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ABSTRACT

By constructing two-player and multi-player game models and incorporating strategic
complementarity analysis from supermodular games, this paper reveals how individuals
increase their effort levels to cope with competition, leading to overall system resource waste.
On this basis, the paper further analyzes how different game parameters affect equilibrium
stability, showing how involution gradually forms through dynamic game evolution, and
validates the model through simulation experiments. The novelty of this paper lies in the first-
time application of supermodular games to the study of involution, providing a new theoretical
perspective and a detailed exploration of the formation mechanism of involution through multi-
level game models and simulation experiments. Furthermore, this paper proposes policy
recommendations to address involution, emphasizing the optimization of institutional design
and adjustments to incentive mechanisms to break the involution trap.

KEYWORDS: Involution; Supermodular Games; Strategic Complementarity; Policy
Intervention; Resource Allocation

I. INTRODUCTION

The phenomenon of “involution” has emerged as a pervasive economic and social issue,
widely present in fields such as education, the workplace, and business competition. It is
typically characterized by individuals continuously escalating their investments in pursuit of
minor relative advantages, only to fall into a trap of resource waste and reduced efficiency [1].
This phenomenon not only exacerbates societal competition pressures but also undermines the
efficiency of resource allocation [2]. The study of involution was first introduced by Geertz to
describe agricultural involution [1]. Over time, the concept of involution has been extended to
other social and economic fields, including academic competition in education, work pressures
in the workplace, and more [3]. Scholars in economics, sociology, and management have
recognized the ubiquity of involution and have begun to use game theory and evolutionary
games to analyze how individuals intensify their investments in competitive processes [4], [5].
Supermodular games, as a game theory model with strategic complementarity, provide an
effective way to describe how participants increase their effort levels in response to
competition, thereby leading to overall system resource waste [4]. Although the phenomenon
of involution has received widespread attention across various fields, existing research has
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primarily focused on qualitative analysis and lacks systematic quantitative models and
theoretical support. Traditional studies on involution tend to emphasize descriptive analysis and
case studies, often approached from the perspectives of sociology, economics, or education,
overlooking the system dynamics and complexity of interactions between individuals in game
theory. For example, while some studies explore the relationship between involution and
cultural capital, academic competition, and other factors, these studies have generally failed to
delve deeply into how individual behaviors, through strategic complementarity in games, drive
the intensification of involution. From the perspective of game theory, although existing
literature has attempted to use game models to analyze competitive behavior in involution, most
studies have not fully utilized supermodular games, a game model with strategic
complementarity. Supermodular games can effectively describe how strategies among
participants enhance each other [6], particularly in contexts where competition and cooperation
coexist, which is especially important in the case of involution. However, current models are
often oversimplified, neglecting nonlinear features and dynamic evolution processes in
individual decision-making, which prevents them from fully reflecting the complexity of real-
world involution phenomena. Moreover, although some studies attempt to explore the
involution phenomenon through experiments and case analyses [7], most empirical studies lack
systematic mathematical models, failing to reveal the comprehensive impact of parameter
changes on system behavior. Current research is weak in terms of quantitative analysis of
involution, particularly in exploring how strategy adjustments and institutional design can
alleviate or reverse the involution phenomenon, and a universally applicable theoretical
framework has not yet been formed. The innovation of this paper lies in the introduction of the
supermodular game model based on existing theoretical and empirical research, proposing a
new framework for involution games. Through this framework, the paper not only deeply
analyzes the formation mechanism of involution but also validates the model’s effectiveness
through simulation experiments, providing quantitative tools and policy recommendations for
addressing involution. This theoretical extension fills the gap in existing research regarding the
modeling and governance of involution phenomena, and offers new perspectives and
methodological support for future research.

