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Abstract: Deep learning is quickly becoming essential to human ecosystem. However, the opacity of certain deep learning 

models poses a legal barrier in its adoption for greater purposes. Explainable AI (XAI) is a recent paradigm intended to tackle 
this issue. It explains the prediction mechanism produced by black box AI models, making it extremely practical for safety, 
security or financially important decision making. In another aspect, most deep learning studies are based on point estimate 
prediction with no measure of uncertainty which is vital for decision making. Obviously, these works are not suitable for real 
world applications. This paper presents a Remaining Useful Life (RUL) estimation problem for turbofan engines equipped 

with prognostic explainability and uncertainty quantification. A single input, multi outputs probabilistic Long Short-Term 
Memory (LSTM) is employed to predict the RULs distribution of the turbofans and SHapley Additive exPlanations (SHAP) 
approach is applied to explain the prognostic made. The explainable probabilistic LSTM is thus able to express its confidence 
in predicting and explains the produced estimation. The performance of the proposed method is comparable to several other 
published works 

___________________________________________________________________________ 
 

1. Introduction  

Each year, industries around the world spend massively to operate in a safe and sustainable way. Specifically, 

organizations depend on the reliability of its industrial assets to fulfil their dedicated functions. These assets are 

mostly complex engineered system whose downtime would mean paralyzing the whole production process. In a 

more serious perspective, downtime could also present a threat to the safety of personnel, that unfortunately had 

resulted in fatalities in certain extreme cases. Carefully maintained assets ensure the continuation of safe 

operation, enabling profitability and in return, guaranteeing the livelihood of millions of workers. 

Reliability of engineered system is one of the topics where researchers and industrial players work hand in 

hand. Cooperation flourishes to facilitate the exchange of ideas between both milieus. Several efforts originating 

from academia is actively being pursued in the industry. Domains such as Multi State System Reliability (MSS) 

(Chao-Hui& Chun Ho, 2019; Zhao et al., 2019) and Human Reliability Analysis (HRA) (Zwirglmaier et al., 2016; 

Growth et al., 2019) are some of the dedicated research branches in engineered system reliability. In the recent 

decades, Prognostic and Health Management (PHM) has also emerged as a strong contributor in providing 

frameworks to ensure the well-being of industrial assets (Shin et al., 2018; Gan, 2020; Baur&Monno, 2020). 

PHM is mainly used as a decision support tool for safeguarding the health of engineered system. It facilitates 

maintenance cost reduction (Scanff et al., 2007), just-in-time maintenance (Sun et al., 2012), liberating load 

(Atamuradov et al.,2017; Ding Feng et al., 2017) and minimizing accident risks (Kwok et al., 2015; Pham et al., 

2012). In PHM, three essential activities consisting of prognostic, anomaly detection and diagnostic are carried 

out. Prognostic is the act of defining the Remaining Useful Life (RUL) or the remaining operational time of an 

industrial assets before failure (Elattar et al., 2018; Akpudo&Hur, 2020). Anomaly detection refers to the 

identification of unusual patterns going against the normal behaviour of operational parameter measurement 

(Gurkan&Burak, 2020; Liu &Gryllias, 2020). Diagnostic on the other hand, is the action of discovering the root 

cause of failure, and if possible, matching the concerning features with known failure signatures (Zhou et al.,2020; 

Benedetti et al., 2018). 

Black-Box AI 

While there are various approaches in PHM, methods based on artificial intelligence have gained considerable 

attention in the past decades. In this domain, machine learning, specifically deep learning, have reigned supreme 

thanks to the powerful advantages inherent it possesses. Deep learning is powerful in modelling nonlinear 

relationships. Additionally, it is simple to apply and does not require a deep understanding in the underlying 
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physical interactions of the system. Although deep learning is popular in the research domain, its adoption in the 

real world is currently under setback, due to its black box nature (Kim et al., 2020; Grezmak et al., 2018; Kraus et 

al., 2019). Black box or opaqueness of deep learning prevents users to understand why certain prediction is made. 

