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Abstract: Social media applications like Twitter, Instagram, Facebook have helped people to connect to each 

other. This has been eased due to high-speed internet. However, this has invited various spam messages through 

tweets or Facebook. The sole purpose of such messages is aggregation or exploitation of personal data in terms 

of finances or medical records, political benefit’s or community violence. This makes spam detection an extreme 

value-added service. We tend to recommend a 1D CNN algorithmic technique and compare results with variants 

of CNN and with boosting algorithms. The model is braced with linguistics data in the illustration of the words 

with the assistance of knowledge-bases such as Word2vec and fast ext. This improves the end to end 

performance, by providing higher linguistics vector illustration of input testing words. Projected Experimental 

results show the efficiency of the projected approach from the point of view of accuracy, F1-score and response 

time. 
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1. Introduction 

 

 Recently with the dawn of the social media platforms, people are enabled to grow and to communicate 

efficiently. This opportunity has been threatened through spams, malicious links, and malware [1]. This makes 

Spam detection extremely required value-added service for any social platform. Initially the spam messages used 

to get detected by manual process or by simple filter rules for commons properties. Automation in spam 

detection advance of basic machine-learning algorithms which do not produce spam detection models. Initially, 

spam started spreading with email spams. Additionally, the SMS is a price effective technique used for 

converting individual messages to the vector form. Possible purchasers, encompass a higher rate of response as 

compared to email spam. In conjunction with emails and SMS, social networking platforms like Twitter, 

Facebook and an instant traveler like WhatsApp, etc., also are tributary to a greater portion of spam on the 

network. It will be a complex activity of spam detection without any filter at the receiving node. One of the 

initial classifiers is rule-based, having a lot of formally written principles. These classifiers were used to get 

deployed to an ample space of purchasers. It comprises a set of pre-defined rules that are applied to associate 

degree of incoming messages and these messages were labelled as spam if their check score exceeds the 

threshold value. Even after the spam is detected, the success of these ways is restricted and needs to be combined 

with different machine learning methods so as to give fairly sensible results. Naive Bayes, Radom forests etc., 

are few of the standard classifiers. These classifiers are complicated, thanks to feature extracting options from the 

text, which helps to identify the pattern of spam and ham messages [2]. Most frequently used feature extracting 

models are bag of words models with token frequency as a common factor. Convolutional Neural network is the 

deep learning algorithm that addresses the accurate classification of the text messages as spam or ham. 

 

2. Literature Survey  

 

Gauri Jain et al. [1] had proposed an architecture focused on short spam content on SMP like Twitter. This is 

in contrast with earlier long spams emails detections and deletion. Using basic configurations. of CNN 

algorithms, the outcomes showed that the proposed model proved to be efficient with the use of Twitter and SMS 

text datasets.  

 

Thayakorn Dangkesee et al. [3] has proposed a model that was used for spam detection by the victimization 

of spam word lists using a billboard URL-based security tool. Naive Bayes algorithm has been used to analyses 

the data using data types such as all data and specific data. It has boosted the performance of the spam detector 

than usual. One can show their methods fulfills the experimental result. 

 

Rutuja Katpatal [4] has formed an additional input training dataset to classify unlabeled tweets using another 

dataset. Author has proposed a scheme that adjusts training data sets. Dropping too old samples after a specific 

time has helped to eliminate unusual information saving space. 
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Ms. Sayali Kamble et al. [5] has exhibited the plan of ongoing vector space denotation of words. Evaluation 

of a novel AI-based way to deal with specialization Social spam detection. Their general research goal for 

consequently shifting and recognizing spammers who point social destinations was to discover methodology 

ie.SAND, to find compelling devices.  

 

Guanjun Lin et al. [6] has detected the nine mainstream algorithms that were compared to understand the 

most suitable algorithm. The stability of each algorithm had been studied thoroughly. It had indicated the 

variation of the training time according to CPU core. 

 

Tingmin Wu, et al. [7] has proposed a system of twitter spam detection. While the paper had addressed the 

then-existing challenges like low speed and feature extraction difficulties thoroughly; the paper written had 

experimentally proven the comparisons between achieved results and existing accuracies through the indication 

of graphs 

. 

3. Proposed Methodology 

 

The System consists of a model that is trained on Convolutional Neural Network rule. On general terms, 

CNN is most well-liked for image classification. The variation of CNN 1D has been used for spam text 

information classification. CNN contains various types of layers that are typically improved in terms of 

accelerating accuracy during and after the implementation. Here, in the projected system, CNN will work as a 

classifier to investigate whether or not, the text statement is spam. The model permits to form associate 

unattended learning as well as supervised mode of learning rule for getting vector representations for input texts. 

