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Abstract: This paper proposes an operational founded model for portfolio optimization. The procedure used is
based on the redacting ofthe asymmetry impact of the variance. This is a new approach that givesassets more
accurate risk measures. The risk adjustment is based on the measure of volatility skewness andthe goal here is to
eliminate noisy risk.Moreover, we give our risk asymmetrical effect,according to the means of each asset.
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1. Introduction

The stock market collapse in 2008 inadvertently highlighted the importance of market risk in portfolio
management. Market risk is defined as the risk related to the fluctuation of the market portfolio. The study of
portfolio risk management goes back to the fundamental work of Markowitz in 1952.Markowitz was the first to
propose the mean-variance optimization framework.

The portfolio optimization problem consists of choosing a specific number of assets that meet investors'
objectives, Mansinia et al. (2014).The most recent research topic involves calculating the proportion of the initial
budget that should be allocated in the available securities.

Since Markowitz mean-variance theory, many papers have been published extending or modifying the basic
model (e.g.) Alexander & Baptista (2004); Benati & Rizzi (2007); Mansini et al. (2007); Ogryczak (2000); Sawik
(2013a), (2013b), (2012a), (2012b), (2012c), (2011), (2010a), (2010b), (2009a), (2009b), (2009c), (2008);
Speranza (1993); lancu & Trichakis (2014); Terradez et al. (2015) Hamza & Janssen (1998).

The mean-variance model plays an important role in portfolio management. Additionally, the mean-variance
analysis is essential to many asset pricing theories. Despite its reputation, dissemination, and adoption in the
financial field, the theory of mean-variance optimization has been the subject of strong criticism since its
publication. Numerous practitioners have reported some complications in implementing mean-variance analysis.

One of the most common criticisms of the Markowitz theory is its lack of robustness. Among other things,the
mean-variance theory is particularly sensitive to the estimation of two parameters (mean and variance-covariance
matrix).

Many authors have shown that the parameters generally tend to be unstable when estimated from a sample of
historical data. Another criticism of this theory is based on the variance as a risk measure.However, the main
drawback of the variance is that it penalizes both upward and downward deviations (i.e. both losses and profits).

Several research fields have developed this theory to try to correct the perceived shortcomings in the
assumptions, the empirical results, and extend its application to other areas, Baker &Filbeck (2013).

The purpose of this study is to find the best possible allocation for any portfolio. Our techniqueattempts to
equalize the upwards and downwards risk spread. Nevertheless, incase the downward deviations are lower than
the upward ones,this equalization will be done according to the part that represents the real risk for the investor.In
this case, the positive deviation does not represent a risk, we also keep the symmetrical shape to give the assets an
equal chance for profit and loss. This process will reduce the risk of our portfolio and make it more efficient.

This article is organized as follows. The second section contains the literature review on the different risk
optimization theory and its limitations. The third section presents the data, methodology, and technics used. Then
the 4™ section covers all the results and discussion while the last section concludes our work.
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2. Literature Review

In the capital market, selecting security or asset by the investors has never been a simple matter. Markowitz
was the first to formalize the tradeoff between risk and return of a portfolio. He proposed the mean-variance
optimal portfolio.Thus, this theory suggests that portfolio risk is measured by variance, and the main goal is to
minimize it for a certain average return. Markowitz's mean-variance optimization theory was considered the heart
of the modern portfolio theory. Better yet, the study of the correlation between the securities led him to develop
the portfolio diversification strategy, which is often more expressive under the quote "Never put all your eggs in
one basket".

In pioneering work, Markowitz (1952) combined probability theory and optimization theory to model the
investment behavior ofeconomic agents. Accordingly, In his analysis, he stated that the investment return should
be quantified as the expected value and risk as to the variance.

Furthermore, Markowitz made his models as follows: minimizing variance subject to a lower limit on expected
returns or maximizing expected returns subject to a minimal level of variance. The main contribution of this model
is relatively general, allowing its use and simplicity, in terms of theoretical analysis, in many practical situations.

To develop this model, Markowitz relies on a very restrictive assumption. He assumed that the returns on
financial assets follow a normal distribution. So, Markowitz uses only the first two moments of the distribution:
mean and variance in his model. Thereafter, several researchers Grama &Schyns (2003);Deng, Li, & Wang (2005)
took variance to measure the risk in various situations. Although the variance is a very popular measure of risk in
the portfolio selection, it has some limitations, Markowitz (1959).

One of the main limitations is that the variance considers extremely high returns as equal to low returns. When
security’s returns are asymmetric, the selected portfolio based on variance may have a potential anomaly that
sacrifices too much-expected return to eliminate both extremely high and low returns. Also, there is some empirical
study showing that many security returns are not distributed symmetrically. Liu, Wang, & Qiu (2003); Prakash,
Chang & Pactwa (2003); Yan & Li(2009); Guo, Li, Zou, Guo, & Yan (2012).