Naturally, this poses a challenge especially in areas where safety, security and investment amplify the need for 

comprehension. Moreover, this obscurity could result in ethical issues where black box applications risk offending 

race or gender of the users. To date, the only legal directive affecting the use of AI is the European General Data 

Protection Regulation (GDPR) whose interpretation regarding the obligation of logical explanation in automated 

processing, is currently being debated between AI experts and practitioners (Hacker et al., 2020; Chazette& 

Schneider, 2020; Bussmann et al., 2020). In term of ethical guideline, the European Commission’s High-Level 

Expert Group on AI presented the key requirements in Ethics Guidelines for Trustworthy Artificial Intelligence in 

2019, whose key requirements correspond directly or indirectly on the use of XAI (Bussmann et al., 2020). 

Uncertainty in Deep Learning 

While XAI helps to understand the decision made by deep learning models, it is imperative for the user to 

evaluate the confidence of the model when predicting, especially in real life applications. Uncertainty estimation 

is an indicator of deep learning’s prediction quality. Most deep learning models only produce point estimates 

prediction where notion of uncertainty is completely absent. 

Aleatoric uncertainty is the uncertainty linked to the quality of input data (Kendall &Yarin, 2017; Prado et al., 

2019; Li et al., 2020). This uncertainty is characteristic of the real world applications where noise, data acquisition 

error or stochasticity can be present in the input data. 

This paper presents a work that combine the strength of AI explainability and deep learning uncertainty 

quantification where a turbofan engines life prognostic problem is investigated. A single input, multi outputs 

probabilistic LSTM with SHAP explainability are employed to predict and explain the RUL distributions of the 

engines. This paper is believed to be the first of its kind that harness these abilities in failure prognostic research. 

This work is vital as in the real-world applications, uncertainty and explainability are indicators to assess 

prediction for accurate decision making. 

2. Related Literature 

AI explainability has been used in various PHM research.  

Class Activation Mapping (CAM)-based explanation approaches have been employed together with CNN in 

many works to evaluate the focus of CNN. In (Kim et al., 2020), fault classification of linear motion guide based 

on Convolutional Neural Network (CNN) and Grad-CAM (FG-CAM) explainability in the frequency domain is 

done to analyze which frequencies have significant impact on the fault conditions. The same technique is applied 

in (Chen & Lee, 2020) for diagnosis of bearing’s fault. In (Zhao et al., 2020), a DecouplEd Feature-Temporal 

CNN (DEFT- CNN) with Grad CAM is proposed to provide separate explanation on features and temporal 

information. An automatic vision diagnostic technique for base-excited cantilever beam and water pump system 

using a combination of CNN and Class Activation Maps (CAM) is presented in (Sun et al., 2020). While the CNN 

detect faults, the CAM localizes the faults. Additionally, CAM provides the diagnostic explainability, making the 

method a white box model. 

Layer Wise Propagation (LRP) is an explainability technique that traces back the contribution of the input to 

the prediction by propagating backward the relevance measures from the output layer to the input layer through 

the nodes of the model. In (Felsberger et al., 2020) LRP is applied to explain failure prognostic of Proton 

Synchrotron Booster (PSB) of CERN Particle Accelerator. The task is to predict and explain ten most frequent 

priority 3 fault types of PSB accelerator power converters. In (Grezmak et al., 2019), CNN is employed with LRP 

to explain the diagnostic of gearbox failure. Again, in (Grezmak et al., 2020), CNN and LRP are utilize for fault 

classification and explanation of induction motor. In this work, the vibration time series data used as input is 

transformed into time-frequency image using Continuous Wavelet Transform (CWT) with Morlet wavelet. 

Specifically, the wavelet coefficients of the vibration data calculated from the CWT are converted to time-

frequency plots that are used by the CNN. 

