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Abstract: The development of ICT technologies in recent years has shown remarkable changes with the internet of things and 

smart gadgets. This presented an opportunity for indoor navigation to develop a system for indoor positioning systems, such as 
GPS, that can assist any beneficiary in navigating inside the building and locating themselves. This paper focuses on the 
educational sector, specifically in King Saud University's Common First Year. To fit the educational setting, a detailed study 
using various techniques was reviewed. Overall, a meta-analysis was completed that will aid in the implementation of the 
sensors nodes technique in the future as a prototype on Common First Year campuses.. 
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1. Introduction  

Indoor localization has become more important in recent years. Indoor Localization (IL) or Indoor Positioning 

Systems (IPS) is best described as a GPS for indoor environments. Smart gadgets such as smart phones, tablets, 

and wearable devices such as smart watches, rings, bracelets, and smart glass for the disabled can be used to locate 

people or objects inside buildings. Although the technology is newer than GPS, indoor localization services are 

quickly gaining traction in a variety of large-scale institutions. The current papers represent a review of methods 

focusing on educational campuses. It is divided into several sections, each of which provides detailed information 

about the background study and various techniques used in various locations. The methodology section explains 

the current scenario of the common first-year orientation day, in which students are frequently confused as to 

where they should go for various events to attend during the orientation day. 

2.Background of Indoor Localization Approaches 

In recent years, cutting-edge related technologies have been extensively utilized. Smartphones are now capable 

of providing location-based information using a variety of sensors and modern techniques such as GPS, Wi-Fi, 

and Bluetooth. [two] There is a high social and technological demand for personal location-based services that 

work in places where GPS is unavailable. (3). Because GPS signals do not pass through roofs and walls, GPS does 

not work inside buildings. Due to interference and Line of Sight (LOS) issues, GPS works with low accuracy even 

in thin areas. [number four] 

2.1.Approaches based on traditional radio technology: 

For more than a decade, a variety of technologies have been investigated for indoor positioning. Traditional 

radio signals, such as Wi-Fi, Cellular Network, Bluetooth, FM radio, and RFID, are the most well-known 

approaches. The location of a target in the environment can be estimated using these wireless technologies by 

measuring one or more properties of the electromagnetic wave emitted by transmitters and received by the target. 

Angle of Arrival (AoA), Time of Arrival (ToA) or Time Difference of Arrival (TDoA), and Radio Signal Strength 

(RSS) fingerprinting have all been extensively investigated so far. 

Using low-power off-the-shelf 802.11n multiple APs, a study titled "Multi-Site Fusion for WLAN Based 

Indoor Localization via Maximum Discrimination Fingerprinting"[5] was conducted. 

The offline database construction phase, where RSS mapping is performed, is the first phase of the two-phase 

technique. They then extracted the corresponding fingerprints for each AP on that map using the Channel 

Frequency Reference covariance matrix and the Maximum Discrimination Projection method, and built 

fingerprint databases and similarity profiles databases. In the online User localization phase, the RSS mapping is 

used to determine which AP(s) are covering the unknown location, and then each covering AP obtains the CFR 
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covariance matrix for that location (s). The correct location is then determined using either single or fusion 

similarity profile matching. 

They created fingerprints using the envelope of the Long Training Field (LTF) of the preamble of the 

802.11a/g/n Wi-Fi packet and a special purpose array antenna transmitter with high power capabilities for single 

site localization. To improve localization performance, they combined pre-existing infrastructure with accurate 

information provided by the Channel Frequency Response (CFR). They claimed and achieved metre level 

accuracy using the aforementioned method. 

DeepFi[6], a deep learning-based indoor fingerprinting scheme that uses Channel State Information, is 

undergoing research in a similar vein (CSI). The device driver collects CSI for all subcarriers and antennas in this 

method, which is then analysed with a deep network. 