It was argued that the definition of risk as the variance of expected returns is justified only when expected
returns are normally distributed and when investors have quadratic utility functions, these two assumptions are not
valid in practice,Feldstein (1969). According to the classic portfolio model, the use of the first two moments of
distributions leads to a suboptimal allocation of assets Bawa & Lindenberg (1977); Harlow & Rao (1989); Harlow
(1991).

The variance-covariance measurement of risk is somewhat controversialJeffrey (1984). In this context, the
semi-variance was proposed by Markowitz (1959) to replace the variance as a measure of risk in portfolio selection.
Markowitz (1959)suggested the use of semi-variance instead of variance in his asset allocation model. In this case,
excess returns above the average collapse to zero so that they do not correspond to the variances unnecessarily,
resulting in intuitively better asset allocation. Semi-variance proved to be a more accurate measure of risk, not only
for asset allocation but also for assessingMao (1970).

Having established that mean-semi-variance is an approximately correct criterion in the sense that it provides
a level of utility highly correlated with the expected utility of an investor.Thereby, we will now consider some
additional reasons that support the plausibility of the semi-variance as a measure of risk.

Some of these reasons are practical, some others are empirical. From a practical perspective, first of all,
investors do not dislike upside volatility; they only dislike downside volatility. Secondly, semi-variance is more
useful than the standard deviation when the underlying distribution of returns is asymmetric and just as useful
when the underlying distribution is symmetric i.e. the semi-variance is at least useful as a measure of risk as tothe
standard deviation. Finally, the semi-variance combines into one measure the information provided by two
statistics: variance and skewness.Thus, making it possible to use a one-factor model to estimate the required
returns.

From an empirical perspective, semi-variance was reported to explain the cross-section of emerging market
returns Estrada (2000); Harvey (2000), the cross-section of industries in emerging markets Estrada (2001), and the
cross-section of Internet stocks return Estrada (2004). Additional support for the semi-variance as an appropriate
measure of risk is inClash (1999); Hamza & Janssen (1998); Hamza & Janssen (2009); Sortino &van der Meer
(1991) and Sortino et al (1999) among others.
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Many studies have noted that the distribution of asset return is rarely normal and that the first two moments are
not enough when we consider portfolio risk.Similarly, numerous studies have focused on skewness, kurtosis, and
higher moments in portfolio selection Samuelson (1970); Rockinger &Jondeau (2002).

Tobin (1958) and Rubinstein (1973) showed that higher moments must be taken into account in portfolio
selection and that the utility function is not quadratic,along withSamuelson (1970), Rubinstein (1973); Scott &
Horvath (1980); Lai (1991); Konno & Suzuki (1995); Chunhachinda et al (1997); Fang & Lai (1997); Prakash et
al (2003); Lai et al. (2006).

Empirical evidence given by Arditti (1971)showed that stock return distributions are often positively skewed,
and the investor’s preference for more skewed distribution rather than less is consistent with the notion of
decreasing absolute risk aversion, a positively skewed asset return indicates an elongated right tail in the density
function of the asset return Arditti (1967).

Konno et al. (1993) andKonno & Suzuki (1995) argued that the skewness of the returns and the third-order
derivative of a utility function play significant roles in choosing an optimal portfolio. Investors would prefer a
portfolio with a larger third moment if the mean and variance are the same. They suggested a mean-variance-
skewness (MVS) portfolio optimization approach.This could have been able to make it possible to calculate an
approximated efficient frontier of mean-variance-skewness and to calculate a portfolio with the maximal expected
utility for any decreasingly risk aversion utility function using this model. However, they failed to solve the mean-
variance-skewness model but instead reported preliminary computational results.

A non-parametric approach for measuring efficiency in the case of the static portfolio selection problem based
on the mean-variance-skewness space was proposed by Briec et al. (2007). They defined a shortage function that
looks for increases in return and skewness and decreases in variance. Overall, optimality is guaranteed for the
resulting optimal portfolio.

3. Data and Methodology

This section provides an overview of the data used in this study,as well as the model usedto equalize the two
semi-variances. This equalization eliminates some unnecessary and detrimental risks from the portfolio.

3.1 The Adjusted Return Risk Portfolio Selection Model

The proposed model in this paper aims to make the risk symmetric concerning the means. Here, we target a
baying strategy (no short selling allowed) if the upside risk is greater than the downside risk (upsemi-variance
greater than the downsemi-variance). We will, therefore, proceed to the reduction of the positive risk to equalize
the up and downsemi-variance given by the assets.To implement this model, the change will be applied to
returns,the new adjusted returns (output of our model) will only be used to calculate the variance-covariance
matrix, while the portfolio’s return will not be changed (using the original returns).The goal behind this change is
to remove noisy unwanted shock that can affect the risk in case of abuying strategy.