Logic Analysis of Data (LAD) is an explainable diagnostic method base on variables analysis. Fault diagnosis 

in industrial chemical plant and black liquor recovery boiler based on LAD is proposed in (Ragab et al., 2017). In 

(Ragab et al., 2019), LAD is used to enrich Fault Tree Analysis (FTA) of industrial clean steam and hot water 

production. The same technique is used in the same context in (Waghen&Ouali, 2019) where diagnosis of actuator 

system is explained. 

Local Interpretable Model-Agnostic Explanations (LIME) and SHAP are both popularly employed model 

agnostic explanation approaches that can be used to explain any type of machine learning model. In 
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(Onchis&Gillich, 2021), a feed forward neural network together with SHAP and LIME are employed to predict 

and explain the damage of prismatic cantilever steel beam. In (Karn et al., 2021), SHAP and LIME are employed 

to explain crypto mining malware detection in cloud network. 

3. Method 

LSTM Architecture with Probabilistic Layer 

The model employed for the RUL prediction is a single input, multi-output LSTM with probabilistic layer. 

This probabilistic LSTM maps the sensors data to Health Index (HI) target of the turbofan. The model has 2 

output layers. In the first output, the model predicts a sequence of HI distributions corresponding to the complete 

health state of the studied turbofan engine. This layer incorporates the probabilistic element where it transforms 

the input to gaussian distribution with variable standard deviation as suggested in (Kendall &Yarin, 2017). The 

model thus “force” the prediction into a suitable form for uncertainty management. In the second output, the 

model extracts only the HI point estimate which is the mean of the first HI distribution from the sequence obtained 

before. This output corresponds to the initial HI or initial RUL of the concerned turbofan where the predictive 

performance of the model is based upon (i.e., RMSE calculation). These outputs will thus form a single vector and 

will be included in SHAP analysis. This is necessary as SHAP library only accepts single vector output. The 

model is trained to minimize loss only based on the first output as the model favors HI distribution sequence 

rather than point estimate. The hyperparameters used in this model are optimized via Bayesian hyperparameter 

optimization.  

SHapley Additive exPlanations (SHAP) 

SHAP is a model agnostic, game theoretic approach to explain the output of any machine learning model. 

Model-agnostic explanation works by analyzing trained black box AI model input and output in post-hoc nature, 

or after the model is trained (Ribeiro et al., 2016). 

SHAP evaluates the contribution of each feature to the prediction by using Shapley values. It can cater both 

global and local explainability. Shapley values determine the importance of a single feature by considering the 

outcome of each possible combination of available features. In other word, the Shapley value is the average 

expected marginal contribution of a feature across all possible combination of features. 

 

Here, 𝑔  is the explanation model. 𝑧′ ∈ {0,1}𝑀 are the simplified features that describe the presence of 

interested feature in the feature’s combination with 𝑧′  =  0  means the interested feature are absent in the 

combination and 𝑧′  =  1  signifying the feature are present. 𝑀is the maximum coalition size and 𝜙𝑗 ∈ 𝑅 is the 

Shapley values for a feature 𝑗. The formula for Shapley value is: 

𝑆 is a subset of the features used in the model, 𝑥 is the vector of feature values of the instance to be explained 

and 𝑝 is the number of features 𝑣𝑎𝑙𝑥 𝑆  is the prediction for feature values in set 𝑆 that are marginalized over 

features that are not included in set 𝑆. 𝐸𝑋  𝑓  𝑋  is the average predicted value (Lundberg & Lee, 2017). 

𝜙𝑗  𝑣𝑎𝑙 =  
 𝑆 !  𝑝 −  𝑆 − 1 !

