Relations of Pre Generalized Regular Weakly Locally Closed Sets in Topological Spaces

Vijayakumari T^a. Chilakwad^b, R. S. Wali^c

^a Department of Mathematics, Government First Grade, College-Dharwad-580004, Affiliated to Karnataka University, Dharwad, Karnataka, India

^b Department of Mathematics, Bhandari and Rathi College, Guledagud-587 203, Affiliated to Rani Channamma University, Belagavi, Karnataka, India

^c Department of Mathematics, Siddaganga Institute of Technology, Tumkur, Affiliated to VTU, Belagavi, Karnataka, India ^a vijmn60@gmail.com

Article History: Received: 10 November 2020; Revised 12 January 2021 Accepted: 27 January 2021; Published online: 5 April 2021

Abstract: In this paper pgrw-locally closed set, pgrw-locally closed*-set and pgrw-locally closed**-set are introduced. A subset A of a topological space (X,t) is called pgrw-locally closed (pgrw-lc) if A=GQF where G is a pgrw-open set and F is a pgrw-closed set in (X,t). A subset A of a topological space (X,t) is a pgrw-lc* set if there exist a pgrw-open set G and a closed set F in X such that A=GQF. A subset A of a topological space (X,t) is a pgrw-lc*-set if there exists an open set G and a pgrw-closed set F such that A=GQF.

The results regarding pgrw-locally closed sets, pgrw-locally closed* sets, pgrw-locally closed** sets, pgrw-lc-continuous maps and pgrw-lc-irresolute maps and some of the properties of these sets and their relation with other lc-sets are established. **Keywords:** pgrw-lc, pgrw-lc*, pgrw-lc**-set, pgrw-sub-maximal space, pgrw-lc-continuous maps

1. Introduction

According to Bourbakia subset A of a topological space X is called locally closed in X if it is the intersection of an open set and a closed set in X. Gangster and Reilly used locally closed sets to define LC-Continuity and LC-irresoluteness. Balachandran, Sundaram and Maki introduced the concept of generalized locally closed sets in topological spaces and investigated some of their properties.

2. Preliminaries:

2.1 Definition: A subset A of a topological space

 (X, τ) is called

i. a semi-open set [4] if $A \subseteq cl(int(A))$ and semi-closed set if $int(cl(A)) \subseteq A$.

ii. a pre-open set [5] if $A \subseteq int(cl(A))$ and pre-closed set if $cl(int(A)) \subseteq A$.

iii. an α -open set [6] if A \subseteq int(cl(int(A))) and α -closed set if cl(int(cl(A))) \subseteq A.

iv. a semi-pre-open set (β -open) [7] if A \subseteq cl(int(cl(A)))) and a semi-pre closed set (β -closed) if int(cl(int(A))) \subseteq A.

v. a regular open set [8] if A = int(clA) and a regular closed set if A = cl(int(A)).

vi. δ -closed [9] if A=cl $\delta(A)$, where cl $\delta(A)$ ={x $\in X$: int(cl(U)) $\cap A \neq \theta$, U $\in T$ and x $\in U$ }

vii. Regular semi open [10] set if there is a regular open set U such that $U \subseteq A \subseteq cl(U)$.

viii. a regular generalized closed set(briefly rg-closed) [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

ix. a generalized semi pre regular closed (gspr-closed) set [12] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in S.

x. a generalized semi-pre closed set(briefly gsp-closed) [13] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

xi. a pre generalized pre regular closed set [14] (pgpr-closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is rg-open in X.

xii. a generalized pre closed (briefly gp-closed) set [3] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

xiii. a regular w-closed set (rw-closed) [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open in S.

xiv. a #regular generalized closed (briefly #rg-closed) set [16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is rw-open.

2.2 Definition: A subset A of a topological space (X, τ) is called a pre generalized regular weakly closed set if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is a rw-open set [17].

The complements of the abovementioned closed sets are their open sets respectively.

2.3 Definition: Let (X, τ) be a topological space and A $\subseteq X$. The intersection of all closed (resp pre-closed, α -closed and semi-pre-closed) subsets of space X containing A is called the closure (resp pre-closure, α -closure and Semi-preclosure) of A and denoted by cl(A) (resppcl(A), α cl(A), spcl(A)).

3. pgrw-locally-closed sets

3.1 Definition: A subset A of a topological space (X,τ) is pgrw-locally closed (pgrw-lc) if $A=G\cap F$ where G is a pgrw-open set and F is a pgrw-closed set in (X,τ) .

The set of all pgrw-locally closed subsets of (X,τ) is given by PGRWLC (X,τ) .

