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Abstract: In recent years, many data-intensive and location based applications have emerged that need to process stream data 

in applications such as network monitoring, telecommunications data management, and sensor networks. Unlike regular 

queries, a continuous query exists for certain period of time and need to be continuously processed during this time. The 

algorithms used for data processing for the traditional database systems are not suited to tackle complex and various 

continuous queries over dynamic streaming data. The indexing for finite queries is preferred to indexing on infinite data to 

avoid expensive operations of index maintenance. Previous related work focused on moving queries on static objects or static 

queries on moving object. But now-a-days queries as well as objects are dynamic. So, hybrid indexing for queries 

significantly reduces the space costs and scales well with the increasing data. To deal with the speed of unbounded data, it is 

necessary to use data parallelism in query processing. The data parallelism in query processing offers better performance, 

availability and scalability. 
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1. Introduction  

 

In recent years, new data-intensive applications, such as network monitoring, traffic monitoring, sensor 

networks, telecommunications data management, and others, involve data streams. The processing of high 

volume data stream has cropped up as a research issue in various engineering and scientific applications e.g. 

monitoring mobile objects (Wang, 2011) tracking continuous network behaviors (Bohm, 2007) processing of 

data from sensors (Carney, 2002) and identification of RFID data (Park, 2007). To filter the data which is rapidly 

coming at the system as time-varying, unbounded sequences of data objects, the user uses continuous queries as 

against one-time submitted queries. These queries are processed over streams continuously for a period of time 

and provide new results incrementally on the arrival of new data tuples. The timestamps or time intervals are 

considered for system-wide windows for each single processing step (Golab, 2003). The authors introduced the 

adaptive windowing technique which dynamically resizes the window based on the incoming data (Bifet , 2007). 

(Babu, 2001) discussed requirements and challenges in query processing, and algorithmic issues. 

 

The continuous queries are submitted once and executed continuously to get the output from data streams 

(Golab, 2003). One of the biggest challenges for a Data Stream Management System is to process continuous 

and massive data streams in consideration of the memory constraints for unbounded data. Window techniques 

focus on recent portion of the data. The recent data can be taken in terms of n objects or the objects during a time 

span.  Re-execution of queries is a costly operation, and processing of continuous queries is considered an open 

issue in data stream systems using various indexing approaches. The data indexing becomes expensive as the 

data is not persistent, but it is in large volume. So, a new approach is suggested to build the index for queries 

which is finite rather than to build the index for data which is infinite (Carney, 2002). To evaluate location-based 

queries, the indexing for data or queries plays a key role. The various approaches are used for indexing spatial 

queries and spatial data which are categorized into (a) Tree-based structures (b) Grid structures and (c) Space-

filing curves. Most applicable to the work presented here are space-filling curves and tree-based methods. The 

tree-based approaches such as R-tree (Prabhakar, 2002) incur a high updating cost due to tree structure. The grid-

based methods use cell approach (Bohm, 2007; Kalashnikov, 2004) for indexing spatial queries and it divides the 

indexing pace into equal-sized grid. The grid-based approach results in better search and update time than the 

tree-based approaches (Kalashnikov, 2004)  but it incurs high construction cost for indexing queries (Chen, 

2011). Now days, due to dynamic nature of location-based queries, various query indexing approaches for 

continuous range queries (Gedik, 2006 ; Li & Karras, 2012) are suggested. Query Indexing mainly is suitable for 

evaluating continuous queries over dynamic and moving objects, as the queries exist for long periods of time, 

whereas the objects are continuously moving (Kalashnikov , 2002).   

 

As the data is coming continuous and in unbounded manner, so it becomes a big challenge to filter massive 

data stream efficiently using query index. The query indexing method must support (1) scalability to massive 

data stream and (2) continuous queries. As we filter massive data which is coming continuously and the relevant 

objects for the given query are returned, it is rational to relinquish optimality with a good feasible solution that 

can be computed efficiently. The approximation methods provide reasonable and feasible solution instead of 

exact optimal solution. 
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Section 2 discusses previous work done in this area. Section 3 presents the hybrid indexing approach with 

related concepts. Section 4 discusses experimental setup and performance evaluation. Section 5 concludes the 

paper with conclusion. 