𝑝!
𝑆⊆ 𝑥1 ,...,𝑥𝑝  \ 𝑥𝑗  

 (𝑣𝑎𝑙(𝑆 ∪  𝑥𝑗  )  −  𝑣𝑎𝑙(𝑆)) (2) 

 
𝑣𝑎𝑙𝑥(𝑆)  =   𝑓 (𝑥1 , . . . , 𝑥𝑝)𝑑ℙ𝑥∉𝑆  −  𝐸𝑋(𝑓 (𝑋)) (3) 
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Performance Evaluation 

RMSE & Scoring Function The performance of the model is assessed by calculating the Root Mean Squared 

Error (RMSE) and Scoring Function, 𝑠, of the obtained RUL prediction as respectively shown in Eq. (4) and Eq 

(5), (6) and (7) (Li et al, 2018; Wu et al., 2019).  

 

 

The scoring function gives higher score for the same error in early prediction than late prediction. It thus 

penalizes late prediction than the early ones. With 𝑅𝑈𝐿𝑖
𝑡𝑟𝑢𝑡  as the ground truth RUL for turbofan 𝑖 , 

𝑅𝑈𝐿𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

the predicted RUL for turbofan 𝑖, and 𝑀 as the total number of turbofans. 

SHAP Explainability& Uncertainty Quantification Uncertainty quantification will be evaluated via the 

rolling standard deviation plot of the HI distribution sequence. An increasing trend indicates a growing 

uncertainty of the prediction while the contrary signifies that the model is more and more confident with the 

estimation. As for explainability, SHAP library will be used to analyze the predicted HI distributions sequence of 

each turbofan. 

3. Result and Discussion 

Case Study: CMAPSS Turbofan Dataset 

The CMAPPS (Commercial Modular Aero Propulsion System Simulation) Turbofan run-to-failure datasets 

consists of 4 complete sets of training, testing and ground truth RUL for numerous turbofan engines, published by 

Nasa Prognostic Centre (PCoE) of Ames Research Centre, denoted as FD001, FD002, FD003 and FD004 

(Ramasso&Saxena, 2014). This data was produced by adjusting the operational conditions and injecting faults of 

varying degradation degree to the simulated turbofan system using CMAPSS software (Saxena et al., 2008). 

The FD002 data is chosen in this study. This data consists of recorded turbofans degradations whose health 

condition deteriorate after certain cycle as shown in Table. 1. Each turbofan is associated with time series 

sequence comprising of Time (Cycle), 3 Operating Conditions (OC) and 21 sensors measurements corresponding 

to temperature, pressure, various ratios, and bleed enthalpy of the system. The OC refers to different operating 

regimes combination of altitude (O-42K ft.), throttle resolver angle (20-100), and Mach number (0-0.84). High 

levels of noise are incorporated, and the faults encountered are hidden by the effect of various operational 

conditions (Saxena et al., 2008). 

HI Target Calculation 

To obtain the RUL target for the model’s training, piece-wise linear degradation model is assumed (Li et al, 

2018; Wu et al., 2019). Each fleet health is thus considered stable in the beginning until the failure start point 

which initiates a linear degradation until failure. 

Table 1: CMAPSS Dataset FD002 
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Each time series sequence corresponds to the total operational duration of a turbofan and the last cycle 

indicates the final instance before failure. Thus initially, the RUL of a turbofan is assumed to be equal to the value 

of the last cycle and degrades linearly until 0 as shown in Figure 1(a). In this example, the turbofan 1 training data 

has been recorded in a total cycle of 192. 

 

 

Figure 1(a): Initial RUL Assessment and Figure 1(b): Final RUL Assessment 

 

Table 1: CMAPSS Dataset FD002 

The failure start point for each sensor is calculated using Cumulative Sum (CUSUM) anomaly detection 

technique, which returns the first index of the upper or lower cumulative sums of each sensor’s measurement that 

have drifted beyond 5 standard deviations from the target mean, indicating the initiating point of degradation 

(Matlab, MATHWORK). This index is thus equal to the cycle in which the degradation appears. The mean of all 

these indexes is taken as the failure start point. Combining the linear degradation obtained earlier and the failure 

start point, the transformed RUL sequence is presented in Figure 1(b). 