3.2 Example: $X = \{1,2,3,4\}$ and $\tau = \{X, \phi, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}\}$. rw-open sets are X, $\phi, \{1\}, \{2\}, \{3\}, \{4\}, \{3,4\}, \{1,2\}, \{1,2,3\}$. Pre-closed sets are X, $\phi, \{3\}, \{4\}, \{3,4\}, \{2,3,4\}, \{1,3,4\}$. pgrw-closed sets are X, $\phi, \{3\}, \{4\}, \{2,3\}, \{3,4\}, \{1,4\}, \{2,4\}, \{2,3,4\}, \{1,3,4\}, \{1,2,4\}$. The set $\{2,3\} = \{1,2,3\} \cap \{2,3,4\}$ is a pgrw-lc set where $\{1,2,3\}$ is pgrw-open and $\{2,3,4\}$ pgrw-closed.

3.3 Remark: In the space of 3.2 the set{3}={1,2,3} \cap {3,4} is a pgrw-lc set where {1,2,3} is pgrw open and {3,4}, pgrw-closed and also {3}={1,3} \cap {2,3,4} where {1,3} is pgrw open and {2,3,4} is pgrw-closed. Therefore G and F are not unique.

3.4 Theorem: subset A of X is pgrw-lc if and only if its complement A^c is the union of a pgrw-open set and a pgrw-closed set.

Proof: A is a pgrw-lc set in (X,τ) .

 \Rightarrow A=G \cap F where G is a pgrw-open set and F is a pgrw-closed set.

 \Rightarrow A^c=(G \cap F)^c = G^cUF^c where G^c is a pgrw-closed set and F^c is a pgrw-open set.

Conversely, A is a subset f (X,τ) such that $A^c = G \cup F$ where G is a pgrw-open set and F is a pgrw-closed set.

- \Rightarrow (A^c)^c =(GUF)^c
- \Rightarrow A= G^c \cap F^c = F^c \cap G^c where F^c is a pgrw-open set and G^c is a pgrw-closed set.

 \Rightarrow A is a pgrw-lc set.

3.5 Theorem:

- i) Every pgrw-open set in X is pgrw-lc.
- ii) Every pgrw-closed set in X is pgrw-lc

Proof: i) A is a pgrw-open set in X.

- \Rightarrow A=SA \cap X where A is pgrw-open and X is pgrw-closed.
- \Rightarrow A is pgrw-lc.
- ii) A is a pgrw-closed subset of X.
- \Rightarrow A=X \cap A where X is pgrw-open and A is pgrw-closed.
- \Rightarrow A is pgrw-lc.

The converse statements are not true.

3.6 Example: In **3.2,** the set $\{2,4\}=X\cap\{2,4\}$ is pgrw-lc, but not pgrw-open. The set $\{1,3\}=\{1,3\}\cap\{1,3,4\}$ is pgrw-lc, but not pgrw-closed.

3.7 Corollary: In X

Everyopen set is pgrw-lc.

i) every closed set is pgrw-lc. **Proof:** i) A is open in X.

- \Rightarrow Aispgrw-open in X.
- \Rightarrow A is pgrw-lc in X.
- ii) Ais closed in X.
- \Rightarrow A is pgrw-closed in X.
- \Rightarrow A is pgrw-lc in X.

The converse statements are not true.

3.8 Example: In 3.2, {2,4} is pgrw-lc, but not open and {1,3} is pgrw-lc, but not closed.

3.9 Theorem: Every locally closed set in X is pgrw-lc.

Proof: A is a locally closed subset of X.

 \Rightarrow A = G \cap H, G is an open set and H is a closed set.

- \Rightarrow A = G \cap H,G is pgrw-open and H is pgrw-closed.
- \Rightarrow A is pgrw-lc in X.

The converse statement is not true.

3.10 Example: In 3.2, the set {2, 4} is pgrw-lc, but not alc-set.

3.11 Theorem: In X

- i) every locally- δ -closed set is pgrw-lc.
- ii) every regular-locally closed set is pgrw-lc.
- iii) every α -locally closed set is pgrw-lc.
- iv) every #rg-locally closed set is pgrw-lc.
- v) Everypgpr-locally-closed set is pgrw-lc.

Proof: i) A is a loc-set in (X,τ) .

- \Rightarrow A=G \cap F, G is δ -open and F is δ -closed.
- \Rightarrow A=G \cap F, G is pgrw-open and F is pgrw-closed in X.
- \Rightarrow A is a pgrw-lc set in (X, τ).

The other statements may be proved similarly.

The converse statements are not true.