The purpose of this change is to eliminate the detrimental risk caused by shocks for ourportfolio. In the case of
a buying strategy, investors consider only the risk of loss, while the risk associated with the asset sometimes
obscures its real image.For instance, in Table-1, ‘CELG’assets have a positive return, but the down semi-variance
is less than the up one. In this case,investors choosing this asset, don’t know that their chance of obtaining a positive
shock is greater than that of a negative one.

So, the risk of losing is not only related to the downside risk, but there is also the fact of what we can gain from
this asset and the chances of having positive shocks. So, we conclude that this asset (CELG) responds more to
positive shocks than to negative ones;the upside risk is also important in portfolio assets selection.

The return is calculated according to the following formula:
r; = log = @)
Where p, is the asset’s price

Given any combination of our risky assets and a set of weights describing the distribution of our portfolio, the
overall expected portfolio return formula is:

E(r,) = X% E(r) )
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Where Y1, x; =1

n Isthe number of securities;

x; |s the proportion of the funds invested in security i;
r; s the return of securityi

rp  Is the portfolio return;

The return computation is nothing more than finding the weighted average return of the securities included in
the portfolio.

The variance is the expectation of the squared deviation of a random variable from its mean. Informally, it
measures how far a set of (random) numbers is spread out from their average value. The variance is the square of
the standard deviation.

The portfolio variance is a measurement of how the combined returns of a set of securities make up a portfolio
fluctuate over time. This portfolio variance statistic is calculated using the variance of each security in the portfolio
as well as the covariance of each security pair in the portfolio:

Var(r,) = ZIL, 2}, %04 Cov(ryry) ©)

Covariance can also be expressed in terms of the correlation coefficient:
Cov(r, 1) = pijoio; = 0 (4)

Whereby p;; is the correlation coefficient between returns.

We can measure the degree of returns asymmetry using the Skewness coefficient. Considering that a simple
test of the symmetry hypothesis consists in testing the nullity of the central third order moment of the distribution,
the Skewness coefficient defined as:

skew(X) = EX-EQOP (5)

[varx]3/2

For a significant negative Skewness coefficient, the distribution is asymmetric. This means that the probability
of getting below-average values is higher than that of getting higher than average values and vice versa for positive
skewness.

The flattening coefficient or Kurtosis of a random variable corresponds to its fourth-order centered moment.
Kurtosis is a measure of the thickness of the tails of distributions. This measure is based on the normal distribution,
which is considered a flat-tailed distribution and has a flattening coefficient of 3. If the Kurtosis exceeds 3, then
the distribution tails are thick and the distribution is called leptokurtic. If the Kurtosis is less than 3, the distribution
is called Platykurtic. Kurtosis's formula exclaims as follows:

kurt(x) = EE00 “EQOI (6)

varXx|?
3.1.1 Semi-variance

The semi-variance of asset returns is a better risk measurement way for several reasons. First of all, investors
‘like” more positive volatility than the negative ones. Second, semi-variance is more useful than the variance when
the distribution is asymmetric, and it is also beneficial when the distribution is symmetrical. Third, semi-variance
providesinformation about two dimensions: variance and skewness, Estrada (2007). Consequently, investors
require higher returns from the shares, which have high downside risk deviations. They do not buy shares, as long
as they become cheaper to an appropriate level. In the meantime, the shares with high positive deviation risk are
overestimated and acquired for high prices, Ishiba et al. (2012).

The semi-variance can be estimated (using historical data)asfollow:
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1 2
[sv+; =230, 50 max (0,5, — E())
{ j=12 .,nandt=1,2, ... T )

| 2
kSV‘j =% f=1 X}y min (O,rj_t —E(rj))
3.1.2 Volatility Skewness

Volatility Skewness is the ratio of a distribution’s upside variance to its downside variance, where the variances
are measured relative to the mean. If the distribution is symmetrical, it has a skewness of 1.00. The values greater
than 1.00 indicate positive skewness and values less than 1.00 indicate negative skewness, Sortino (2009).

Some critics of downside risk claim that eliminating the upside returns, from the risk calculation, is incorrect
since strong positive returns somehow imply the inevitability of correspondingly strong negative returns. This
criticism is anecdotal and is unsupported by any published research Sortino (2009).

As previously stated, it is necessary to fit some distribution to the observed return-data points into accurately
calculated downside risk and related statistics. However, this is no different from the traditional method used in
the MPT analysis in which the normal distribution is assumed to infer probabilities of loss from the observed data
points.

The Volatility of Skewness can be estimated (using historical data) as follows:

2
%Zgl X, max (0 ,rj_t—E(rj))

V_Sker = (8)

2
TEEa Zjy min(0.7¢-E (7))
j:

1,2 ..n

The method proposed in this paper, as we have mentioned, uses the volatility skewness as a corrective term to
adjust the upside risk. Our strategies aim to equalize the down and upside risks.Making the risk of our assets
symmetrical will help to reduce and eliminate anyunnecessary risk that was involved implicitly in our portfolio.