IT RELATED WORK
II-A  RESEARCH ON INVOLUTION

The concept of involution was first used by the American anthropologist Alexander
Goldenweiser to describe the phenomenon where a cultural pattern, once reaching a certain
form, is unable to evolve into a new one [8]. Geertz applied this concept to analyze the
agricultural economy of Java [1]. Tversky and Kahneman’s “prospect theory” offers important
insights into the involution phenomenon, especially in the field of behavioral economics, where
individuals’ loss aversion and overconfidence about future outcomes can lead to irrational
investments in competition [9]. Prasenjit Duara and Huang Zongzhi used the concept of
“involution” to analyze the development patterns of Chinese agricultural societies [10], [11].
Fei Xiaotong explored the complexity of rural Chinese society, analyzing the uneven
distribution of resources and inefficiency in rural society, and proposed that due to the lack of
external transformation, rural society falls into a self-reinforcing process of involution, thereby
revealing the manifestations of involution in different social structures [12]. In recent years, the
phenomenon of involution has gained further attention in fields such as education, the
workplace, and business competition. Xu proposed the relationship between involution and
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cultural capital. Cultural capital is typically expressed in forms such as family background,
educational resources, and social networks. The excessive pursuit of cultural capital is one of
the root causes of societal involution. When society overly emphasizes the accumulation of
cultural capital, it leads to increased invisible competitive pressures, thus resulting in
involution. This phenomenon not only restricts individual development space but also affects
overall social fairness and mobility [13]. Gan examined the negative impact of involution on
students’ learning motivation and psychological state from an ecological perspective, pointing
out that excessive academic pressure often stems from competition for social cultural capital.
In education, excessive competition leading to involution not only weakens students’ intrinsic
motivation but also exacerbates academic anxiety [3]. Chen further explored the manifestation
of educational involution under the “Double Reduction Policy” (which aims to reduce students’
academic burdens and extracurricular training). Despite the policy’s intention to alleviate
student pressure, excessive competition and societal expectations continue to exacerbate
academic anxiety, fully demonstrating the complexity of educational involution and the
difficulty of policy implementation. When faced with competitive pressures, students often
adopt excessive efforts, leading to the intensification of involution [14]. Xia researched the
involution phenomenon among finance students, noting that these students continually increase
their efforts in pursuit of academic and employment advantages, ultimately falling into a
vicious cycle of competition without obtaining corresponding returns [15]. Wang studied
Chinesestyle competitive behavior and argued that Chinese students exhibit a self-reinforcing
cycle in academic competition, leading to collective involution, making it difficult for
individuals to break through their own limitations [16]. Wang and others studied the involution
in the governance reform of the sports industry, using the example of a youth training base in
S City, analyzing how the sports industry faces involution in cooperation between schools and
clubs. The research shows that involutionary competition is not only reflected in academic
fields but also impacts the allocation of resources in sports and other industries, leading to
excessive competition and resource waste, which in turn affects the professional development
of young athletes [17]. Cai et al. studied the “public examination involution” phenomenon
among Chinese university students in the post-pandemic era, arguing that the pandemic has
intensified competition among students. In civil service exams and the college entrance
examination, the involution phenomenon has become more prominent. This behavior may seem
to help improve personal social status in the short term, but in the long run, it weakens the
overall creativity and development potential of society [18]. The above studies provide a
multidimensional analysis of the involution phenomenon but still have some limitations. First,
most existing studies focus on a single field or case analysis, lacking a cross-field, systematic
theoretical framework. Second, quantitative analysis is limited, and there is a lack of research
that uses mathematical models and experiments to verify the mechanisms of involution.