3.12 Example: In 3.2,δ-closed sets in X are X, φ,{3,4},{2,3,4},

 $\{1,3,4\}$. The set $\{2,4\}$ is pgrw-lc, but not l δ c.

3.13 Example: In 3.2, regular-closed sets in X are X, ϕ , {2,3,4}, {1,3,4}. The set {2,4} is pgrw-lc, but not regular-lc.

3.14 Example: In X = {1,2,3,4}, τ ={X, ϕ ,{2,3},{1,2,3}, {2,3,4}}. α -closed sets in X are X, ϕ ,{1,4},{1},{4}.

The set $\{1,3\}=X \cap \{1,3\}$ is pgrw-lc, but not α -lc.

3.15 Example: In 3.2 #rg-closed sets in X are X, ϕ , {4},

 $\{3,4\},\{1,4\},\{2,4\},\{1,3\},\{2,3,4\},\{1,3,4\}$. The set $\{1,2,4\}=X \cap \{1,2,4\}$ is pgrw-lc, but not #rg-lc.

3.16 Example: In 3.2 pgpr-closed sets in X are X, ϕ , {3}, {4}, {3,4}, {1,3,4}, {2,3,4}. The set {1,2}={1,2} \cap X is pgrw-lc, but not pgpr-lc.

3.17 Theorem: In X every pgrw-locally closed set is

i) gp-lc ii) gpr-lc iii) gsp-lciv) gspr-lc **Proof:** i) A is a pgrw-lc set in X.

- \Rightarrow A=G \cap H, G is pgrw-open and H is pgrw-closed.
- \Rightarrow A=G \cap H, G is gp-open and H is gp-closed.

 \Rightarrow A is a gp-lc set in (X, τ).

The other statements may be proved similarly.

3.18 Remark: The above results are shown in the following diagram

4. pgrw-locally closed*-sets

4.1 Definition: A subset Aof a topological space (X,τ) is a pgrw-lc^{*} set if there exist a pgrw-open set G and a closed set F in X such that $A = G \cap F$.

The set of all pgrw-lc* subsets of (X,τ) is denoted by PGRWLC* (X,τ) .

4.2 Example: Refer 3.2, $\{2,3\} = \{1,2,3\} \cap \{b, c, d\}$ is pgrw-locally closed* set, because $\{1,2,3\}$ is pgrw-open and $\{2,3,4\}$ is closed.

4.3 Theorem: Every lc-set of X is a pgrw-lc*-set.

Proof: A is alc-set in X.

- \Rightarrow A=G \cap C, G is open and C is closed in X.
- \Rightarrow A=G \cap C, G is pgrw-open and C is closed in X.
- \Rightarrow A is a pgrw-lc*-set in X.

The converse statement is not true.

4.4 Example: $X = \{1,2,3\}, \tau = \{X, \phi, \{1\}, \{2,3\}\}.$

pgrw-closed sets are all subsets of X. The set $\{1,2\}$ is pgrw-open and $\{2,3\}$ is closed. Since $\{2\}=\{1,2\}\cap\{2,3\}$ is a pgrw-lc*-set, but not a lc-set.

4.5 Theorem: Every pgrw-lc*-set of X is a pgrw-lc set.

Proof: A is a pgrw-lc*-set in X.

 \Rightarrow A=G \cap C where G is pgrw-open and C is closed in X.

 \Rightarrow A=G \cap C where G is pgrw-open & C is pgrw-closed in X.

 \Rightarrow A is a pgrw-lc-set in X.

4.6 Theorem: A subset A of X is pgrw-lc* iff $A = G \cap cl(A)$ for some pgrw-open set G.

Proof:A is a pgrwlc*-set in X.

- \Rightarrow A=G \cap F for a pgrw-open set G and a closed set F in X.
- \Rightarrow A G and A F, a closed set.
- \Rightarrow A \subseteq G \cap cl(A) and cl(A) \subseteq F
- $\Rightarrow A \subseteq G \cap cl(A) \text{ and } G \cap cl(A) \subseteq G \cap F = A.$
- $\Rightarrow A=G\cap cl(A).$

Conversely, $A = G \cap cl(A)$ where G is a pgrw-open set.

- \Rightarrow A is the intersection of a pgrw-open set and a closed set.
- \Rightarrow A is pgrw-lc*.

4.7 Theorem: If for a subset V of X, $V \cup (cl(V))^{C}$ is pgrw-open, then V is pgrw-lc*.

Proof: \forall subset V of X.