     

2. Literature Review 

 

The various approaches are used for indexing spatial queries and spatial data which are categorized into (a) 

Tree-based structures (b) Grid structures and (c) Space-filing curves. Most relevant to the work presented here 

are space-filling curves and tree-based techniques. In, tree-based concepts R-tree and its variants are used for 

indexing. The index on data objects as well as queries is built. It gives good performance only for small numbers 

of queries and unable to handle the arrival of new queries. More space is required due to both the type of 

indexing (Prabhakar, 2002). But, these methods have poor query performance due to dynamic nature of data and 

overlapping of data in tree nodes as it requires traversing the tree on more than one path to process the query. To 

index the continuous queries, some tree structures without overlapping are proposed (Park, 2007 ; Chen, 2011 ). 

The KDB-tree is used to index RFID queries (Park, 2007) which are continuous in nature. The concept of the 

KDB-tree is discussed in (Robinson, 1981) which provide single path traversing. The grid based methods use 

cell and cell structure to divide space of indexing into uniform cells for indexing queries (Kalashnikov, 2004). 

(Kalashnikov, 2004) used hierarchical grid cells to organize skewed queries to accelerate continuous range 

queries to process over dynamic spatial objects. But it suffers from high cost of storage and time for creation and 

updating of indexing structures (Chen, 2011).  

 

A new index structure, called the Bkd-tree, a dynamic I/O-efficient data structure conceptually based on the 

technique used in kd-tree, is proposed (Vitter, 2003). Various authors suggested various indexing techniques 

such as R tree, R*-trees, motion-sensitive bounding boxes to index queries and data (Prabhakar, 2002).  There is 

no need of regular updates to be made to the index structure due to query indexing. There is no need of any 

constraints on the speed of movement or path of the moving objects. Grid approach is used for query indexing. 

The authors experimented for uniform, skewed and hyper skewed queries and data using Grid index, R-tree 

Index (Kalashnikov, 2004). The index is used for less regularly changing queries and objects. The bounding 

boxes are updated only when queries and objects cross the predefined boundaries of their boxes. So, less updates 

to the index is required (Gedik, 2006).  The authors proposed adaptive and cell-based data structure for indexing 

dynamic objects.  It consumes about 30% of the storage space as against the storage space required by R-tree 

based methods. It achieves higher performance of query processing compared with the techniques based on R-

tree (Chen, 2011). A dual-index structure with a pre computing approach for calculation of fast distance on 

changing objects. It incorporates a grid index fitting in memory and R-tree structure to save the road network 

information with their connectivity which is stationary to efficiently operate on the updates of the position of 

moving objects (Wang, 2011). A Distributed Strip Index, a data partitioning index and DKNN algorithm are used 

for distributed query processing. It results in integration overhead and the communication cost overhead 

(Ziqiang, 2015). The authors designed an efficient R-tree building algorithm giving better performance over 

sequential construction on GPU architecture(Luo & Wong,  2012). For indexing continuous range queries, 

GKDB (combination of grid and KDB tree) is proposed (Deng, 2015).  

 

Using space filling curve n-dimensional space is mapped onto 1-dimension. The quality of a SFC is defined 

by its ability in conserving the locality of multi-dimensional objects mapped into linear order. Space filling 

curves include the Peano curve, Z-Order curve, Hilbert curve and many others. The Hilbert Curve is generally 

preferred for multi-dimensional region queries over the Z-Order Curve because of its superior clustering 

properties. Hilbert space-filling curve is selected to relate spatial space into the 1-dimensional domain, and 

multiple B+ trees are constructed (Aizawa, 2009). An algorithm for processing spatial range query algorithm is 

developed based on the combination of shifts and rotations using Hilbert curve (Jin, 2011). The scalability of the 

spatial queries using SFC keys improves while working with the data size compared to  B-tree indexing.  The 

queries using Hilbert values are faster than using Morton keys because of better spatial preservation nature of the 

Hilbert curve (Guan, 2018).  An algorithm defined as quad-splitting is proposed to decompose a window on a 

Hilbert curve using various Hilbert levels avoiding the stages of merging and sorting. It resulted in lower time 

complexity compared to previous methods (Wu & Chang, 2008).  The authors used two types of curves i.e. 