The method consisted of dividing the upside deviation according to the means of all the returns by the square
root of the volatility skewness coefficient of each asset.

_ max (0 Tie—E(r ))
At = —W : 9)

To recompose the adjusted returns, we recomposed all the elements to obtain a new return for each asset.The
new return will be similar to the original ones but with a very small difference that can be noticed in figure 1.

The new returns obtained are given by the formula:

r>0 and SV*; > SV~;
_ max (0 ,rj_t—E(rj))

= — e Tmin (0,7,) + E(n) (10)

This new return (adjusted return) will be used only to calculate the variance-covariance matrix. The variance
calculation based on the new returns has equal semi-variances. To implement the change in the mean-variance
model, we need to substitute the old variance-covariance matrix with the new matrix calculatedby using the
adjusted returns.

Then, the optimization program will be written as follow.
n n
Minimize Z Z X X0y
i=1J=1

Subject to
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n

> xEl] > p

j=1
n
Zx]' =1
j=1

XJZO j=1,...,7’l

This is a quadratic programming problem, having n variables and two linear constraints. The term o;;”is
calculated using the adjusted returns resulted from our method. These constraints can significantly change the
efficient frontier. As a result,x; can be negative if the assetis issued by the investor, or in case of short selling.

This system can be written as the following matrix form:

XTZ X

Minimize
[x1] [O11 O12 gy 1
Ile | 011" 012 oy I
| . IX | |[x1x2 ...x]-]
[. | | |
li'J lUn* 012"« Oy J
Subject to

3.2 Presentation and Description of Data

Our study sample includes data corresponding to the historical returns of 24 financial assets from the NYSE
market. The data covers the period from 1/5/2017 to 12/28/2017. The returns are based on the price of securities
from different activity areas, such as the Industrial sector, Finance, Transport, Services, etc. For our simulation,
we used an expected return rate of 0.05% per unit of time (one week). Our work is mostly achieved by using
MATLAB financial toolbox.

To describe the statistical of our data, table 1 shows the average return, variance, skewness, kurtosis, the
skewness as well as kurtosis after adjustment, the negative and positive semi-variance, and finally the
volatility skewness for all 24 assets.

According totable 1, we can conclude that the weekly returns distribution of all assets is different from the
normal distribution. Additionally, the adjusted volatility has less value than the original one.Accordingly, this
confirms that our model has shrunken some of the risks of our assets, whichis noticeable in the result of our
portfolio optimization. In terms of skewness, almost all the securities (i.e. 24 securities) are asymmetric (Skewness
#0). For the kurtosis coefficient, we observe that all of the assets have a coefficient above or below three (Kurtosis
#3). The returns with a high kurtosis coefficient imply that the investor will experience occasional extreme returns
(either positive or negative). After applying our model, the kurtosis shows less value than the original one. This
will reduce some of the occasional extreme returns. However, in this case, we have reduced the extremely positive
return because the Kurtosis coefficient does not differ from the positive to the negative ones. The adjustment of our
portfolio returns is done using the volatility skewness coefficient. This adjustment is applied to assets characterized
by having a positive semi-variance greater than the negative one.
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Table 1. Descriptive Statistics of the data

Ass  average vari variance after (-) Semi- (+) Semi- volatility skew  Kurt skewness after kurtosis after

ets return ance  adjustment variance variance skewness ness 0sis adjustment adjustment

Bl goos2 290 go011 0.0005479  0.0005316  0.9850 0.020 343 1op1 3.4308

ou O 1 ' ' ' : 1 08 : :