 $V = V \cup \phi$

$$= V \cup ((cl(V))^{c} \cap cl(V))$$

 $= (V \cup (cl(V))^{c}) \cap (V \cup cl(V))$

= $(V \cup (cl(V))^{c} \cap cl(V), because V \subseteq cl(V).$

So if $V \cup (cl(V))^c$ is pgrw-open, then V is the intersection of a pgrw-open set and a closed set. Therefore V is pgrw-lc^{*}.

4.8 Corollary: If for a subset Vof X the set cl(V)–V is pgrw-closed, then A is pgrw-lc*.

Proof: For any subset V of X

 $cl(V)-V=cl(V)\cap V^{c}=(((cl(V))^{c}\cup V)^{c}.$

Therefore cl(V)–V is pgrw-closed.

 \Rightarrow V \cup (cl(V))^c is pgrw-open.

 \Rightarrow V is pgrw-lc*.

5. pgrw-locally closed**-sets

5.1 Definition: A subset A of (X,τ) is a pgrw-lc**-set if there exists an open set G and a pgrw-closed set F such that $A=G\cap F$.

The set of all pgrw-lc**-sets of (X,τ) is denoted by PGRWLC** (X,τ) .

5.2 Example: Refer 3.2, $\{1,2\} \cap \{2,3,4\} = \{2\}$ is pgrw-locally closed**-set, because $\{1,2\}$ is open and $\{2,3,4\}$ is pgrw-closed.

5.3 Theorem: Every lc-set of X is a pgrw-lc**-set.

Proof: A is alc-set X.

- \Rightarrow A=G \cap F where G is open and F is closed in X.
- \Rightarrow A=G \cap F where G is open and F is pgrw-closed in X.
- \Rightarrow A is a pgrw-lc**-set in X.

The converse statement is not true.

5.4 Example: $X = \{1,2,3\}, \tau = \{X, \phi, \{1\}, \{2,3\}\}.$

pgrw-closed sets in X are all subsets of X. The set $\{3\}=\{2,3\}\cap\{3\}$ where $\{2,3\}$ is open and $\{3\}$ is pgrw-closed. So $\{3\}$ is a pgrw-lc**-set. But $\{3\}$ is not alc-set.

5.5 Theorem: Every pgrw-lc**-set in X is pgrw-lc.

Proof: A is a pgrw-lc**-set in X.

 \Rightarrow A=G \cap F where G is open and F is pgrw-closed.

 \Rightarrow A=G \cap F where G is pgrw-open and F is pgrw-closed.

 \Rightarrow A is a pgrw-lc-set.

The converse statement is not true.

5.6 Example: $X = \{1, 2, 3\}, \tau = \{X, \phi, \{1\}, \{1, 3\}\}$

pgrw-closed sets are X, ϕ , {2}, {3}, {2,3}. {1,2} is apgrw-lc set, but not pgrw-lc**.

5.7 Remark: The following diagram shows the relation between lc-set, pgrw-lc-set, pgrw-lc*-set and pgrw**-set.

5.8 Theorem:

i) If $A \in PGRWLC^*(X, \tau)$ and B is closed in (X, τ) , then $A \cap B \in PGRWLC^*(X, \tau)$.

ii) If $A \in PGRWLC^{**}(X, \tau)$ and B is open in (X, τ) , then $A \cap B \in PGRWLC^{**}(X, \tau)$.

Proof: i) $A \in PGRWLC^*(X, \tau)$ and B is closed in X.

 \Rightarrow A = P \cap F where P is a pgrw-open set and F is a closed set in X and B is closed.

 \Rightarrow A \cap B=(P \cap F) \cap B =P \cap (F \cap B), where P is pgrw-open and

 $(F \cap B)$ is closed.

 $\Rightarrow A \cap B \in PGRWLC^*(X, \tau).$

ii) $A \in PGRWLC^{**}(X, \tau)$ and B is open in X.

 \Rightarrow A=P \cap F where P is an open set and F is a pgrw-closed

set in X and B is open.

 \Rightarrow A \cap B=(P \cap F) \cap B=(P \cap B) \cap F, where (P \cap B) is open and F is pgrw-closed.

```
\RightarrowA\capB\inPGRWLC**(X,\tau).
```

5.9 Theorem: If every pgrw-closed set is closed in (X, τ) , then PGRWLC $(X, \tau) = LC(X, \tau)$.

Proof: obvious.