To obtain the estimated location, the DeepFi system architecture includes an offline training phase and an 

online localization phase using a probabilistic method based on the radial basis function. Deep learning is used in 

the offline training phase to train all the weights of a deep network as fingerprints, and a greedy learning algorithm 

is incorporated layer by layer for weight training to reduce complexity.. 

According to the study, a deep-learning-based fingerprinting scheme could be used to overcome the limitations 

of existing machine-learning-based methods. The deep-learning-based method can fully explore the features of 

wireless channel data and produce the best weights as fingerprints. To reduce computational complexity, it also 

includes a greedy learning algorithm. The study uses CSI to obtain more fine-grained wireless channel 

information than RSS-based schemes, such as the amplitude and phase of each subcarrier from each antenna for 

each received packet. They claimed and achieved metre level accuracy using the aforementioned method. 

Hossain [7] discussed a different aspect of fingerprint-based location systems with enhanced accuracy in a 

study based on Multiple Wireless Technologies. They claimed to have developed a robust location fingerprint 

definition using a weighted linear regression technique that combined signals from multiple wireless technologies. 

It proved to be a better fit for fictitious training points, taking advantage of signal strength distribution spatial 

similarity. 

Using Bluetooth and Wi-Fi signals together, the study suggested two well-known localization algorithms, K-

Nearest Neighbor and Bayesian Probabilistic Model. SSD - Signal Strength Difference perceived at APs - 

provides a more robust location fingerprint than absolute signal strength values by itself, according to research[8], 

and increasing the number of APs does not always increase the localization accuracy monotonically. [nine] They 

also discovered that when using an SSD as a location fingerprint, Bluetooth outperforms Wi-Fi in every situation. 

An intelligent method for information integration is required to achieve the goal of having an accurate, always-

available, and simple-to-compute pedestrian positioning solution. Mohammad Bhuiyan's research, titled Using 

Building Layout for Performance Optimization of a Multi-Sensor Fusion Model in Indoor Navigation, used a 

Kalman Filter-based fusion model to combine Wi-Fi fingerprints, super sensitive GPS readings, and data from 

IMUs. The fusion filter improved positioning accuracy while also increasing positioning availability. Inside a 

typical office building, the KF-based fusion model achieves a horizontal accuracy of around 6 metres, and with 

the building layout information, it improves horizontal position accuracy to around 4.95 metres. This provided a 

first look at the kind of performance that can be achieved with low-cost heterogeneous location, heading, and 

speed observations aided by building layout information. [9] 

Inertial Measurement Units (IMUs) are built into today's smart devices and smartphones, allowing them to 

send and receive data or information via radio signals on their own. To achieve high accuracy and stable 

performance in the tracking process, a study on real-time robust indoor tracking system in smartphones proposed 

fusing RSS, IMU, and floor map in an enhanced particle filter. They were able to reduce the errors caused by 

magnetic field disturbances and inaccurate off-the-shelf IMUs by using a stochastic model for location estimation 

and effective filtering of IMU readings. To mitigate the errors caused by the low Wi-Fi sampling rate and make 

the system fault tolerant, a double re-sampling method was used. 

Through an automatic localization failure recovery mechanism, improved PDR measurements (by considering 

magnetic field and angular velocity through Direction Cosine Matrix filter), and the implementation of a graph 

based model to describe the physical environment, the research attempted to provide a solution for major issues in 

localization failures such as global localization problem and kidnapped robot problem.The results showed that the 

tracking method can automatically recover from failures in localization. The average tracking error in the 

evaluation experiment was 1.15 metres, with a standard deviation of 0.8 metres. [9] 

Indoor pedestrian localization with multi-sensor information fusion strain upon particle filter algorithm based 

on multi-sensor fusion was studied by Xianguy Xu[12]. The algorithm combines the smart mobile terminal with 
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indoor localization and uses a particle filter to filter the results of the localization. To improve the filtering 

precision and stability, they used a PDR-based dynamic interval particle filter algorithm and RSSI localization 

information. The study focused on a particle filter algorithm that combines multi-sensor fusion with IMU 

readings. The user's movement is recorded by the IMU, and Bayesian estimates of the m are madeWhen compared 

to a location algorithm based on Wi-Fi, experimental results show that the multi-sensor algorithm improves 

localization accuracy and robustness. The proposed method has an average error of over 0.35 metres in a 21m X 

18m area, which is better than the location algorithm based solely on Wi-Fi, which has an average error of 1.65 

metres. (If the user is moving, the research found an error of 0.54m and 2.35m, respectively.) 

