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Abstract 

 This paper presents a comprehensive analytical investigation into solving a specific 

nonlinear Fredholm integral equation of the second kind, expressed as 𝑢(𝑥) = 𝑥 +

𝜆 ∫
1

0
𝑥𝑡𝑢2(𝑡) 𝑑𝑡. Utilizing the Laplace-series method, we derive explicit solutions and validate 

their accuracy through detailed mathematical procedures. The study focuses on the parameter 𝜆 , 

with particular emphasis on the case 𝜆 = 0.7 , where two distinct linear solutions emerge. We 

explore the derivation process, verify the solutions against special cases, and analyze their 

graphical representation using a MATLAB-based approach. The findings underscore the 

effectiveness of the Laplace-series method in addressing nonlinear integral equations and provide 

insights into the behavior of the solutions over the interval [0,1]. The results are further supported 

by numerical verification and a visual plot, offering a robust framework for understanding the 

equation’s solution space. 

keywords: Nonlinear Fredholm integral equation, Laplace-series method, MATLAB 

Programming. 

 

Introduction 

  

[1] have constructed techniques solve basic computational mathematics problems of 

Fredholm and Volterra integral equations using numerical method. Integral equations are crucial 

in various fields of applied engineering and mathematics, which uses as powerful tools for 

modeling complex physical phenomena. Among these, the Nonlinear Fredholm integral equation 

of the second kind presents significant challenges due to its intricate structure and the demand for 

precise analytical techniques. This study concentrates on a specific nonlinear Fredholm integral 

equation 𝑢(𝑥) = 𝑥 + 𝜆 ∫
1

0
𝑥𝑡𝑢2(𝑡) 𝑑𝑡 , which incorporates a quadratic nonlinearity in the 

unknown function 𝑢(𝑥). The parameter 𝜆 introduces variability, affecting the nature and number 

of solutions, making it a compelling subject for detailed analysis [3]. 

Our approach utilizes the Laplace-series method [2], a technique that systematically combines 

Laplace transforms with series expansions to address such equations. This method enables us to 

convert the integral equation into a more manageable form, facilitating the derivation of analytic 

solutions. The investigation focuses on the case where 𝜆 = 0.7, resulting in two linear solutions 

that are subsequently plotted and verified. We verify our solutions by checking special cases to 
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ensure they align with known conditions. Additionally, we developed a MATLAB program to 

calculate and display these solutions, providing a numerical view that supports our analytical work. 

The main goal is to provide a comprehensive, step-by-step derivation that thoroughly 

addresses every detail, ensuring both clarity and the ability to replicate the process. This paper also 

offers a comprehensive analysis of the resulting plot. By integrating analytical, numerical, and 

graphical methods, we provide a holistic understanding of the equation, contributing to the broader 

discourse on solving nonlinear integral equations. Through this study, we strive to offer a clear 

and accessible framework that can be adapted to similar problems in mathematical modeling and 

applied sciences. 

 

Problem Statement 

 The nonlinear Fredholm integral equation to be solved is [4, 5]: 

 

 𝑢(𝑥) = 𝑥 + 𝜆 ∫
1

0
𝑥𝑡𝑢2(𝑡) 𝑑𝑡 (1) 

 

We aim to find an analytic solution using the Laplace-series method, ensuring all steps are 

explicitly shown without skipping any lines. 

 

Solution 

 

The given equation is: 

 

 𝑢(𝑥) = 𝑥 + 𝜆 ∫
1

0
𝑥𝑡𝑢2(𝑡) 𝑑𝑡 (2) 

 

Notice that 𝑥 is independent of the integration variable 𝑡. Thus, we can factor 𝑥 out of 

the integral: 

 

 𝑢(𝑥) = 𝑥 + 𝜆𝑥 ∫
1

0
𝑡𝑢2(𝑡) 𝑑𝑡 (3) 

 

Define the constant integral: 

 

 𝑘 = ∫
1

0
𝑡𝑢2(𝑡) 𝑑𝑡 (4) 

 

So the equation becomes: 

 

 𝑢(𝑥) = 𝑥(1 + 𝜆𝑘) (5) 

 

This suggests that 𝑢(𝑥) is proportional to 𝑥, indicating a possible solution of the form 𝑢(𝑥) =
𝑎𝑥 , where 𝑎 = 1 + 𝜆𝑘 . We will utilize Laplace transforms to verify this and systematically 

examine the solution. To implement the Laplace-series approach, we perform the Laplace 

transform on both sides of the equation: 
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 𝑢(𝑥) = 𝑥 + 𝜆𝑥 ∫
1

0
𝑡𝑢2(𝑡) 𝑑𝑡 (6) 

 

Let 𝑈(𝑠) = ℒ{𝑢(𝑥)} be the Laplace transform of 𝑢(𝑥). 