The HI measurements are calculated from the RULs as indicated below with 𝑅𝑈𝐿 𝑡  as RUL at time 𝑡 , 

𝑅𝑈𝐿𝑚𝑎𝑥  as the healthy state RUL and 𝑅𝑈𝐿𝑚𝑖𝑛 is equals to 0, or failure state. 
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: Table 2RMSE and Score Comparison 

RMSE & Scoring Results 

As shown in Table 2, the proposed method’s performance is comparable to known publish works in both 

RMSE and score results. The best results in both metrics are highlighted. 

 

Sequence Prediction and Uncertainty 

To analyze the prediction and associated uncertainty, results for turbofan 1 and 2 are presented as examples.  

 As seen in Figure 2, the prediction for turbofan 1 is not accurate compared to the ground truth HI 

sequence. This is translated by the growing trend in the standard deviation plot, presented by the line of best fit in 

Figure 3, indicating that the model is increasingly not confident with its prediction. Additionally, successive 

strong oscillations in standard deviation can be seen in Zoom 2 area in Figure 3, corresponding to Zoom 1 area in 

Figure 2. This area, as shown in Figure 2, relates to linear deterioration prediction. These extreme movements 

show that the model is very uncertain of its deterioration prediction.     

 As for turbofan 2, the HI prediction is quite accurate compared to the ground truth HI as illustrated in 

Figure 4. The model is confident in its prediction and this is expressed in the standard deviation plot in Figure 5. 

Here, the line of best fit trend is showing a decrease.  
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Prognostic Explainability 

Local explainability is presented for turbofan 2 as the model is more confident in this case compared to 

turbofan 1 as shown before. The SHAP force plots are employed to visualize the local explainability.  

The HI prediction, as shown in Figure 6 started to deteriorate at cycle 57, corresponding to the predicted 

failure start point, or anomaly detection. It is thus interesting to see the explanation before and after this point until 

the prediction stabilizes indicating failure at cycle 80 (HI = 0).    
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From the force plot shown above, a pattern on features influencing the prediction can be noted before and after 

the failure start point. Before the model predicts the start of degradation, various features can be seen influencing 

the healthy state of the turbofan as presented in Figure 6(a) and 6(b). However, after cycle 57, similar patterns of 

feature are repeatedly shown. These features are S9, S2, S8, OC1, OC2, S11, S13, S14, OC3 and S4 as illustrated 

in Figure 6(d), 6(e) and 6(f). The apparition of these features gradually starts from cycle 57 as seen in Figure 6(c). 

The red color features drag the prediction positively while the blue color features influence the prediction 

negatively. Omitting the operating condition features (OCs), the description of the features influencing the failure 

state of the turbofan is presented in Table 3.  

Sensor Influenc

e 

 Description 

S8 Negative  Physical fan speed 

S2 Negative  Total temperature at LPC outlet 

S9 Negative  Physical core speed 

S11 Positive  Static pressure at HPC outlet 

S13 Positive  Corrected fan speed 

S14 Positive  Corrected core speed 

S4 Positive  Total temperature at LPT outlet 

Table 2: Features Influencing Turbofan 2 Failure 

4. Conclusion 

In this paper, a probabilistic, single input, multi-outputs LSTM with explainability that can express its 

prediction uncertainty is presented. The ability of this model is demonstrated in an RUL prognostic problem 

involving turbofan engines. SHAP model agnostic explainability approach is employed to explain the regression 

task while probabilistic layer produces HI distribution prediction characterizing the aleatoric uncertainty. The 

model is thus able to express its prediction confidence and explain its sequential outputs. These indicators are very 

valuable as user depends on them for correct decision making in real world AI applications. The performance of 

the model is also comparable to other known methods in published works. 
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