Jeong et al. [13] proposed the Smartphone-Assisted Localization Algorithm (called SALA) for positioning 

indoor IoT devices, which allows the smartphone to visually display the positions of IoT devices in indoor 

environments. In this case, the smartphone acts as a mobile beacon that uses a sensor-fusion method to track its 

own position indoors using its various built-in sensors. 

The study focused on a smart home in which a moving smartphone broadcasts short-range beacon messages on 

a regular basis and collects responses from nearby IoT devices. The response usually includes information about 

IoT devices. For localization, the smartphone saves this response, along with the RSS and its location, to a 

dedicated server. The closer the distance between two devices, the stronger the RSS of the exchanged message 

frame, according to SALA. The sample points with the received signal strength are analysed to determine the best 

grid position for the IoT device (using power map algorithm and grid-weight map algorithm). Offline, along with 

a given indoor layout, these stored trace data is processed. 

According to the study, SALA can effectively localiseIoT devices with position errors of less than 20 cm 

during simulations (in 8.7 m x 6.6m area). The average collective motion error in the real experiment, however, 

was more than 195 cm.[13] 

The proposed approach shows an error of 0.07 percent for the total travelled distance after introducing an 

implementation for PDR algorithm using 6-D vectors (3-axis acceleration and 3-axis magnetic field) Quaternion-

Based Extended Kalman filter for heading estimation with Low Pass filter and adaptive step length methodology. 

(#14) 

Another research paradigm with a similar baseline discussed the design and implementation of an Internet of 

Things (IoT)-based indoor localization system using Bluetooth Low Energy (BLE) technology[15][16][17]. They 

used different modules like data measurement through Bluetooth[18] beacons, data aggregation and transmission, 

storage, web-interface and cloud services for data, and results visualisation with the help of two key intrinsic 

components, an acquisition system and a central server. The proposed system's localization mechanism was based 

on a location algorithm derived from the Received Signal Strength (RSS) footprinting method, which enabled it to 

detect reference zones within closed environments. 

The system proposed a general architecture (designed from an IoT modular standpoint) for identifying 

reference stations in indoor environments, with two main systems: Acquisition and Central Server. The 

acquisition system is in charge of acquiring RF signals and performing RSS identification using BLE 

Technology[19], whereas the Central Server implements a local storage database and a local web interface to 

display the raw and processed data stored in the database. 

In closed environments, the BLE technology has propagation properties that allow it to determine proximity 

and distance values with some error. Many physical properties of such environments, such as the multipath effect, 

scattering, and the complexity and dynamic of interior structures, have a negative impact on signal radio 

propagation. Using custom software at the data aggregation stage of the acquisition system, the proposed approach 

yields a final error of 29.8%[15].Jesus LovonMelgarejo et al[17] used two supervised learning algorithms, SVM 

and k-NN, to develop beacon-based location mechanisms with a similar setup. They argue that, in comparison to 

SVM, the use of the k-NN algorithm may be more effective in developing an indoor location fingerprinting 

mechanism (though BLE signals are susceptible to fast fading impairments, making it difficult to measure RSSI to 

develop Wi-Fi based fingerprinting). Despite this, the experiment was unable to achieve meter-level accuracy. 