 

Using Laplace transform we get left-hand side as: 

 

 ℒ{𝑢(𝑥)} = 𝑈(𝑠) (7) 

 

As well right-hand side, we get: 

 

 ℒ {𝑥 + 𝜆𝑥 ∫
1

0
𝑡𝑢2(𝑡) 𝑑𝑡} = ℒ{𝑥} + 𝜆ℒ {𝑥 ∫

1

0
𝑡𝑢2(𝑡) 𝑑𝑡} (8) 

 

 

 ℒ{𝑥} = ∫
∞

0
𝑥𝑒−𝑠𝑥 𝑑𝑥 (9) 

 

By solving integral: 

 

 ∫
∞

0
𝑥𝑒−𝑠𝑥 𝑑𝑥 = [−

𝑥𝑒−𝑠𝑥

𝑠
]

0

∞

+
1

𝑠
∫

∞

0
𝑒−𝑠𝑥 𝑑𝑥 (10) 

 

The first term: 

 

 [−
𝑥𝑒−𝑠𝑥

𝑠
]

0

∞

= lim
𝑥→∞

(−
𝑥𝑒−𝑠𝑥

𝑠
) − (−

0⋅𝑒0

𝑠
) = 0 − 0 = 0 (11) 

 

The second term: 

 

 
1

𝑠
∫

∞

0
𝑒−𝑠𝑥 𝑑𝑥 =

1

𝑠
[−

𝑒−𝑠𝑥

𝑠
]

0

∞

=
1

𝑠
(0 − (−

𝑒0

𝑠
)) =

1

𝑠
⋅

1

𝑠
=

1

𝑠2 (12) 

 

So: 

 

 ℒ{𝑥} =
1

𝑠2     (𝑠 > 0) (13) 

 

second term,  ∫
1

0
𝑡𝑢2(𝑡) 𝑑𝑡 = 𝑘 is a constant, we have: 

 

 𝜆𝑥 ∫
1

0
𝑡𝑢2(𝑡) 𝑑𝑡 = 𝜆𝑘𝑥 (14) 

 

By applying Laplace transform, we get: 

 

 ℒ{𝜆𝑘𝑥} = 𝜆𝑘ℒ{𝑥} = 𝜆𝑘 ⋅
1

𝑠2 (15) 
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Thus, we get: 

 

 ℒ{𝑥} + 𝜆ℒ {𝑥 ∫
1

0
𝑡𝑢2(𝑡) 𝑑𝑡} =

1

𝑠2
+ 𝜆𝑘 ⋅

1

𝑠2
=

1+𝜆𝑘

𝑠2
 (16) 

 

Equating both sides: 

 

 𝑈(𝑠) =
1+𝜆𝑘

𝑠2  (17) 

 

Take the inverse Laplace transform: 

 

 𝑢(𝑥) = ℒ−1 {
1+𝜆𝑘

𝑠2
} (18) 

 

Since: 

 

 ℒ−1 {
1

𝑠2
} = 𝑥 (19) 

 

We get: 

 

 𝑢(𝑥) = (1 + 𝜆𝑘)ℒ−1 {
1

𝑠2
} = (1 + 𝜆𝑘)𝑥 (20) 

 

This confirms that the solution is of the form: 

 

 𝑢(𝑥) = 𝑎𝑥,    where    𝑎 = 1 + 𝜆𝑘 (21) 

 

However, 𝑘 depends on 𝑢(𝑡), so we need to compute 𝑘. 

 

Assume: 

 

 𝑢(𝑥) = 𝑎𝑥 (22) 

 

Then: 

 

 𝑢(𝑡) = 𝑎𝑡 (23) 

 

Compute 𝑢2(𝑡): 

 

 𝑢2(𝑡) = (𝑎𝑡)2 = 𝑎2𝑡2 (24) 

 

Now calculate 𝑘: 

 

 𝑘 = ∫
1

0
𝑡𝑢2(𝑡) 𝑑𝑡 = ∫

1

0
𝑡 ⋅ 𝑎2𝑡2 𝑑𝑡 (25) 
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Simplify: 

 

 𝑘 = 𝑎2 ∫
1

0
𝑡3 𝑑𝑡 (26) 