MD 50008 290 0.0002 00001332 0.0001111 0.9133 0167 23X 01673 2.1539

Lz 02 3 39

M 0.00 0398 7.02

M 0.0060 : 0.0004 0.0001966 0.0002462  1.1191 ' ' 0.1265 6.9571

v 05 6 81

AA o004 299 o006 00003149  0.0002711  0.9279 0304 3 o304 3.9142

PL 06 0 42

?B 0.0075 8'300 0.0003 0.0001564 0.0001732  1.0521 2'157 2;575 0.1017 2.7423

AB 0.00 1819 9.89

o 00103 2 00005 0.0002615 0.0004990  1.3815 . 389 11607 7.1997

EB 0.00 0181 278

ay 00050 0% 00006 0.0003129  0.0003404  1.0431 : 278 0.1350 2.7577

BA 0.00 0372 285

oy oows 0 ooou 0.0005532  0.0006774  1.1066 ; 255 o2sea 2.7753

EM 0.0019 8800 0.0008 0.0005134 0.0003161  0.7847 1.407 3'627 -1.4073 8.2776
3

0.00 - 3.49

KO 00026 ) 00002 0.0001008  0.0000749  0.8617 0583 70 0583 3.4984
5

go 0.0023 8'900 0.0009 0.0004577  0.0004339  0.9736 0.079 5'860 -0.0796 2.6098
6

\';L 0.0029 8'500 0.0005 0.0002606 0.0001858  0.8444 0.672 g';“ -0.6721 3.4483
1

X0 50007 %00 50002 0.0001327  0.0001062  0.8949 0213 398 49734 3.0866

M 02 " 66

Gl 0.00 0.276 505

Sl oooe 00 o0.0008 0.0003964 0.0004780  1.0982 : o8> 0.0953 5.0489

HD  0.0069 8'300 0.0003 0.0001492 0.0001629  1.0448 2'028 2'946 -0.0315 3.4999

IN 0.00 2204 984

T& o005 0% 00005 0.0002314  0.0006365  1.6586 . b 13172 6.5171

'I\D"C 0.0075 8'200 0.0002 0.0001085 0.0001127  1.0192 2‘265 2'859 0.2268 5.5591

E‘K 0.0039 8'900 0.0009 0.0004850  0.0004354  0.9475 0.247 3'930 -0.2479 4.3049
9

E,’E 0.0034 8'200 0.0002 0.0000888  0.0000791  0.9438 0.142 5'205 -0.1420 2.0572
0

LX 0.0077 8'500 0.0004 0.0002092 0.0002350  1.0598 8'243 2'858 0.1850 2.5440

gN 0.0057 8500 0.0004 00002122  0.0002986  1.1864 2'616 5'398 0.4325 2.7561

V00069 8'200 0.0002 0.0001047  0.0001105  1.0273 2'042 3'712 0.0202 2.1249

XVB -0.0018 8'700 0.0007 0.0004258  0.0002212  0.7207 1.237 2613 -1.2372 5.1366
2

w 0.00 0900 523

e 00078 0% 0.0004 0.0001855 0.0002882  1.2464 0 2> 05162 47299

In our case, all the assets with a volatility skewness greater than 1 have been changed. After recomposing
returns using the formula 10, the return of our assets is given by the following figure 1.
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Figure 1. Evolution of portfolio assets’ return and their adjustment.
These returns will be used only to calculate the variance-covariance matrix, while the original returns value
will be used to calculate the expected return of our portfolio, hence, only the risk of our portfolio will change.

4, Results and Discussion

In this section, we preside to applying the original mean-variance model introduced by Markowitz,by using an
adjusted variance-covariance matrix. Therefore, through observing the variance- covariance matrix of original and
adjusted returns, we can conclude that the adjusted variance-covariance matrix has fewer risk Tables (2) and (3).

Table 2. Variance - Covariance matrix

Assels  BIDU MBLZ MMM AAPL  ABT ABBY  ERAY  BABA  BMIY ik cop LLY X0 GILD HI INTC MO NKE  FEP TEN UNF v WEA  WMT
BIDU 0001100
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K0 LISE-08 4.55E-08 -L1E-0S -R206-00 -L3TE05 SSRE0S  |RTE0S S70E05 -TTIE0S 0000179
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Hn BIEDE DRAE-05 O000185 TASEDG 2TIE05 | 02E-M  LIOEDS E8RE08 TASEDS -2RIE0F O00E-D5 Q.00M23 ERIE05 4A3E05 0000318

INTC  a35E-D6 5.60E-035 -L99E-DS 0000221 -S38E05 469E05 S30E-05 692E-05 000025 401E-D5 DONO3TT -L33EH S70E-05 -BO00Z4 7.7RE-DS O0008RS

MCD 67605 dS0E-05 LOTE-DS 0.000106 336E06 343E0F 3. 5 TTIE05 S68E05 3.62E-08 4 65E-D5 «L7IE05 | A2E-06 422005 «| 92E05 1.76E-D5 0.000226

NKE 0000109 437E-08 0000186 SS0E-06 0.000104 SME0S -TRIEDS 000013 000017 -6HIE-D8 D013 000MS] S3RE08 LOSEOS 00000131 TIGEDS -TAIEDS 000094

PEF  -LI3E-05 T.62E-05 -S29E-D5 972E-06 -S35E-06 -533E05 -LTIE0S -L27E-05 -530E-05 94E-D5 -5.15E-05 -630E-05 -L87E-D5 000014 D21E-07 -34TE-05 4.58E-05 1ROE-DS 00001713

TRN 000013 680E05 4 0000131 665E05 197ED5 494E05 LIE05 D000K LIZE05 DUNONIS -1.56E05 AI0E-06 -318E05 S4RE0S 0000125 «19TE06 T.26E-05 |ORE-DS 0.000453