Hilbert and Peano to find the nearest neighbours.  They provided transformation rules between Hilbert curve and 

Peano curve and it is observed that good clustering can be achieved (Chen & Chang, 2005). The sub-queries are 

generated from continuous queries using simulated annealing algorithm. The push and pull based data 

dissemination approaches are used to send the changes to the user as per user’s interest (Thombare, 2014). The 

significant amount of temporal data is generated in network monitoring, stock exchange etc. which can be used 

in online decision making as dynamic data items are generated (M.Thombare, 2014). Various similarity 
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measures to find nearest objects are discussed (Kharat, 2018). Now days, Graphical processing Unit (GPU) plays 

a crucial role for processing data stream.  It will accelerate the processing so that the task will be executed 

concurrently on host and device (Deshmukh, 2015). A CPU-based solution for continuous range-monitoring 

queries can be studied and the solution can be extended using the General Processing Unit (GPU). The input 

streams can be divided into parallel sub-streams, and queries are continuously executed on these sub-streams. 

The parallelization of continuous query execution with expensive operations can be achieved using GPU 

architecture. 

 

3. Material and Methods 

 

A hybrid indexing structure using Hilbert space and KDB tree (HKDB Tree) for continuous and dynamic 

spatial temporal region queries is proposed. The HKDB-tree meets the need of faster query processing to match 

to the rate of arrival of data stream containing spatial temporal objects. 

 

3.1. Problem Formulation:  

 

Firstly, the notations of a spatial-temporal data stream are provided. Then, continuous spatial-temporal  query 

over the spatial data stream are defined. 

 

Definition 1: Spatial-temporal object is defined as O = ( id, t, loc)) where t is a timestamp and loc is a 

location of the object. 

 

Definition 2: Spatial-temporal data stream is defined as  

 

S = { Oi | I ∈[1,+∞] ∧  Oi.t ≤ Oi+1.t }  is an unbounded data set of spatial objects  in timestamp order. 

 

Definition 3: Continuous spatial-temporal query is denoted as q = (id, t1, t2, r) where t1 and  t2  are the 

timestamps during which the query exists and r is the region of the query. 

 

A Spatial-temporal object O in S matches q if the following two conditions are satisfied: 

                        

o.loc ∈ q.r and q.t1 ≤  o.t ≤  q.t2                                                                                        (1) 

 

For given a set Q of continuous spatial-temporal queries, for each incoming object O from a Spatial-temporal 

data stream S, a hybrid indexing using Hilbert curve and KDB tree technique over Q (HKDB) to rapidly deliver 

objects to spatial-temporal queries is proposed. Space Filling Curve such as Hilbert curve relates points from a 

multi-dimensional space to a 1- dimensional space. 

 

3.2. Continuous Query Processing using H-KDB Tree (as shown in Figure 1) 

 

Continuous spatial-temporal query processing consists of following phases: 
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Figure 1. Working Model for Evaluation of Spatial-temporal Range Queries 

 

1) Continuous Query Submission: The continuous queries are given by the user as per the definition 

stated above. 

2) Acquisition of Data Stream: The infinite, unbounded datasets will be converted into bounded  finite 

datasets using  windowing technique 

3) Construction of Index for Query/ Update: The hybrid indexing approach HKDB Tree is used for 

indexing the queries. The construction and updation of index will be performed by CPU. 

4) Using data parallelism for execution of queries : Dividing the data stream into sub-streams to  use the 

parallel   processing capability of GPU to  significantly speed up the execution. 

5) Storing the result in a data stream:  After the execution of the continuous query, the result of the query 

is stored in data stream. 

 

The Hilbert curve is used to preserve the proximity of locality. It keeps the ordered and close points in 

adjacent locations in space. It is replicated in four quadrants. The 90 degrees clockwise rotation for lower left 

quadrant, 90 degrees anti-clockwise rotation for lower right quadrant is done. The traversal direction of left and 

right lower quadrants are reversed. But, no rotation and change in traversal direction for both upper quadrants. 

All these rotations and change in direction computation are dependent on the values obtained in the previous 

level. 