 

Evaluate the integral: 

 

 ∫
1

0
𝑡3 𝑑𝑡 = [

𝑡4

4
]

0

1

=
14

4
−

04

4
=

1

4
 (27) 

 

Thus: 

 

 𝑘 = 𝑎2 ⋅
1

4
=

𝑎2

4
 (28) 

 

Substitute 𝑘 into 𝑎 = 1 + 𝜆𝑘: 

 

 𝑎 = 1 + 𝜆 ⋅
𝑎2

4
 (29) 

 

 

To find 𝑎, solve the equation: 

 

 𝑎 = 1 +
𝜆𝑎2

4
 (30) 

 

 4𝑎 = 4 + 𝜆𝑎2 (31) 

 

Rearrange into standard quadratic form: 

 

 𝜆𝑎2 − 4𝑎 + 4 = 0 (32) 

 

By using the quadratic formula we get,  

 

 Δ = (−4)2 − 4 ⋅ 𝜆 ⋅ 4 = 16 − 16𝜆 (33) 

 

So: 

 

 𝑎 =
4±√16−16𝜆

2⋅𝜆
 (34) 

 

Simplify: 

 

 √16 − 16𝜆 = √16(1 − 𝜆) = 4√1 − 𝜆 (35) 
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 𝑎 =
4±4√1−𝜆

2𝜆
=

4(1±√1−𝜆)

2𝜆
=

2(1±√1−𝜆)

𝜆
 (36) 

 

Thus, the solutions for 𝑎 are: 

 

 𝑎 =
2(1+√1−𝜆)

𝜆
    or    𝑎 =

2(1−√1−𝜆)

𝜆
 (37) 

 

 

Since 𝑢(𝑥) = 𝑎𝑥, the solutions are: 

 

 𝑢(𝑥) =
2(1+√1−𝜆)

𝜆
𝑥 (38) 

 

 

 𝑢(𝑥) =
2(1−√1−𝜆)

𝜆
𝑥 (39) 

 

 

Verify Special Cases 

 

1  Case: 𝝀 = 𝟎 

 If 𝜆 = 0: 

 

 𝑢(𝑥) = 𝑥 + 0 ⋅ ∫
1

0
𝑥𝑡𝑢2(𝑡) 𝑑𝑡 = 𝑥 (40) 

 

Check: 

 

 𝑢(𝑡) = 𝑡,    𝑢2(𝑡) = 𝑡2 (41) 

 

 

 ∫
1

0
𝑥𝑡𝑢2(𝑡) 𝑑𝑡 = 𝑥 ∫

1

0
𝑡 ⋅ 𝑡2 𝑑𝑡 = 𝑥 ∫

1

0
𝑡3 𝑑𝑡 = 𝑥 ⋅

1

4
 (42) 

 

 

 𝑢(𝑥) = 𝑥 + 0 ⋅ (𝑥 ⋅
1

4
) = 𝑥 (43) 

 

This satisfies the equation, so 𝑢(𝑥) = 𝑥 when 𝜆 = 0. 

From the quadratic: 

 

 𝜆𝑎2 − 4𝑎 + 4 = 00 ⋅ 𝑎2 − 4𝑎 + 4 = 0 − 4𝑎 + 4 = 0𝑎 = 1 (44) 

 

Thus: 

 

 𝑢(𝑥) = 𝑎𝑥 = 𝑥 (45) 
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This is consistent. 

 

2  Case: 𝝀 = 𝟏 

 If 𝜆 = 1: 

 

 1 − 𝜆 = 1 − 1 = 0√1 − 𝜆 = 0 (46) 

 

 

 𝑎 =
2(1±0)

1
= 2 (47) 

 

So: 

 

 𝑢(𝑥) = 2𝑥 (48) 

 

Verify: 

 

 𝑢(𝑡) = 2𝑡,    𝑢2(𝑡) = (2𝑡)2 = 4𝑡2 (49) 

 

 

 𝑘 = ∫
1

0
𝑡 ⋅ 4𝑡2 𝑑𝑡 = 4 ∫

1

0
𝑡3 𝑑𝑡 = 4 ⋅

1

4
= 1 (50) 

 

 

 𝑢(𝑥) = 𝑥 + 1 ⋅ 𝑥 ⋅ 1 = 𝑥 + 𝑥 = 2𝑥 (51) 

 

This satisfies the equation. 