UNP 0000208 BSSE-08 4ME-03 -LATED6 G8TEOF 2SEDS  GIOEDS TODE-DS 00013 428E-05 0ONO269 -204E-05 RITEDS 3ATE05 LOGEDS 000024 DOZE0S 000013 D.24E-06 0000176 0000521

v 0000119 000011 IASE-D5  0.00002 LASE-05 LISEM TA2E0S 0000154 573E-05 432E-05 340E-DF -4 70E-06 3.59F-05 4.53E-05 -1.56E-05 S74E-05 7.71E-05 B86E-05 JATE-DE 0.000116 7.59E03 000021

WBA LOSE-DS 437606 Q00015 2OTE06 00013 226E05 TAIEDS -LORE-05 0000168 6, M4E-D8 2 2E-DS 0000007 123E-08 0000118 0000133 637605 000118 00038 -|3BE-05 76506 1 63ED8 1 R4E05  0,00066
WMT 0000307 000036 5.34E-D5 LIIE-04 401E-05 366E-06 -390E-D5 -1ORE-05 T62E-D5 3.5KE-D5 1.00E-M -LIDE-06 3.73E-D5 -SRGE-05 A76E-D5 446E-05 730E-05 0.00019 10SE-M T.23E05 -1.MEDS 10SE-H 695E-05 D0

Table 3. Variance - Covariance matrix after adjustment.

911



Adil Moghar*, Hassan Chikri, Manar Kassou, Faris Hamza

Awels  BIDU MDLE MMM AAPL ABT ABBY  EBAY  BARA  BMY (U] cor LLY XOM GILD - HD INTC  MCD NKE  PEP TN UNP v WEA  WMT
BIDU 0001101

MDLE  5STEDS 0000249

MMM LSGE-DS GOIEDS 00004

AAPL 0000165 91406 -0.98E-05 0000598

ABRT JOBEDS -29TE-05 F95E-08 S90E05 0000319

ABBV  276E-08 -S28E-06 4,14E-06 4.65E-05 0.000128 0000526

EBAY  9I2E-05 281E-05 B 16E-05 0000286 2HIEOS 0000135 0000638

BABA 0000114 -30TE08 00006 0000128 S04E06 0000263 0000028 0001127

BMY  4TIE-DS -2EIE-DS 0000177 -603E-05 0000171 000025 -466E-06 -1ATE-D5 0.000846

Ky LTSED5 45505 «|ORE-05 -E20E:06 =L32E05 404E0F | R5E08 S82E-05 T7IE05 0000179

COPF  OA00128 2RIE06 -2 10E-08 TRTE-DS 812608 |0SEDS  320E-08 TAIEDS TIRE-06 -6ATE0S (NI

LLY  oTASEDS -213E05 0000172 SSEEQS  DO0DI3 0000167 0000131 00001 0000271 -60UEDS TADEDS 0.000455

XOM 532606 190E-08 3.TOE-08 -2T6E-D5 2ARE0S 0000129 TOOE08 333E05 Q46E05 G008 0000271 94405 0000248

GILD T99E-D8  DDMNI G.TIE-08 -391E-05 0000135 000011 368E-05 00001 0000166 -R11EDS -3.T6E-05 0000180 S95E-05 0000808

HD TIEDS LTRED5 Q000174 <TSTED6 L5TE05 76805 2ONEDS -KA8E-05 TI9E05 275E05 RR1E05 0.000121 E50E05 432605 0000304

INTC 302608 438E085 8708 0000138 -J40E05 313608 37008 L3IE05 000017 3TOE0S 0000266 SA2E05 AMNE0S 000015 SSIEGS 0000457

MCD 662605 441E08 LIIEDS 00000105 122606 378E05 39505 T73E05 S64E05 3S0ED05 468605 ] T0E05 +) 46506 -4 08605 200505 115605 0.000221

NKE 0000109 487E-08 0000172 S50E-06 0000103 437608 TTIE05 000014 0000174 GAIE0S 0000145 0000181 SI8E05 176E-05 000129 §3RE-05 TIIE05 0.00094

FEF SLIBE-DS TAJE-DS -4RIE-06 GT2E-06 -3 14E06 -LA2E-DS -2ARE-DS -ROUWE-D6 -550E-05 0MEDS -5 05E-05 -630E-05 4RTE-05 -D00014 G3REAOT -237E-05  4.55E-05 2ROE-D5 0001713

TEN 0000129 6TTED5 4.66E-05 000019 640E05 |64ED5 d95E-05 LIIE05 000004 LI6EDS 0000111 -14ATEDS 380E-06 -292E-05 S30E05 0000175 -L30E-06 T.ISE-05 LI0E-05 0.000427