Models like fast texts makes us of neural network for word embeddings The proposed framework comprises of 

Word2Vec and fast text advancements along with Convolutional Neural Network (CNN) to complete the model. 

The proposed framework will also be comprised of varieties of CNN models in terms of the number of filters and 

convolutional layers of the CNN algorithm. These can be used for performance comparisons between different 

variations of CNN. The research will work around CNN varieties and layers. 

 

3.1. Architecture 

 

1. The Proposed system has the advantage of multiple platforms for computer files for model development. 

2. The System has been developed with quite one algorithmic program, so Prediction guarantees are inflated. 

3. Live updates area unit involved in prediction so its area unit typically used for live recommendation. 

4. The proposed system varies in the filter and convolutional layer combination. 

5. The proposed system will compare the results of the CNN algorithms with that of the boosting algorithms 

and hence will try to achieve the maximum accuracy with better precision. 

6. We are also trying to train the module through the vernacular language data sets like Hindi or Marathi. 

7. Fig.3.1 shows an overview of the proposed system architecture. 

8.  Out of the complete training data set, 80% of the data will be used for the training the model under 

supervised learning technique, and the remaining 20% of the data set will be used as a test set to generate the 

accuracy and response time calculation tests. 

 

 
Figure 1. Proposed System Architecture 
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3.2. Algorithms 

 

Fast text and Word2Vec algorithms are used for implementation. 

 

3.2.1 Scope of fast text: 

 

The scope of fast text is to work as a runtime library for classification and vector conversion of input texts. It 

is used for processing the number of tasks. It is based on the C++ platform. Fast text allows the end-user or the 

developer to coach supervised and unsupervised classification of input texts. Generally, it trains the models of a 

Skip-gram model or continuous bag of words (CBOW). It makes use of function such as Soft Max or negative 

sampling loss functions. Huge number of linguistic embeddings can be trained with the use of fast text. 

 

3.2.2 Scope of Word2Vec: 

 

Word2Vec may be a shallow, two-layered neural network which is trained to reconstruct linguistic contexts 

of words. Every unique word gets assigned a vector notation in vector space. This conversion is taken place 

across the given classes. Words which are share the common class context are placed in close proximity in the 

vector space. Word2vec thus has proved to be efficient models in the word embeddings techniques [8]. Like fast 

text model, the word2vec models are majorly applicable to CBOW or Skip gram models [9]. 

 

3.3 1D CNN algorithm 

 

The process of feature learning has been used in 1D CNN algorithm. The algorithm maps the extracted 

features of the input text sequence.1D algorithm is especially useful in datasets which have segments of fixed 

length.  

 

Size of Data Set: ~12k records (80% training,20% validation) 

Attributes: Tweet Type, Tweet 

 

1D CNN Algorithm 

 

The Algorithm of a 1D-CNN is formed through the following important steps: 

Input: With filter size F, Input matrix x(l*d),  

Process:  

Assign Weightage W and process filter F 

For {     … 

        # first CNN variation ‘V1’ For {   …# each epoch N 

CNN (hidden)  and MLP neurons 

CNN layer each with kernel size =3 

Subsampling factor (wj) = [xj + xj +1 + …+ xj + k-1] 

activation functions. (ReLU (wjn +b)) 

probability Output  

Errors possibility 

BP- Backward propagation. 

} 

} #end for CNN variation ‘V1’ 

Output: The trained model of CNN classifier is produced. 

In each CNN-layer, equation (1) represents the 1D forward propagation (1D-FP) [9]: 

 

 …. (1) 

 

where, 𝑥𝑘
𝑙  is bias 𝑘𝑡ℎ neuron bias at layer 

𝑙, 𝑠𝑖
𝑙−1 is 𝑖𝑡ℎ neuron output of  layer l-1 ,   𝑤𝑖

𝑙−1 is the 𝑖𝑘𝑡ℎ kernel of  layer 𝑙−1 .𝑐𝑜𝑛𝑣1𝐷 (.,.)  is used to 

perform ‘in-valid’ 1D convolution without zero-padding. 