 

Explore Series Solution 

 To align with the Laplace-series method, consider a series solution: 

 

 𝑢(𝑥) = ∑∞
𝑛=0 𝑐𝑛𝑥𝑛 (52) 

 

The Laplace transform is: 

 

 𝑈(𝑠) = ℒ{𝑢(𝑥)} = ∑∞
𝑛=0 𝑐𝑛ℒ{𝑥𝑛} = ∑∞

𝑛=0 𝑐𝑛
𝑛!

𝑠𝑛+1
 (53) 

 

Using equation (3) we get: 

 

 𝑢2(𝑡) = (∑∞
𝑛=0 𝑐𝑛𝑡𝑛)2 = ∑∞

𝑚=0 ∑∞
𝑛=0 𝑐𝑚𝑐𝑛𝑡𝑚+𝑛 (54) 

 

 

 𝑡𝑢2(𝑡) = 𝑡 ⋅ ∑∞
𝑚=0 ∑∞

𝑛=0 𝑐𝑚𝑐𝑛𝑡𝑚+𝑛 = ∑∞
𝑚=0 ∑∞

𝑛=0 𝑐𝑚𝑐𝑛𝑡𝑚+𝑛+1 (55) 
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 𝑘 = ∫
1

0
𝑡𝑢2(𝑡) 𝑑𝑡 = ∫

1

0
∑∞

𝑚=0 ∑∞
𝑛=0 𝑐𝑚𝑐𝑛𝑡𝑚+𝑛+1 𝑑𝑡 (56) 

 

 

 = ∑∞
𝑚=0 ∑∞

𝑛=0 𝑐𝑚𝑐𝑛 ∫
1

0
𝑡𝑚+𝑛+1 𝑑𝑡 (57) 

 

 

 ∫
1

0
𝑡𝑚+𝑛+1 𝑑𝑡 =

1

𝑚+𝑛+2
 (58) 

 

 

 𝑘 = ∑∞
𝑚=0 ∑∞

𝑛=0
𝑐𝑚𝑐𝑛

𝑚+𝑛+2
 (59) 

 

Thus, substituting value of 𝑘 in equation (3), we get : 

 

 ℒ{𝑥(1 + 𝜆𝑘)} = (1 + 𝜆𝑘) ⋅
1

𝑠2 (60) 

Equate: 

 

 ∑∞
𝑛=0 𝑐𝑛

𝑛!

𝑠𝑛+1
= (1 + 𝜆𝑘)

1

𝑠2
 (61) 

 

Compare coefficients. The right-hand side has a term in 𝑠−2: 

 

 𝑛 = 1:    𝑐1
1!

𝑠1+1 = 𝑐1
1

𝑠2 (62) 

 

 

 𝑐1 = 1 + 𝜆𝑘 (63) 

 

For other 𝑛, coefficients are zero (𝑐0 = 𝑐2 = 𝑐3 = ⋯ = 0), so: 

 

 𝑢(𝑥) = 𝑐1𝑥 = (1 + 𝜆𝑘)𝑥 (64) 

 

Compute 𝑘: 

 

 𝑢(𝑡) = 𝑐1𝑡,    𝑢2(𝑡) = 𝑐1
2𝑡2 (65) 

 

 

 𝑘 = ∫
1

0
𝑡 ⋅ 𝑐1

2𝑡2 𝑑𝑡 = 𝑐1
2 ⋅

1

4
 (66) 

 

Since 𝑐1 = 1 + 𝜆𝑘: 

 

 𝑘 = (1 + 𝜆𝑘)2 ⋅
1

4
 (67) 

 

Let 𝑐1 = 𝑎: 
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 𝑘 = 𝑎2 ⋅
1

4
 (68) 

 

 

 𝑎 = 1 + 𝜆 ⋅
𝑎2

4
 (69) 

 

This is the same quadratic equation, confirming consistency. 

 

Final Solution 

 The analytic solutions to the nonlinear Fredholm integral equation are: 

 

 𝑢(𝑥) =
2(1+√1−𝜆)

𝜆
𝑥 (70) 

 

 

 𝑢(𝑥) =
2(1−√1−𝜆)

𝜆
𝑥 (71) 

 

These solutions are valid for 𝜆 ≤ 1. For 𝜆 = 0, the solution is 𝑢(𝑥) = 𝑥. For 𝜆 = 1, the 

solution is 𝑢(𝑥) = 2𝑥. 

 

Furthermore, a MATLAB program is developed to compute and visualize these solutions, 

offering a numerical perspective that complements the analytical work. The investigation focuses 

on the case where 𝜆 = 0.7, resulting in two linear solutions that are subsequently plotted and 

verified. By examining special cases such as 𝜆 = 0 and 𝜆 = 1, we confirm the consistency of our 

solutions with known boundary conditions. 

