert turns out to be quite high due to high values of MaxDIT, NOCC and TMI. In the second case,

Display Metrics

Export Metrics -

Excel

Maintainability

Graph

Java

Project

Reflection

API

AST

API

Metrics

Evaluation

Amit Sharma, Prabhat Kumar Vishwakarma

238

MaxDIT = NOCC = 1. So, the modifiability, understandability and the testability are all having low metric

values.

Metrics NC NM TMI Max

DIT

NO

CC

AID TLCOM3 TLCOM4 TM TU Tassert

Case-1 133 1193 14021 6 132 3.6992 8527 3332 871 625 12537

Case-2 2 6 0 1 1 0.5 1 1 3.5 3 1

6. Conclusion

A comprehensive metric tool COIN has been developed that supports various design level metrics and also

help determine their correlation with three main software maintainability factors like modifiability,

understandability and testability. It displays the data both in tabular and graphical form. Using an analysis of

metric data set of a large number of class hierarchies, it is concluded that MaxDIT, NOCC, AID and TMI are

highly correlated with the maintainability factors. In essence, the tool may prove to be very useful for software

companies and developers to assess class structures for their maintainability.

References

1. Hanenberg, S., Kleinschmager, S., Robbes, R., Tanter, É. and Stefik, A. 2014. An empirical study

on the impact of static typing on software maintainability. Emp. Softw.

2. Harrison, R., Counsell, S. and Nithi, R. 2000. Experimental assessment of the effect of inheritance

on the maintainability of object-oriented systems. J. Sys. and Softw. 52, 2 (2000), 173-179.

3. Chen, J. C. and Huang, S. J. 2009. An empirical analysis of the impact of software development

problem factors on software maintainability. J. Syst. Softw. 82, 6 (2009), 981- 992.

4. Genero, M., Manso, E., Visaggio, A., Canfora, G. and Piattini, M. 2007. Building measure-based

prediction models for UML class diagram maintainability. Emp. Softw. Eng. 12, 5 (2007), 517-

549.

5. Zhang, W., Huang, L., Ng, V. and Ge, J. 2015.SMPLearner: learning to predict software

maintainability. Auto. Softw. Eng. 22, 1 (2015), 111-141.

6. Basili, V. R., Briand, L. C. and Melo, W. L. 1996. A validation of object-oriented design metrics

as quality indicators. IEEE Trans. Soft. Eng. 22, 10, 751-761.

7. Subramanyam, R. and Krishnan, M. S. 2003. Empirical analysis of ck metrics for object-oriented

design complexity: Implications for software defects. IEEE Trans. Soft. Eng. 29, 4 (2003), 297-

310.

8. Cartwright, M. and Shepperd, M. 2000. An empirical investigation of an object-oriented software

system. IEEE Trans. Soft. Eng. 26, 8 (2000), 786-796.

9. Dependency Finder tool, www.depfind.sourceforge.net/

10. Baudry, B. and Le Traon, Y. 2005. Measuring design testability of a UML class diagram. Info. and

Softw. Techn. 47, 13 (2005), 859-879.

11. Bruntink, M. and van Deursen, A. 2006. An empirical study into class testability. J. Syst. and

Softw. 79, 9 (2006), 1219-1232.

12. VizzAnalyzer tool, www.arisa.se.

13. Karunanithi, S. and Bieman, J. M. 1993. Candidate reuse metrics for object oriented and Ada

software. In IEEE METRICS, (May 1993), 120-128.

14. Daly, J., Brooks, A., Miller, J., Roper, M. and Wood, M. 1996. Evaluating inheritance depth on the

maintainability of object-oriented software. Emp. Softw. Eng. 1, 2(1996), 109-132.

15. Dallal, J. A. 2011. Measuring the Discriminative Power of Object-Oriented Class Cohesion

Metrics. IEEE Trans. Soft. Eng. 37, 6 (2011), 788-804.

16. Alshayeb, M. 2013. On the relationship of class stability and maintainability. IET Softw. 7, 6

(2013), 339-347.

17. Ahmed, M. A. and Al-Jamimi, H. A. 2013. Machine learning approaches for predicting software

maintainability: a fuzzy-based transparent model. IETSoftw. 7, 6 (2013), 317-326.

18. JMT tool, http://www-ivs.cs.uni-magdeburg.de/sweng/agruppe/forschung/tools/.

19. JDepend tool, http://clarkware.com/software/JDepend.html.

20. Reddy, B. R. and Ojha, A. 2014. ClassIN: A Class Inheritance Metric Tool. In New Perspectives

in Information Systems and Technologies, Volume 2, (15-18April 2014), 113-119.

21. CKJM metric tool, www.spinellis.gr/sw/ckjm/.

22. Eclipse plug-in 1.3.6 tool,www.sourceforge.net/projects/metrics/.

http://www-ivs.cs.uni-magdeburg.de/sweng/
http://www.spinellis.gr/sw/ckjm/