6. pgrw-lc-continuous maps

6.1 Definition: A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is called pgrw-lc-continuous(pgrw-lc^{*}-continuous, pgrw-lc^{**}-continuous resp.) if $\forall V \in \sigma f^{-1}(V) \in PGRWLC(X,\tau)$, $(f^{-1}(V) \in PGRWLC^*(X,\tau), f^{-1}(V) \in PGRWLC^*(X,\tau), f^{-1}(V) \in PGRWLC^*(X,\tau)$

6.2 Example: For (X,τ) refer 3.2, $Y=\{1,2,3,4\}$ $\sigma = \{Y, \phi, \{1,2\}, \{3,4\}\}$. Define a map f by f(1)=2, f(2)=3, f(3)=4, f(4)=1. Pre-images X, $\phi,\{1,4\},\{2,3\}$ of σ -open sets belong to PGRWLC (X,τ) (PGRWLC* (X,τ)), PGRWLC* (X,τ)). So f is a pgrw-lc continuous (pgrw-lc^{*}-continuous, pgrw-lc**-continuous) map.

6.3 Theorem:

- i) Every pgrw-lc*-continuous function is pgrw-lc- continuous.
- ii) Every pgrw-lc**-continuous function is pgrw-lc- continuous.

Proof: i) A map f is pgrw-lc*-continuous.

 $\Rightarrow \forall V \in \sigma, f^{-1}(V) \in PGRWLC^*(X, \tau).$

 $\Rightarrow \forall V \in \sigma, f^{-1}(V) \in PGRWLC (X, \tau).$

 \Rightarrow f is pgrw-lc-continuous.

Similarly (ii) may be proved.

6.4 Theorem:

i) If f is alc-continuous function, then f is pgrw-lc-continuous (pgrw-lc*-continuous, pgrw-lc**-continuous).

ii) If f is loc-continuous, then f is pgrw-lc-continuous.

- iii) If f is regular-lc-continuous, then f is pgrw-lc-continuous.
- iv) If f is #rg-lc-continuous, then f is pgrw-lc-continuous.
- v) If f is α -lc-continuous, then f is pgrw-lc-continuous.

Proof: i) A map f is lc-continuous.

 $\Rightarrow \forall V \in \sigma f^{-1}(V) \in LC \ (X, \tau).$

 $\Rightarrow \forall V \in \sigma f^{-1}(V) \in PGRWLC(X,\tau)$

 \Rightarrow f is pgrw-lc-continuous.

Similarly, the other statements may be proved.

The converse statements are not true.

6.5 Example: For (X,τ) refer 3.2, Y={1,2,3,4}, $\sigma = \{X, \phi, \{1\}, \{3,4\}, \{1,3,4\}$. Define a map f by f(1)=2, f(2)=4, f(3)=1, f(4)=3. Pre-images X, $\phi, \{3\}, \{2,4\}, \{2,3,4\}$ of σ -open sets are pgrw-lc in X. So f is pgrw-lc continuous.

δ-closed sets in X are X, ϕ ,{3,4},{2,3,4},{1,3,4}.

Regular-closed sets in X are $X, \phi, \{2,3,4\}, \{1,3,4\}$.

 α -closed sets in X are X, ϕ , {2}, {1,2}, {2,3,4}.

The set $\{3,4\}$ is σ -open. $f^{-1}(\{3,4\})=\{2,4\}$ is

- i) not a lc-set. Therefore f is not lc-continuous.
- ii) not a loc-set. Therefore f is not loc-continuous.
- iii) not a regular-lc-set. Therefore f is not regular-lc-continuous.
- iv) not a α -lc-set. Therefore, f is not α -lc-continuous.

6.6 Example: Consider the spaces in 6.5, #rg-closed sets in X are X, ϕ ,{4}, {3,4},{1,4},{2,4},{1,3},{2,3,4},{1,3,4}. Define a map f:(X, τ) \rightarrow (Y, σ) by f(1)=1, f(2)=3, f(3)=2, f(4)=4. Preimages of σ -open sets are X, ϕ , {1}, {2, 4}, {1, 2, 4} which are pgrw-lc-sets. So f is pgrw-lc-continuous. But {1,3,4} is σ -open and $f^{-1}({1,3,4}) = {1,2,4}$ is not #rg-lc set. Therefore f is not #rg-lc-continuous.

6.7 Theorem: If f is pgrw-lc-continuous, then it is

i) gp-lc-continuous. ii) gpr-lc-continuous.

iii) gsp-lc-continuous iv) gspr-lc-continuous

Proof: i) A map f is pgrw-lc-continuous.

 $\Rightarrow \forall V \in \sigma f^{-1}(V) \in PGRWLC (X, \tau) .$

 $\Rightarrow \forall V \in \sigma f^{-1}(V) \in GPLC (X, \tau).$

 \Rightarrow f is gp-lc-continuous.

Similarly the other statements may be proved

6.8 Theorem: If X is a door space, then every map i is

- i. pgrw-lc-continuous.
- ii. pgrw-lc*-continuous

iii. pgrw-lc**-continuous

Proof : i) X is a door space and f is a map.