II-B RESEARCH ON SUPERMODULAR GAMES

Supermodular games, as an important branch of game theory, have been widely applied in
various fields, such as economics, industrial organization, social choice theory, and mechanism
design. The core feature of supermodular games is that the strategies of the players exhibit
strategic complementarity, meaning that one player’s strategy choice increases the marginal
benefit of other participants’ strategies. Supermodular games provide a theoretical framework
for analyzing interdependencies in market competition, social interactions, and decision-
making. Lazear, in his study of workplace incentive mechanisms, proposed an analytical
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framework related to supermodular games, discussing how individual behaviors interact in the
workplace through external incentive mechanisms, especially in terms of strategic
complementarity in collective competition and cooperation [19]. Fudenberg and Maskin
studied the application of supermodular games in repeated games, analyzing how to maintain
game stability under incomplete information. Their work provided important theoretical
support for dynamic games, especially in discussions on auction mechanisms and market
competition, where long-term interactions achieve stable equilibria [6]. Tirole applied
supermodular games to analyze firms’ strategic behavior in the market, revealing how firms
respond to competitors’ strategies by increasing output, lowering prices, and other tactics [20].
Building on this, Milgrom and Roberts introduced some important properties of supermodular
games, including the monotonicity of best response functions, the existence of Nash equilibria,
and the constructability of equilibria. They first applied supermodular games to economic
competition in manufacturing, discussing how prices and outputs in markets depend on each
other [7]. Topkis, in his classic work, defined the basic framework of supermodular games and
explored the role of strategic complementarity in games [4]. These studies laid the foundation
for later theoretical developments and applications. In social choice theory, supermodular
games have also been widely applied. Akerlof and Kranton studied the role of supermodular
games in social norms and social choice, proposing that participants’ behaviors are driven not
only by economic interests but also by social norms and cultural factors [2]. Their research
helps to understand how to adjust behavior in society through mechanism design to maximize
social welfare. Maskin and SjoOstrom applied supermodular games in auction design,
proposing how to improve bidder bids through the design of suitable auction mechanisms.
Their work provided theoretical support for optimizing auction mechanisms by analyzing
strategic complementarity among bidders [5]. Bergemann and Morris combined risk-sensitive
preferences with supermodular games to study how to optimize participants’ decisions under
incomplete information through appropriate game design [21]. Clark and Gertler, from the
perspective of competitive markets, studied the performance of supermodular games in market
behavior, especially how to change market participants’ strategic decisions by improving
product or service quality, thereby affecting market stability [22]. Choi explored the application
of supermodular games in market structure, proposing how changes in market structure
influence participants’ strategy choices and the evolution of outcomes [23]. In evolutionary
games, Guth and Klose studied the application of supermodular games in cooperative games,
proposing how cooperation can be maintained through strategy evolution in long-term games,
revealing the role of strategic complementarity in cooperative games [24]. Kreps, in his classic
work “Game Theory and Economic Modelling,” combined supermodular games with
economic modeling to explore how game theory can be used to describe and predict
participants’ behavior in markets [25]. Pereira and Sandholm studied the application of
supermodular games in artificial intelligence, proposing how agents can use supermodular
game theory to achieve optimal strategies in multi-agent systems, thus improving overall
system efficiency [26]. Chakraborty and Vohra further explored the design of mechanisms with
supermodular game preferences, analyzing how to use supermodular game theory in auction
and contract design to enhance the effectiveness of strategies [27]. Shapley and Whinston
applied the concept of supermodular games to network systems, studying how cooperation in
network games can be optimized using supermodular game theory, especially in terms of
cooperation behavior and strategic interactions in complex systems [28]. Sobel provided an
overview of the application of supermodular games in market design, especially in multi-party
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games and network games, offering important theoretical support for the design of modern
market mechanisms [29]. As theoretical research continues to deepen, the application of
supermodular games is expanding. In recent years, scholars have gradually applied it to
complex environments such as information asymmetry, heterogeneous participants, and
network games. Xu explored the application of supermodular games in environments with
information asymmetry, analyzing how participants choose optimal strategies under
incomplete information [30]. Her research broadens the perspective of supermodular game
applications. Zhang and Wang studied the application of supermodular games in social
networks, proposing how to optimize resource allocation by improving network structures,
reducing efficiency losses in competition [31]. They analyzed the mutual influence of
individual behavior in social networks and its impact on network stability. Li et al. further
extended the dynamic model of supermodular games, proposing how to adjust game outcomes
through policy interventions in multi-round games [32]. Their research emphasizes the
strategic behavior of participants in long-term interactions and its impact on social welfare.
These studies not only expand the theoretical application scope of supermodular games but
also provide powerful tools for decision-making in practical problems. Whether in industrial
organization, auction mechanisms, or evolutionary games, supermodular games play a vital
role. With the development of big data and artificial intelligence, the potential of supermodular
games in machine learning and data science remains worthy of further exploration.

III SUPERMODULAR GAME THEORY

Game theory studies the decisions made by participants who directly interact with each other
in competition, aiming to maximize individual utility and the equilibrium of their decisions. Its
core elements include participants, strategy sets, and payoff functions. Nash equilibrium is
widely used to describe the stable state of a game. In models such as the prisoner’s dilemma
and the tragedy of the commons, although all participants make individually optimal choices,
the collective outcome remains suboptimal, illustrating the paradox of ”individual rationality
leading to collective irrationality.” The characteristic of supermodular games is that in such
games, participants’ strategies have complementarity, meaning that the marginal utility caused
by increasing a participant’s strategy increases as the opponent’s strategy increases.
Supermodular games have pure strategy Nash equilibria. The upper bound of a participant’s
Nash equilibrium strategy exists, and this upper bound is an optimal response to the upper
bound of their opponent’s Nash equilibrium strategy. Similarly, the same applies to the lower
bound.