 

 
Figure 2. HKDB Tree indexing for queries 

 

The below algorithm encodes x and y coordinates to a geohash of length precision on a corresponding a 

hilbert curve(h-value). Each character encodes bits per character (allowed are 2, 4 and 6 bits). Hence, the it 

encodes x & y using precision * bits_per_char. The number of bits devided by 2 give the level of the used hilbert 

curve, e.g. precision=10, bits_per_char=4, so total 40 bits and a level 20 of hilbert curve.  
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Algorithm  xy_to_hash(x, ,y, dim) 

 //Output : it returns hash value on Hilbert curve 

1. begin     

2.     d= 0  

3.     level  = dim >> 1  

4.     while (level > 0)  

5.          rx = (x & level) > 0  

6.          ry = y & level) > 0  

7.          d += level * level * ((3 * rx) ^ ry)  

8.          (x, y ) = rotate(level, x, y, rx, ry);  

9.          level >>= 1;  

10.      return  d;  

11. end  

   

Algorithm  rotate(n,  x,  y,  rx,  ry)  

1 begin  

2 if ( ry==0)  

3      if(rx==1)  

4          x= n-1-x  

5          y= n-1-y  

6      else // swap x & y 

7          t = x 

8          x=y  

9          y=t  

10 return (  x, y ) 

11 end 

 

Algorithm ObjectSearch  (Q : Query Dataset ,D: Set of Data objects )  

//Output : A: Answer dataset 

1 begin  

2 Build KDB tree index for the range queries  

3 Generate h-values for the range queries Q (set of Queries).  

      Calculate the h-value for center of the range query 

      Create an array H for index storing the h-value for each query in query dataset    

         and reference to the query stored in KDB tree. 

4 For every data object o ∈ D 

          Calculate the h-value 

          Select the query q from array H at minimum difference of h-value of the object   

           and query. 

                  Map the object to the relevant range query such that  

                       o.loc ∈ q.r and  q.t1 ≤  o.t ≤  q.t2 

5  return A 

6 end  

 

3.3. Continuous Queries processing over Streaming Data with G-HKDB-Tree   

   

Data stream is filtered using the index on continuous queries on GPU. The co-operation processing of both 

device and host is used. The CPU focuses on  the task of creating and maintaining the index on queries while 

GPU focuses on processing data stream using G-HKDB tree in parallel. The different tasks are performed 

cooperatively 1) Inputting data stream into GPU memory 2) processing data stream using G-HKDB tree in 

parallel 3) Outputting query results back to CPU 4) maintaining query index on CPU. 

   

For construction of KDB tree, no. of leaf nodes , Nleaf is computed as  

 

Nleaf = (Max/m)                                 (2)                            

 

where Max is   number of queries and m is capacity of leaf node. 

  

The height of the tree h can be computed as  
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h = log M Nleaf                                                                                                                    (3) 

 

The   streaming   data   is   partitioned   into   different   data segments. Let  NS  denote the  count  of GPU 

streams, Sp denote the size of each data partition/Segment. 

 

The number of threads can be calculated as 

 

| TH | = MAX_TH  / NS                                                                                                   (4) 

 

The query index on host is built up using pointers and structure while the same index on GPU is built using 

sequential data structure i.e. arrays. The data in current window SCW is partitioned into S data segments. Let 

ti, tp  and  to  denote the  time required to input  one data segment into GPU, t o  process this data  

using G-HKDBTree query index  and  to transfer the results back to CPU, respectively. The total time 

required to process continuous queries over SCW is defined as  

 

                   T = S x ti +  tp + to                                                                 ( 5 )  

 

 
Figure 3. Host to device execution in cooperative way 

 

Algorithm Continuous Query Processing on data stream( G-HT, SCW) 

//Input : G-HT : Query index on GPU, SCW : Data stream segments 

//Output : AS : Answer set 

1     begin 

2          Partition SCW into P data partitions /segments seg[P] 

3          P = (|SCW| / Sp) 

4         Generate NS GPU streams GS[NS] 

5         for (k=0; k<P; ++k) do 

6             Input_Task_GPU( GS[k%NS], Seg[k]) 

7             Processing_Task_GPU (GS[k%NS], Seg[k], G-HT, AS)  

8            Output_Task_GPU( GS[k%NS], AS) 

9         end 

10   return AS 

11   end 

 

Processing_Task_GPU( GS, Sp, G-HT, AS) 

1  begin 

       2   Assign GPU threads TH for processing Sp 

       3   for each thread tj  ∈ TH( 0 <= j <= |TH|-1) do in parallel 

       4      for each data object o ∈ Sp do 

5                 Search_on_query_index(s, G-HT, AS) 

6    end 
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4. Results and Discussion  

 

The results of experimental evaluation are presented. 