Localization systems with a 1 metre accuracy could be used for navigating complex facilities and locating 

specific locations, people, or objects. The same is discussed in the Bluetooth Indoor Localization System based on 

the „Incorrectly Triangulation System.' [20] a Using a dedicated cross correlation chip, the proposed trilateration-

based system measures the RF signal propagation time with 3 nanosecond accuracy using the Differential Time 

Difference of Arrival – DTDoA method. The system calculates the distance between two points of unknown 

position by measuring the propagation time of an electromagnetic wave. They used additional hardware on the 

base stations, whereas no additional hardware was required in mobile. The aforementioned research could achieve 

metre position accuracy with a simplified demonstration setup. [20] A study published by the Spanish Council for 

Scientific Research [21] on Smartphone-Based Cooperative Indoor Localization with RFID Technology [22] 
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discusses the localization and tracking of people using smartphones by combining RSS emitted from known 

location beacons with PDR, which estimates user motion. 

To improve overall positioning accuracy, the study recommended a centralised cooperative particle filter (PF) 

formulation over the joint state of all users that allows for the processing of RSS measurements from both anchor 

and mobile emitters, as well as PDR motion estimates and map information. Sensor measurements, low-level 

processing, and data transmission to a central unit, where cooperative localization took place, were all handled by 

smartphones. 

The study found that when limited users moved in an area with active RFID tags, their individual localization 

improved in terms of positioning accuracy each time they used cooperative PF, PDR, and map information, 

respectively. 

A study led by Hammadi at Khalifa University on Indoor Localization and Guidance Using Portable 

Smartphones describes an android-based indoor map guidance system that assists and guides delegates inside an 

academic setting such as a university. It was concentrating on using low-cost Near Field Communication – NFC 

(RFID is the process of uniquely identifying items using radio waves, and NFC is a specialised subset of RFID 

technology). NFC (Near Field Communication) is a low-cost wireless technology with short-range communication 

capability and a branch of High-Frequency (HF) RFID, both of which operate at the 13.56 MHz frequency.) 

technology and Quick Response QR Codes with Dijkstra algorithm to determine the location and provide 

navigation within the university. Researchers developed a system that relies on a server that contains three mail 

parts: a web server, a map server, and a spatial database, all of which are open source and freely available 

software 

According to the study, NFC tags should be scattered throughout the premises in known locations, allowing 

users to determine the location of a device that scans those tags.[page 24] It uses the Dijkstra algorithm to 

calculate the shortest path from the current location to the desired destination after receiving the user's current 

location and desired destination. Due to the fixed positions of the NFC tags, higher accuracy can be achieved. 

[No. 25] 

The bilingual app could also be used to find a destination, calculate the shortest path, locate car parking, and 

provide feedback to building management, among other things. 

2.2.Light & Sound Based Approaches: 

Indoor localization solutions with the desired simplicity, robustness, accuracy, and responsiveness are still 

needed for IoT applications. Shang Ma discusses Foglight, a visible light-based indoor localization system that 

allows low-power IoT devices to pinpoint their location with sub-centimeter accuracy [26]. 

When mechanical mirrors inside a projector are flipped based on gray-coded binary images, it creates a unique 

spatial encoding. This image encodes each pixel within the projection area in a unique way, allowing IoT devices 

to collect and decode a sequence of light intensity and recognise their own position within the projection area. It 

employs a low-cost, battery-operated TAOS & TSL13T off-the-shelf light sensor that can easily be coupled with 

such devices to achieve high-accuracy localization with minimal signal processing overhead, low latency, and low 

power consumption. 

The entire system is energy efficient, making it suitable for low-power IoT devices and long-term deployment 

for large-scale applications. It achieves sub-centimeter precision in fine-grained localization. This opens up a wide 

range of new applications in which high-accuracy location is required. 

Foglight can locate a target device with an average accuracy of 1.7 millimetres in a controlled lab study, with 

an average refresh rate of 84 Hz and a minimal latency of 31.46 milliseconds on Wi-Fi and 23.2 milliseconds on 

serial communication. However, the requirement for line-of-sight is the method's most significant limitation. It 

can only locate devices within the projection area, so using it in a larger area could be difficult! 