UNP 0000187 BI0E08 41008 3 14E06 - 77E05 234608 S45E-08 SO0E08 00011 405E08 0000248 -1 3IE0F TME-08 2AE0S OA3E08 0000161 LGEOS 000012 TOTE-DS 0000134 D000431

v 0000117 0000109 306EDS 0000118 LSOEQS 9.S4E05 691EDS 0000048 SH6EDS 426E05 33SE08 44IE06 ISHE05 40TEQS -LSIEDS S30E05 T.5IE05 &7IE05 241605 0000113 7.04E-05 D.O00214

WBA  LO3E-D8 4 NTED8 0000139 297E06 0000127 2OREDE TAE08 EA4E05 0000168 SI4E08 JREDS 0000007 123E08 0000113 0000149 JS0E05 000017 000038 < 3RE-08 0 L4EA06 2A3E08 LATELDS  DuODOGH
WMT 0000260 000012 441E-08 920E-05 441E-05 RER4E-06 -3.56E-05 -14TE-05 TO2E-05 297E-D5 972605 -127E-06 3.55E-05 -5.28E-05 SORE-05 467E-05 GAOE-05 0.00008 O20E-05 6MEDS -255E-06 935E-08 TH7E-05 000038

To prove this, we proceed to the simulation of both models using the MATLAB financial toolbox package.We
obtained a 10-equidistance portfolio, which expresses the efficient frontier for both our portfolio's original and
adjusted one.The results are given by both tables 4 and 5.

Table 4. Optimal 10-equidistance portfolio using original variance-covariance matrix

Assets

port port port port port port port port
1 2 3 4 5 6 7 8

port
9

port
10

Annualized
risk

Z

0.022 0.021 0.005

BIDU 0 0 0 0 0

07 78 99

MDL | 0.019

a1 0 0 0 0 0 0 0
0.044 0.078 0.084 0.069 0.034

MMM 0 0 0

64 10 86 09 68
0.025 0.032 0.033 0.024 0.005

AAPL 0 0 0

90 17 44 11 07
0.057 0.095 0.122 0.141 0.161 0.117 0.061

ABT 0

22 30 11 08 92 1 6
0.000 0.021 0.035 0.123 0.218 0.301
7 6 8 4 2 7
0.002

ABBV (0 0

EBAY (0 0 0 0 0 0 0

7
0.020 0.046 0.072

BABA 0.094 0.125 0.230 0.347 0.476

7 2 8
0.009

BMY 0 0 0 0 0 0 0

78
0.167 0.113 0.070 0.008

KO 0 0 0 0

48 62 25 13
0.004 0.030 0.021

COP |0 0 0 0 0

73 44 59
0.034 0.021

LLY 0 0 0 0 0 0

51 78
0.144 0.102 0.023

XOM 0 0 0 0 0

47 00 5
0.061 0.053 0.048 0.019

GILD 0 0 0 0

96 24 1 5
0.021 0.088 0.135 0.181 0.131 0.046
54 56 44 29 07 55
0.035 0.026 0.010