 

4. Results and Discussions 
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Figure 2. Home Page of proposed model 

 

 
Figure 3. The Prediction from Word2Vec model 

 

1. Figure 2. indicates the overview of the CNN based structure model. This window contains the main 

modules of the final model, which are summary tab, prediction using word2vec tab, XG boost tab, ADA boost 

tab, gradient boost tab which in turn at the backend runs the CNN algorithms 

 

2. Figure 3. represents the window where, the input words are converted to vector forms and then are fed to 

the CNN algorithm for the classification using filters and convolutional layers. An authenticated user needs to 

give input in the form of text and then the model will give output. In this case, the model will process the input 

text into vector form and then will feed as the input to CNN algorithm and based on the labeled learning, CNN 

will classify the sentence into spam or ham 

 

3. Figure 4. shows the results of various CNN variations (filter size and iterations or epoch) in terms of 

Training accuracy, validation accuracy, precision, and F1 score. 
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Figure 4. Results summary of CNN variations 

 

4. Figure 5.4.1 to Figure 5.4.4 represents the actual readings CNN variations with all the iterations or epochs 

in terms of accuracy of the CNN classification using word2vec. This can be seen when we click on the prediction 

tab. Here the epoch value will decide the number of iterations. The number of points mentioned in the graph 

indicates the number of iterations. 

 

 
 Figure 5.4.1  

 

 
Figure 5.4.2 

Filter Size 

: 32

Epoch : 

24

Filter Size 

: 64

Epoch : 

24

Filter Size 

: 128

Epoch : 

24

Filter Size 

: 256

Epoch : 

18

80.23 80.12 96 92.79

78.56 78.77 95.4 92.6

Class 0 (No Spam) 74 75 88 84

Class 1 (Spam ) 85 87 92 89

Class 0 (No Spam) 81 81 90 91

Class 1 (Spam ) 76 76 95 86

Validation Accuracy %

Precision

F1 score

CNN Variations

Training Accuracy %
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Figure 5.4.3 

 

 
Figure 5.4.4 

Figure 5.4.1 to Figure 5.4.4: The actual readings CNN variations with all the iterations or epochs in terms of 

accuracy of the CNN classification using word2vec 

 

5. The accuracy of the prediction, based on the 80% learning data set and 20% of validation can be shown 

through the graphical representation of the model. Refer to Figure 5.4.3. This accuracy has been reached to 96% 

when we have used CNN and LSTM algorithms as endpoints along with word2vec module. 
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Figure 6. Performance graph of response time from Word2Vec model. 

 

6.  We have also tested the twitter dataset for spams detection using machine learning algorithms such as the 

ADA boost, XG boost and gradient boost and have compared the results of the same in terms of performance and 

accuracy of the output with CNN -LSTM algorithmic model readings as indicated in the above Figure 5.6.1 to 

Figure 5.6.3 represents the training reports. 

 

 

 
Figure. 5.6.1. Illustrated the training report using gradient boosting 

 

 
Figure. 5.6.2. Illustrated the training report using ADA boosting 
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Figure. 5.6.3. Illustrated the training report using XG boosting 

 

 
Figure 7. The performance comparison chart in terms of % accuracy, F1 score and precision 

 

7. Figure 7 represents the performance comparison chart in terms of % accuracy, F1 score and precision. 

 

5. Conclusion 

 

After research implementation of the proposed project and idea, the system reflects the conclusion that the 

CNN-LSTM variant model (III) along with Word2Vec performs efficiently in terms of % accuracy, F1 score, and 

precision [Figure 7]. The % accuracy has been up to 96% on average. As indicated above, we have conducted 

several rounds of training and validation on the CNN algorithm and on machine learning algorithms such as the 

ADA boost and the XG boost. In comparison, it has been concluded that the Word2Vec model takes around 8 to 

12 seconds to load and respond, as shown in the graphical representation in the results and discussion section. 

However, with CNN-LSTM fast text model takes much more time to load and respond. Fast text takes around 1 

to 2 minutes. Both are relying on the earlier stage of model training. 1D Convolutional Neural Network algorithm 

is used for the training model. The number of iterations of the execution has been based on the epoch. 

 

As a part of future work, of the proposed model, multilingual twitter dataset like Hindi, Marathi can be used to 

arrive at the efficient performance delivery. After deriving accuracy, later on, these individual results will be 

performance compared with the results of the ADA/XG boosting algorithm. Changed spams can be added in the 

input datasets to reduce the spam drifts. [7]. 

 

 

 

Filter Size : 
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Epoch : 24

Filter Size : 
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Epoch : 24
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Epoch : 24

Filter Size : 
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