A precise localization system is required to implement a reliable and efficient solution to assist frail people 

with a continuous and consistent form of information for safe exploitation of indoor environments. The 

importance of ultrasound-based localization systems among the various technologies is highlighted in a study 

conducted by the University of Catania in Italy on Smart MultiSensor Strategies for Indoor Localization[27]. It 

believes that by installing a sensor network in the environment, the highest accuracy can be achieved. 

Wireless Sensor Network and Advanced Signal Processing are used in the system. User Environment 

Interaction (UEI) and User-Environment-Contextualization improve location accuracy even more (UEC). Within 

the Wireless Network, it primarily works on two things: environment nodes and user nodes. Environment nodes 
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are equipped with various sensors, including ultrasound sensors, to implement the user localization task. To 

monitor the status, the user must wear a wearable with an embedded inertial sensor. 

The ultrasound localization system works by continuously measuring distances between the user and the nodes 

in the environment. By measuring and processing four successive ultrasound impulses, it uses an Anti-Bouncing 

Filter (ABF) to reduce bouncing effects in the estimation of ToAs. For user localization, the resulting ToAs are 

converted to distances and sent to the Multi-Trilateration Algorithm (MTA). MTA is more time-consuming than 

the traditional Trilateration Algorithm, but it is unquestionably recommended for extremely accurate indoor 

localization tasks. The said research was able to achieve an accuracy of better than 4 cm in an environment of 8.60 

m by 7.10 m, with seven nodes roughly positioned at a height of about 3.0 m. 

Despite notable efforts in recent years, accurate and practical solutions to indoor localization remain a 

challenge. Kaikai Liu of the University of Florida proposes the “Guoguo”[28] indoor localization system. The 

technology that allows users to get centimeter-level location accuracy and integrates with context-aware mobile 

services has the potential to revolutionise the indoor localization concept. 

They devised a workable solution that includes an anchor network with a coordination protocol for 

transmitting modulated localization beacons over high-band acoustic signals, a real-time processing app for 

smartphones, and a backend server for indoor contexts and location-based services. The detection sensitivity of 

imperceptible acoustic beacons is improved, resulting in better location coverage, higher accuracy, and lower 

power consumption. 

Rather than using simple passive beep signals, the system employs the transmission waveform, wide-band 

modulation, and one-way synchronisation and ranging schemes. To enable anchor node identification without 

radio assistance on a smartphone, the acoustic beacon transmission scheme uses high-density pseudo-codes. They 

proposed a symbol interleaved beacon structure to overcome the disadvantage of low acoustic signal transmission 

speed and increase the location update rate. They proposed a fine-grained adaptive TOA estimation approach that 

exploits the details of the beacon signal and performs NLOS identification and mitigation to improve ranging 

accuracy. In the chosen environment, experimental results showed centimeter-level localization accuracy of 6–25 

cm. 

2.3.UWB Based Approaches: 

In recent years, the market has begun to pay attention to UWB-based technology for the purpose of indoor 

localization. The modulation scheme is gaining popularity due to its suitability for such applications. A typical 

UWB-based system sent data in the form of very narrow nano or sub-nanosecond pulses spread over a frequency 

range of hundreds of megahertz. Indoor localization systems benefit from this design because short pulses provide 

sub-nanosecond accuracy in timing measurement of the received UWB signal, which corresponds to centimeter-

level accuracy in distance. It also improves the overall system's resistance to multipath fading, which is still a 

difficult problem for conventional radio signals in indoor environments due to signal reflection. 

As a result of the need to operate in unlicensed bandwidth and the transmit power restriction, we can see that 

UWB communication has a relatively short effective range. It means that a sufficient number of reference nodes 

may be required for large-scale deployment, and these nodes must be affordable. UWB receivers consume a lot of 

power, making them unsuitable for low-power IoT applications. [26.] 