 

4.1. Experimental Setup 

 

The geo-based services have been frequently used in various applications e. g. traffic monitoring, road-side 

assistance. To evaluate the proposed indexing approach, a synthetic data simulator is used to generate spatial 

moving objects in two- dimensional set using random waypoint model (Broch, 1998).  The moving spatial 

objects are generated as points on unit square space [0, 1] X [0, 1]. The region size of the query is selected as 

0.001. The experiments are run on i7-7500U @2.70 GHz with 8 GB RAM and GPU Platforms GeForce 

940MX, Memory 2 GB DDR5, CUDA SDK 10.0. 

 

4.2. Parameters of Experiments 

 

Query dataset is of size 10000. For KDB Tree : 1) Capacity of an interior node M = 12,  2) Capacity of a  

leaf node m = 21. 

To evaluate the performance of processing of the spatial queries on continuous data stream, mainly query 

execution cost is considered which plays a vital role for unbounded and massive data stream. The results i.e. 

execution time and index creation time are compared with the methods used in (Deng, 2015). 

         

Table 1. . Query Performance 

 Query Performance  

 Execution Time (Sec)  

on CPU  

 

Execution Time 

(Sec.)  on GPU  

Speed up (x times) 

Size of Dataset GKDB 

Tree 

HKDB 

Tree 

HKDB 

Tree 

HKDB 

Tree 

100K 3.46 2.70 0.75 

4.4 

200K 7.04 5.92 1.09 

300K 10.13 8.80 1.98 

400K 14.02 12.09 2.77 

500K 18.14 16.09 3.61 

 

Table 2. Index creation Time 

 Index creation Time (Sec) 

Size of Query Dataset GKDB Tree HKDB Tree 

10K 6.3 5.3 

20K 12.5 10.8 

30K 19.8 18.9 

40K 24.9 22.9 

50K 29.4 28.0 

 

To evaluate the performance of the spatial-temporal queries on dynamic data stream consisting of spatial-

temporal data tuples, the two measures are considered i.e. query processing cost and index creation cost. The 

different alternative approaches of tree-based indexing data structures are used for indexing of data as well as 

queries.  There is a trade-off between time complexity and space complexity. The data structures can support 

mailto:@2.70
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different types of queries viz. circle query, range queries, or point queries.   The range spatial- temporal queries 

are considered for the experimentation. As the hash values are calculated and stored for the queries and 

references t o    the   actual  query  in   the   KDB   tree   are maintained, the object searching becomes faster 

and it provides better query performance. In data stream-based applications, an approximation of solutions is 

preferred to exact solutions to cope with the rate of incoming objects in the system. In cell-based index 

structures, multiple entries of a query are stored if the query spans across multiple cells which results in higher 

index creation cost. In the discussed approach, the tree structure is used to store the queries avoiding the 

duplication of storing query in multiple cells and then in multiple trees. It results in less index creation cost.  

The methods provide reasonable and feasible approximate solution instead of exact optimal solution as the data 

is continuous and unbounded. 

 

5. Conclusion 

 

For efficient continuous query processing, it will be better to use the index for queries which is finite rather 

than to build the index for data which is infinite. This study explored query indexing approaches that can: 

(a) adapt to frequent changes of continuous queries and (b) achieve fast and scalable filtering of streaming data. 

To speed up the continuous query processing, the data parallelism approach is suggested where the data stream 

will be partitioned into different sub-streams and then the same queries will be executed in parallel on different 

sub-streams. For spatial- temporal queries, the proposed hybrid indexing approach shows 12% improvement 

in the query performance cost than the existing approach. There is an about 4.4x times speed up in query 

performance on GPU. 
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