 $\Rightarrow \forall A \in \sigma f^{-1}(A)$ is either open or closed in X.

 $\Rightarrow \forall A \in \sigma f^{-1}(A)$ is either pgrw-open or pgrw-closed in X.

 $\Rightarrow \forall A \in \sigma f^{-1}(A) = f^{-1}(A) \cap X \text{ where } f^{-1}(A) \text{ is pgrw-open and } X \text{ is pgrw-closed or } f^{-1}(A) = X \cap f^{-1}(A) \text{ where } X \text{ is pgrw-open and } f^{-1}(A) \text{ is pgrw-closed.}$

 $\Rightarrow \forall A \varepsilon \sigma f^{-1}(A)$ is a pgrw-lc set in X.

 \Rightarrow f is pgrw-lc-continuous.

Similarly the other statements may be proved.

6.9 Theorem: If X is pgrw-sub-maximal, then every function f is pgrw-lc^{*}-continuous.

Proof: X is a pgrw-sub-maximal space.

 \Rightarrow PGRWLC^{*}(X, τ) = P(X), the power set of X.

⇒ for any map $ff^{-1}(V) \in PGRWLC^{*}(X, \tau) \forall V \subseteq Y$.

 $\Rightarrow f^{-1}(V) \in PGRW-LC^{*}(X,\tau) \ \forall V \in \sigma.$

 \Rightarrow f is pgrw-lc^{*}-continuous.

6.10 Corollary: If X is pgrw-sub-maximal, thenevery function f is pgrw-lc-continuous.

Proof: obvious.

6.11 Theorem: If f is a pgrw-lc-continuous (resp. pgrw-lc*-continuous, pgrw-lc**-continuous) map and g is a continuous map, then $goi:(X,\tau)\rightarrow(Z,\eta)$ is pgrw-lc-continuous (resp. pgrw-lc*-continuous, pgrw-lc**-continuous).

Proof: g is continuous and f is pgrw-lc-continuous.

 $\Rightarrow \forall \eta$ -open set U $\in \mathbb{Z}$ g⁻¹(U) is open in (Y, σ) and

Y, σ) and $f^{-1}(g^{-1}(U))$ is pgrw-lc in X.

⇒ $\forall \eta$ -open set U $\in Z$ (gof)⁻¹(U))) is pgrw-lc in X.

 \Rightarrow gof:(X, τ) \rightarrow (Z, η) is pgrw-lc-continuous.

Similarly the other statements may be proved.

6.12 Definition: A function g is sub-pgrw-lc*-continuous if there is a basis β for (Y,σ) such that $f^{-1}(U) \in PGRWLC^*(X,\tau) \ \forall U \in \beta$.

6.13 Example: For (X,τ) and pgrw-open sets in X refer 3.2.

Y={1,2,3}, σ ={Y, ϕ , {1},{2},{1,2}}; β ={Y, ϕ ,{1},{2}} is a basis for (Y, σ). Define a function f by f(a)=3, f(2)=1, f(3)=2, f(4)=3. Pre-images of elements of β are X, ϕ , {2}, {3} and are pgrw-lc* sets. So f is sub-pgrw-lc*-continuous.

6.14 Theorem: If f is sub-lc-continuous, then it is sub-pgrw-lc*-continuous.

Proof: Follows from $LC(X,\tau) \subseteq PGRWLC(X,\tau)$.

The converse statement is not true.

6.15 Example: For (X,τ) refer 3.2, $Y = \{1,2,3\}$, $\sigma = \{Y, \phi, \{1\}, \{2\}, \{1,2\}\}$; $\beta = \{Y, \phi, \{1\}, \{2\}\}$ is a basis for σ . Define a function f:X \rightarrow Y by f(1)=3, f(2)=1, f(3)=2, f(4)=3. Pre-images of elements of β are X, $\phi, \{2\}, \{3\}$ and are pgrw-lc*-sets. So f is sub-pgrw-lc*-continuous. Then f is not sub-lc-continuous, because $\{2\}\in\beta$, f⁻¹($\{2\}$)= $\{3\}$ is not a lc-set in X.

6.16 Theorem: If f is pgrw-lc*-continuous, then it is sub-pgrw-lc*-continuous.

Proof: f is pgrw-lc*-continuous.

 $\Rightarrow V \in \sigma f^{-1}(V) \in PGRWLC^*(X, \tau).$

⇒ V∈ β , a basis, f⁻¹(V))∈ PGRWLC*(X, τ), because $\beta \subset \sigma$.