Demand for Case Studies 

The challenge of adapting indoor localization in educational campuses is described here with a real-world 

example from King Saud University's Common First Year.During Orientation Week, students are challenged to 

place themselves in the correct location. In this case, as shown in fig. 1, indoor localization will allow students to 

select a simple and comfortable path to various locations. Furthermore, it outlines the various stages of the 

students' journey from pre-orientation to arriving on campus and participating in various events at various 

locations 

2.4.CFY's Orientation Day Scenario 

To begin, students must register online using a link from the CFY e-portal, which allows them to schedule 

their attendance at the orientation programme for a specific week. There are several steps to follow. 

1. English level placement test: Students register for an online placement test that is designed to place first-

year students in the appropriate level of English language study. 

2. Email Activation: After passing the placement test, the portal will redirect you to your active university 

email account. 

3. Slot Reservation: Choosing a time slot for the orientation day from the available options. 
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During orientation week, students are required to attend a variety of events at various locations for activities 

such as 

1. Attending the welcome seminar: Students attend the CFY campus's induction seminar. 

2. Student ID Card Collection: Following the seminar, students will be directed to collect their student ID 

cards. 

3. Purchasing Books: After that, the students are in charge of collecting and purchasing the books. 

4. Exploring internal society clubs and registering: Students can register for extracurricular activities and 

explore different clubs. 

In the case of CFY's orientation day, the students follow the ordinary path with someone's manpower 

guidance, which leads to a jumble of students finding themselves in various locations. As a result of the new 

approach's use of indoor localization, students can easily provide direction using their own smart devices. It will 

make it easier for them to get to their designated spots in the groups without making any mistakes. This 

technology will allow students to easily allocate time and space in a reasonable manner. 

In this scenario, King Saud University's Common First Year induction programme is depicted. The 

beneficiaries' difficulties navigating within the campus to various locations are depicted in fig. 1. The use of 

sensor nodes at various locations, such as Wi-Fi access points, will aid in determining where to interchange from 

one point to another. Beneficiaries will be able to easily transfer from one location to another using their smart 

phones or wearable devices as a result of this implementation. 

 

Fig:1 CFY‟s Floor Plan 

2.5.Meta-analysis:  

This is the use of existing research on the characteristics of different learning facilities and a combination of 

them to select a teaching strategy that will be effective for schools with many variables These techniques are 

constrained by a variety of factors, including the techniques used, accuracy, cost effectiveness, and system 

adoption in accordance with various protocols, as detailed in table 1. 

Table 1: Meta-Analysis of various existing localization techniques 
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System  
Signal 

Type  
Technique  Accuracy  Cost  

Scalabilit

y  
Pros  Cons 

Fingerprinting[5] 

Radio 

Signals + 

WiFi 

Ranging 

based + 

LTF + CFR 

Meter 

Level 
Low High 

No 

dedicated 

devices, 

existing 

infrastructur

e, low cost 

Special 

Purpose Array 

Antenna, low 

accuracy, need 

calibration 

Fingerprinting[6] 

Radio 

Signals + 

WiFi 

DeepFi, 

Greedy 

Learning 

Algorithm 

Meter 

Level 
Low High 

No 

dedicated 

devices, 

existing 

infrastructur

e, low cost 

low accuracy, 

need 

calibration 

Fingerprinting[7][8][

9] 

Radio 

Signals + 

WiFi 

Weighted 

Linear 

Regression, 

kNN, 

Bayesian 

Probabilistic 

Model 

Meter 

Level 
Low High 

No 

dedicated 

devices, 

existing 

infrastructur

e, low cost 

low accuracy, 

need 

calibration 

Fingerprinting[10] 

WiFi + 

Super 

Sensitive 

GPS 

Multi 

Sensor 

Fusion with 

IMU 

Framework, 

Kalman 

Filter 

Low Low Medium 

Low Cost, 

can be 

applied on 

big scale 

Additional 

Hardware 

Radio RSS + 

IMU[11] 