 

MATLAB PROGRAM [6] 

 

% MATLAB program to solve the nonlinear Fredholm integral equation 

% u(x) = x + lambda * x * integral_0^1 (t * u^2(t) dt) 

% Analytic solution: u(x) = a * x, where a satisfies lambda * a^2 - 4*a + 4 = 0 

 

% Clear workspace and command window 

clear all; 

clc; 

 

lambda = input('Enter the value of lambda (e.g., 0.5): '); 

 

if lambda > 1 

    fprintf('Warning: For lambda > 1, solutions may be complex.\n'); 

end 

 

coeffs = [lambda, -4, 4]; 
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roots_a = roots(coeffs); 

 

% Extract the two solutions for a 

a1 = roots_a(1);  

a2 = roots_a(2);  

 

% Display the coefficients 

fprintf('Solution coefficients:\n'); 

fprintf('a1 = %.4f\n', a1); 

fprintf('a2 = %.4f\n', a2); 

 

% Define x values for plotting 

x = linspace(0, 1, 100); 

 

% Compute the solutions u(x) = a * x 

u1 = a1 * x; 

u2 = a2 * x; 

 

% Plot the solutions 

figure; 

plot(x, u1, 'b-', 'LineWidth', 2, 'DisplayName', sprintf('u(x) = %.4f * x', a1)); 

hold on; 

plot(x, u2, 'r--', 'LineWidth', 2, 'DisplayName', sprintf('u(x) = %.4f * x', a2)); 

xlabel('x'); 

ylabel('u(x)'); 

title(['Solutions to u(x) = x + \lambda x \int_0^1 t u^2(t) dt, \lambda = ', num2str(lambda)]); 

legend('show'); 

grid on; 

 

% Verification of solutions 

fprintf('\nVerification of solutions:\n'); 

 

% For solution u1(x) = a1 * x 

t = linspace(0, 1, 1000); % Fine mesh for numerical integration 

u1_t = a1 * t; 

integrand = t .* (u1_t.^2); 

k1 = trapz(t, integrand); % Numerical integration of t * u^2(t) 

rhs1 = x * (1 + lambda * k1); 

fprintf('Solution 1: u(x) = %.4f * x\n', a1); 

fprintf('Integral k = %.4f\n', k1); 

fprintf('Max difference |u(x) - (x + lambda * x * k)| = %.4e\n', max(abs(u1 - rhs1))); 

 

% For solution u2(x) = a2 * x 

u2_t = a2 * t; 

integrand = t .* (u2_t.^2); 
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k2 = trapz(t, integrand); 

rhs2 = x * (1 + lambda * k2); 

fprintf('Solution 2: u(x) = %.4f * x\n', a2); 

fprintf('Integral k = %.4f\n', k2); 

fprintf('Max difference |u(x) - (x + lambda * x * k)| = %.4e\n', max(abs(u2 - rhs2))); 

 

OUTPUT 

Enter the value of lambda (e.g., 0.5): 0.7 

Solution coefficients: 

a1 = 4.4221 

a2 = 1.2922 

 

Verification of solutions: 

Solution 1: u(x) = 4.4221 * x 

Integral k = 4.8887 

Max difference |𝑢(𝑥)  − (𝑥 +  𝑙𝑎𝑚𝑏𝑑𝑎 ∗  𝑥 ∗  𝑘)| = 3.4289𝑒−06 

Solution 2: 𝑢(𝑥)  =  1.2922 ∗  𝑥 

Integral k = 0.4175 

Max difference |𝑢(𝑥)  − (𝑥 +  𝑙𝑎𝑚𝑏𝑑𝑎 ∗  𝑥 ∗  𝑘)| = 2.9281𝑒−07 

 

 
 

Analysis of Plot for Nonlinear Fredholm Integral Equation 
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Conclusion 

 The study successfully solves a nonlinear Fredholm integral equation using the Laplace-

series method, finding two linear solutions for 𝜆 =  0.7. The solutions have slopes of about 

4.4221 and 1.2922. They are confirmed to be correct through math checks and special cases   

(𝜆 =  0 and 𝜆 =  1). A MATLAB program also supports this by calculating and showing the 

solutions. It clearly shows how they behave and confirms they are correct with very little error. 

This work shows how powerful it is to use both analytical and numerical methods to understand 

complex equations. 
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