 \Rightarrow f is sub-pgrw-lc*-continuous.

6.17 Theorem: If f is sub-pgrw-lc*-continuous, then there is a sub-basis S for (Y,σ) such that $f^{-1}(V) \in PGRWLC^*(X, \tau), \forall V \in S$.

Proof: If f is sub-pgrw-lc*-continuous, then there is a basis β for (Y,σ) such that $i^{-1}(U) \in PGRWLC^*(X,\tau)$ for each $U \in \beta$. Since β is also a sub-basis for (Y,σ) the proof is obvious.

6.18 Remark: The composition of a sub-pgrw-lc*-continuous function and a continuous function need not be a sub-pgrw-lc*-continuous.

Proof: Take a sub-pgrw-lc*-continuous function f which is not pgrw-lc*-continuous. Hence there is a set $V \in \sigma$ such that $f^{-1}(V) \notin pgrw-lc^*(X,\tau)$. Let $\eta = \{Y, \phi, V\}$. Then η is a topology on Y and the identity function g is continuous. But the composition $gof:(X,\tau) \rightarrow (Y,\eta)$ is not sub-pgrw-lc*-continuous.

7. pgrw-lc-irresolute maps

7.1 Definition: A map $f:(X,\tau) \rightarrow (Y,\sigma)$ is called pgrw-lc irresolute if \forall pgrw-lc-set V in Y. $f^{-1}(V)$ is pgrw-lc in X.

Similarly pgrw-lc*-irresolute and pgrw-lc**-irresolute functions are defined.

7.2 Example: $X = \{1, 2, 3\} = Y, \tau = \{X, \phi, \{1\}, \{1, 3\}\}; \sigma = \{Y, \phi, \{1\}, \{2, 3\}\}.$

pgrw-closed sets in X are X, ϕ ,{2},{3},{2,3}. pgrw-closed sets in Y are all subsets of Y. Define a map f:X \rightarrow Y by f(1)=2, f(2)=3, f(3)=1. f is pgrw-lc-irresolute.

7.3 Theorem: A map f is

- i. pgrw-irresolute \Rightarrow f is pgrw-lc-irresolute.
- ii. $pgrw-lc-irresolute \Rightarrow f is pgrw-lc-continuous.$
- iii. pgrw-lc*-irresolute \Rightarrow f is pgrw-lc*-continuous.
- iv. $pgrw-lc^{**}-irresolute \Rightarrow f is pgrw-lc^{**}-continuous.$

Proof: \forall map f and for sets U, F \in Y,

 $f^{-1}(U \cap F) = f^{-1}(U) \cap f^{-1}(F).$

i) $V \in PGRW-LC(Y,\sigma)$ and f ispgrw-irresolute.

 \Rightarrow V = U \cap F for a pgrw-open set U and a pgrw-closed set F and

 $f^{-1}(V) = f^{-1}(U) \cap f^{-1}(F)$, $f^{-1}(U)$ is pgrw-open and $f^{-1}(F)$ is pgrw-closed in (X, τ) .

 $\Rightarrow \forall V \in PGRW\text{-}LC (Y, \sigma), f^{-1}(V) \in PGRW\text{-}LC(X, \tau).$

⇒f is pgrw-lc-irresolute.

ii) $V \in \sigma$ and f is pgrw-lc-irresolute.

 \Rightarrow V \in PGRW-LC(Y, σ) and f is pgrw-lc-irresolute.

⇒ $f^{-1}(V) \in PGRW-LC(X,\tau)$. Thus $\forall V \in \sigma$, $f^{-1}(V) \in PGRW-LC(X,\tau)$. Therefore f is pgrw-lc-continuous.

Similarly (iii) and (iv) follow.

7.4 Example: In 7.2, f is pgrw-lc-irresolute. As $\{16\}$ is pgrw-closed in Y and $f^{-1}(\{2\}) = \{1\}$ is not pgrw-closed in X. So f is not pgrw-irresolute.

7.5 Theorem: If X is a door space, then every map f is pgrw-lc-irresolute.

Proof: X is a door space and f is a map.

 \Rightarrow f⁻¹(A) is either open or closed \forall A in Y.

 \Rightarrow f⁻¹(A) is either pgrw-open or pgrw-closed \forall Ain Y.

⇒ $f^{-1}(A) = f^{-1}(A) \cap X$ where $f^{-1}(A)$ is pgrw-open and X is pgrw-closed or $f^{-1}(A) = X \cap f^{-1}(A)$ where X is pgrw-open and $f^{-1}(A)$ is pgrw-closed. Thus $\forall A$ in Y, $f^{-1}(A)$ is pgrw-lc in (X,τ) and so $\forall V \in PGRW-LC(Y,\sigma)$, $f^{-1}(A)$ is pgrw-lc in (X,τ) . ⇒f is pgrw-lc-irresolute.