Radio 

Signals, 

Direction 

Cosine 

Matrix 

Filter,  

IMU 

Framework,  

Meter 

Level 
Low High 

No 

dedicated 

devices, 

existing 

infrastructur

e, low cost 

Magnetic 

Field 

Disturbances, 

low accuracy 

Radio RSS, 

Proximity[12][13] 

Particle 

Filter 

Algorithm, 

Power 

Map 

Algorithm 

PDR, Multi 

Sensor 

Fusion, 

SALA 

Moderatel

y High 
Low High 

Not so 

costly 

Additional 

Hardware, 

Impact of 

altitude angle 

Proximity[14] 

Radio 

Signals, 

Quaternion

-Based 

Extended 

Kalman 

Filter 

Proximity 

based, 

Pedestrian 

Tracking 

Using IoT 

Framework 

High Low High 

High 

Accuracy, 

low cost 

Need 

calibration, 

Signals 

sensitivity 

Bluetooth Low 

Energy[15][16][17] 

Radio 

Signals 

through 

BLE 

BLE, RSS 

Fingerprint, 

SVM + 

kNN 

Low Low High 

Low Cost, 

can be 

applied on 

big scale 

Need 

dedicated 

devices, low 

accuracy 

Bluetooth Low 

Energy[20] 

Radio 

Signals 

through 

BLE 

Triangulatio

n System, 

DTDoA 

Meter 

Level 
Low High 

Low Cost, 

can be 

applied on 

big scale 

Additional 

Hardware 

required, Need 

Calibration,  
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System  
Signal 

Type  
Technique  Accuracy  Cost  

Scalabilit

y  
Pros  Cons 

RFID[21][22] 

Radio 

Signals + 

Active 

RFID 

RFID + 

Particle 

Filters 

Moderate 
Moderatel

y High 
Limited 

Moderate 

Accuracy 

Additional 

Hardware, 

Network setup 

and 

synchronizatio

n 

RFID[23][24] 

Radio 

Signals + 

NFC 

NFC + HF 

RFID, QR 

Code with 

Dijkstra 

Algorithm 

Moderatel

y High 

Moderatel

y High 
High 

Can be 

applied on 

big scale and 

moderately 

high 

accuracy 

Additional 

Hardware, 

need dense 

nodes 

distribution 

and fixing and 

synchronizatio

n 

Ultra-wideband[26] 

Impulse 

radio Ultra 

wide band 

signal 

Ranging 

based 
High High High 

High 

penetrating 

ability, high 

accuracy, 

high multi-

path 

resolution 

Need 

dedicated 

devices, 

receivers are 

power-hungry, 

large scale 

deployment of 

expensive 

devices 

Foglight[26] 

Coded 

visible 

light 

Fog 

Computing, 

Encoded 

visible light 

High High Limited 

A light 

sensor, a 

MCU, and a 

wireless link 

(optional) 

A DLP 

projector 

Ultrasound[27] 

Ultrasound 

+ Anti 

Bouncing 

Filter 

Advance 

Signal 

Procession 

+ UEI, UEC 

High 

(centimeter

) 

High Limited 
High 

accuracy 

Need 

dedicated 

devices, need 

dense anchor 

nodes, limited 

scalability 

Guoguo[28] 

Modulated 

acoustic 

signal (17- 

20kHz) 

Passive 

mode 

ranging 

High (6 - 

25cm) 
Low High 

No 

dedicated 

device for 

users, high 

accuracy and 

scalability, 

disturbance-

free 

Low-

complexity 

anchor nodes 

 

3.Conclusion: 

The paper presents a real-time scenario of an orientation day at CFY, as well as a detailed study and analysis of 

various indoor localization techniques. The study is summarized in the background with different categories of the 

various techniques that can be used. For the orientation day at CFY, it is focused on the best techniques that can 

be used in the educational sector. The meta-analysis included a detailed table that listed the various constraints 

along with their benefits and drawbacks. In the future, a few techniques, such as the Extended Technology 

Acceptance Model, will be used to adopt and evaluate acceptance approaches based on technology acceptance 

theoretical models. 
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