INTC 0 0 0 0 0

92 89 30

0

0

0.23928

0.11385

0.15326

0.17630

0.13222

0.20084

0.18614

0.25548

0.20975

0.09653

0.21746

0.15387

0.11257

0.21536

0.12865

0.21455
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0.067 0.099 0.152 0.206 0.268 0.187 0.077
MCD 7 3 8 6 5 6 8 0 0 0 0.10829
NKE |0 0 e 0 0o 0 0o 0 0 0 0.22095
0.204 0.212 2E- 0.143 0.009
PEP 9 6 01 5 1 0 0 0 0 0 0.09439
0.012 4E- 0.066 0.097 0.105 0.102 0.068
TXN 0 78 02 5 9 9 5 0 0 0 0.15351
0.041 0.044 3E- 0.015 0.010
UNP 78 58 02 9 3 0 0 0 0 0 0.16459
Y, 0 0 o 0 2007 0o 0 0 0 0.10684
wBa |22 2O o g 0 0 0 0 0 0 0.18524
0.015 0.063 0.105 0.146 0.154 0.021
WMT |0 0 0 5 6 0 7 6 1 0 0.15851
Retur [0.213 0.290 0.368 0.446 0.524 0.602 0.680 0.758 0.836 0.914
n 07 98 89 80 72 63 54 45 36 27
Varia | 0.005 0.005 0.006 0.007 0.009 0.012 0.016 0.021 0.027 0.035
nce 64 91 64 75 28 10 45 48 28 43
The table 4 shows the top 10-equidistance optimal portfolio consists of 24 assets.
Table 5. Optimal 10-equidistance portfolio using adjusted variance-covariance matrix
Assets port port port port port port port port port port | Annualized
1 2 3 4 5 6 7 8 9 10 risk
0.018 0.021 0.005
BIDU 83 57 68 0 0 0 0 0 0 0 0.23928
MPL 194 o 0 0 0 0 0 0 0o 0 0.11385
MM 0.050 0.084 0.097 0.077 0.044
M 6 56 30 63 88 0 0 0 0 0 0.14431
0.018 0.025 0.019 0.016 0.003
AAPL 50 39 20 21 51 0 0 0 0 0 0.17630
0.054 0.096 0.108 0.126 0.142 0.091 0.025
ABT 128 91 o5 38 40 44 70 O 0 0 0.12879
ABB 0.021 0.049 0.073 0.180 0.304 0.393 0.372
Vv 0 0 4 5 9 8 2 6 7 0 0.16532
EBA 199 o 00104 0 0 0 0 0 0 0.18215
BAB |0.025 0.052 0.074 0.094 0.119 0.204 0.303 0.432 0.627 1 0.24205
A 55 56 70 65 02 05 87 25 26 '
BMY 8'009 0 0 0 0 0 0 0 0 0 0.20975
0.142 0.089 0.033
KO 5 9 52 0 0 0 0 0 0 0 0.09653
0.026 0.010
CoP |0 0 38 16 0 0 0 0 0 0 0.21746
0.033 0.023
LLY 09 21 0 0 0 0 0 0 0 0 0.15387
0.130 0.091 0.006
XOM 25 a4 30 0 0 0 0 0 0 0 0.11257
0.068 0.058 0.057 0.026
GILD 8 34 81 87 0 0 0 0 0 0 0.20494
0.020 0.073 0.111 0.154 0.120 0.036
HD 0 28 29 73 02 95 94 0 0 0 0.12578
0.067 0.061 0.049 0.028
INTC 06 94 93 04 0 0 0 0 0 0 0.15413
0.067 0.093 0.140 0.185 0.235 0.163 0.051
MCD |97 54 71 23 91 53 78 0 0 0 0.10726
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0213 0219 0214 0142 0015

pEp |13 0219 02l D42 DOIS 0 0 0 0 0.09439
0003 0027 0058 0091 0103 0099 0032

™N |0 0008 9027 9058 D081 O 0 ] 0 0 0.14894

0038 0048 0024 0026 0023
UNp | 3038 0048 D04 DD26 0028 0 0 0 0 0.14967
WBA 26038 8'7009 0 0 0 0 0 0 0 0 0.18524
0.006 0046 0096 0135 0177 0.141

wMmT | 0 0 0206 0046 909 DA% 0T 044k 0 0.13982

retur | 0220 0297 0374 0451 0528 0605 0682 0759 0837 0914

n 00 15 29 43 57 71 8 99 13 27

varia | 0.005 0005 0006 0007 0008 0011 0015 0019 0025 0.033

nce |53 80 50 54 93 38 19 75 28 57

Table 5 gives us the optimal composition of the 10-equidistance portfolio obtained by the simulation of the
adjusted variance-covariance matrix.We notice thatthe optimization leads to a portfolio consisting of 22 securities.
The assets ‘NKE’ and ‘V’did not take part in this portfolio.

1

09

o
]

o
et

Mean of Pertfolio Returns
o o
o [+
T T

=
'S

0.3

0.2

potfolio NYSE
T T

Efficient Frontier

Efficient Frontier after adjustment d

0.005

0.01

0.015

0.02 0.025 0.03 0.035 0.04

Standard Deviation of Portfolio Returns.

Figure 2. Efficiency frontier before and after adjustment of variance- covariance matrix.

After plotting the efficient frontier for both portfolios, we can observe that the adjusted efficient frontier has
less risky and higher returns. This proves that the adjustment that we applied has changed the composition of our
portfolio, whereas our adjustment only changed the positive semi-variance. In our case, the positive semi-variance
does not represent a risk (no short selling allowed).
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Figure 3. Evolotion of portfolio N°5 return befor and after adjustment

Figure 3 shows that the adjusted portfolio tends to have more positive returns than the original one. Also, table
6 confirms our result, the return and risk of the fifth portfolio show much difference between the original and
adjusted portfolio.

Table 6. Risk and return of the fifth portfolio before and after adjustment

adjusted portfolio

original portfolio

return 0.52857
variance 0.00893
return 0.52472
variance 0.00928

5. Conclusion

Since the security market is intricate, some assets hide their true risk. Thereby, in this paper, we try to examine
the symmetryof risk, sincetaking the same risk for both upward and downward shocks is rarely observed in the

market.

Accordingly, we adjust the variance-covariance matrix by equalizing the two (up and down) semi

variances. This procedure removes a part of risk which is unnecessary and only disturbs our optimization.

After the numerical computationof our model using both mean-variance models and mean adjusted variance
models, the obtained result shows that the adjusted model has more return and less risk than the classical mean-
variance model, this portfolio will reflect the true value of risk to investors. In our future research,we will be adding
the transaction coast, as well assome investment restrictions trying to test the flexibility and usability of this model.
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