7.6 Theorem: f and g are two functions.

f and g are pgrw-lc-irresolute

⇒gof is pgrw-lc-irresolute.

f is pgrw-lc-irresolute and g is pgrw-lc-continuous

 \Rightarrow gof: (X, τ) \rightarrow (Z, η) is pgrw-lc-continuous.

Proof: i) The functions g and f are pgrw-lc-irresolute.

 $\Rightarrow \forall V \in PGRW-LC(Z,\eta), g^{-1}(V) \in PGRW-LC(Y,\sigma)$ and

 $f^{-1}(g^{-1}(V)) \in PGRW-LC(X,\tau).$

 $\Rightarrow \forall V \in PGRW-LC(Z,\eta), (gof)^{-1}(V) \in PGRW-LC(X,\tau).$

 \Rightarrow gof:(X, τ) \rightarrow (Z, η) is pgrw-lc-irresolute.

ii) g is pgrw-lc-continuous and f is pgrw-lc-irresolute.

 $\Rightarrow \forall V \in \eta, g^{-1}(V) \in PGRW-LC(Y,\sigma)$ and

 $f^{-1}((g^{-1}(V) \in PGRW-LC(X,\tau)))$

 $\Rightarrow \forall V \in \eta, (gof)^{-1}(V) \in PGRW-LC(X,\tau)$

 \Rightarrow gof:(X, τ) \rightarrow (Z, η) is pgrw-lc-continuous.

7.7 Theorem: f and g are two functions.

i) f and g are pgrw-lc*-irresolute

⇒gof is pgrw-lc*-irresolute.
ii) f is pgrw-lc*-irresolute and g is pgrw-lc*-continuous
⇒gof is pgrw-lc*-continuous.

Proof: Similar to7.6.

7.8 Theorem: f and j are two functions.

i) f and g are pgrw-lc**-irresolute

⇒gof is pgrw-lc**-irresolute.
ii) f is pgrw-lc**-irresolute and g is pgrw-lc**-continuous
⇒gof is pgrw-lc**-continuous.
Proof: Similar to7.6

References

N. Bourkbaki, General Topology, Part I reading MA: Addison Wesley, 1996.

M. Ganster and I. L. Reilly, Locally closed sets and LC-continuous functions, Internal J. Math. and Math. Sci., 12, 417-424 1989.

Maki, I. H.,J. Umehara and T. Noiri. Every topological space in Pre-T1/2, Mem. Fac. Sci, Kochi Univ. Ser. A. Maths. (17). 33-42. 1996.

Levine, N. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, 36-41, 1963.

Mashhour, A. S., M. E., Abd El-Monsef and El-Deeb S. N., On pre-continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 1982; 53:47-53.

Njastad O., On some classes of nearly open sets, Pacific J. Math., 15(1965), 1961-1970.

Andrijevic, D., Semi-preopen sets, Mat. Vesnik., 38(1), 24-32, 1986.

Stone M., Application of the theory of Boolean rings to general topology, Trans. Amer. Math.Soc.1937; 41: 374-481.

J. K. Park, Locally δ closed sets and l δ -continuous functions, Indian J. Pure and Appl. Math.

Rajarubi P., Studies on regular semi-open sets intopological spaces, Ph.D. Thesis, Annamalai University.

Palaniappan N and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J. 33, 211-219, 1993.

GovindappaNavalgi, A. S. Chandrashekharappa and S.V. Gurushantanavar, gspr-open functions in toplogical spaces. Int.J. of Mathematical Sciences & Applications, 2(1), 202, 231-237.

Sarsak M. Sand N. Rajesh, Generalized semi pre closed sets, Int. Math Forum 5(12), 573-578, 2010.

Anitha, M and P. Thangavelu, Locally And Weakly pgpr-Closed Sets, International Journal OfPure And Applied Mathematics, 87(6), 2013, 757-762.

- Wali R.S., Thesis: Some topics in general and fuzzy topological spaces, Karnataka University Dharwad.
- Syed Ali Fathima and Mariasingam, On #rg-closed sets in topological spaces, International journal of mathematical archive- 2(11), 2497 2502, 2011.

WaliR.S.andVijayakumari T. Chilakwad, On Pre Generalized Regular Weakly [pgrw]-Closed sets in a Topological Space, International Journal of Mathematical Archive, 76-85, 6, 2229 – 5046, 2015..