Definition II1.1. Let the strategy set S; for each participant i be a subset of the finite-dimensional
Euclidean space R , then

. I .
S = xl;_1S;is a subset of R”, where™ = 2_i—1 ™. Let x and y represent two vectors in some
Euclidean space RX, and we denote x > v to mean that for all k= 1,2 ,---,K, xx> yx. We denote
x >y to mean x > y and there exists a k such that x; > yx.

Define:
x Ay = (min(xy,y1), "+ ,min(xg,yx)) (1)
x Vy=(max(xi,p1), " ,max(xx,Vx)) 2
Ifs€Sands™ € §,thens As™ € Sand s Vs~ € §, meaning that S is a sublattice of R™.
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Definition III.2. A supermodular function is a function f: § — R from a sublattice S S R" to
the real numbers, if for all x,y € §, it satisfies:

FO+fmsfxay+fxvy Q)
Such a function is called a supermodular function, or simply a supermodular function on S§.
Definition IIL.3. If for all (s;s™) € S2and (s—i.5-:) € 5%,
where s;> s™;and s—i > s"—i, we have
wi(si,5—q) —ui(8;,5-3) > ui(si,5-4) — w5, 5-5), (4)

then u;(s;, s—;) exhibits increasing differences in (si.s-i) . Increasing differences indicate that
the increase 1n the opponent’s strategy increases the participant’s own strategy.

Definition I1I.4. A super modular game is defined as follows: for every i, the strateov <et S;is a
sublattice of, "™ the utility function u; exhibits increasing differences in (87;, S_i) , and u;
is super modular in (s;,5_;).

Corollary III.1. If S;= g™ and if u; is twice continuously differentiable with respect to s;, then
uiis supermodular in s;if and only if for any two components of s;, say sicand sii (i # [)
we have:

9,
OsipOsy — (5)

Topkis and Milgrom & Roberts pointed out that supermodular games have the following
properties [4], [7]:

« The best response function is monotonically increasing;

« Nash equilibria exist and can construct maximum/minimum equilibria;

« It is easy to analyze the comparative static responses of equilibria to parameters.
Supermodular Game Model of Involution
IV SUPERMODULAR GAME MODEL OF INVOLUTION
IV-A  TWO-PLAYER COMPETITIVE GAME FRAMEWORK

Consider a basic two-player competitive structure, where the participants are i = 1,2, and their
strategies are effort levels e; € [0,00). The participants determine their share of a resource or
payoff R based on their relative effort levels. The relative payoff function is defined as:
B
Pi(ei,ej) = ‘,f"' =, B=>1
e; + E’,_"; (6)

where f represents the intensity of competition or the incentive amplification coefficient. This
structure reflects the real-world logic of ” effort equals reward,” and as f increases, small
differences are amplified.

Each participant’s utility function is:
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U,-(e,-, €j) = Pi(el-,ej) “R-— cezi (7)

where ¢ > 0 is the marginal cost coefficient. This function reflects the typical competitive
reward structure seen in fields such as education, the workplace, and research, where the
competition payoff is reduced by the cost of effort.

To find the optimal response function for participant i, we take the first derivative of U; with
respect to e;. Let i,j € {1,2} and § # j:

au,  op,
de; B de; e (8)

The first derivative of P; with respect to e;is:

op,

= -"ﬁpﬁil R

e e B [3yr

Z D )
Thus:

o]
AU ) R
C;EJ]‘ = ;5'(%?371 . :’75) — 2ce;
e; (e +e5)? (10)

Setting e — 0 we obtain the optimal response function for

player j, BR;(e;), which satisfies:

3
B—1 e; R
., . . = 2(58';

(ef +¢7) (11)

Be

This equation is implicitly defined but can be studied numerically or qualitatively.

To prove that this game is a supermodular game, we need to verify if it satisfies the monotonic
response” condition, meaning that an increase in the opponent’s strategy will encourage the
participant to increase their own effort.

We examine the cross partial derivative:

*U 0 Pl G R
dejde;  Oe; \' ' (c? + (_,‘j?)2 (12)

Since fe’; ' and R are constants with respect to e;, we can factor out the constants, denoted as:

. B
= B’ 'R i (%)
; dej ((f + (gh/i )2 (13)

Let:
u= e/‘j,v = (e/‘,-+ e/fj)2 (14)
Then:

d ruy w'v — ur'
de; ("U) - v? (15)
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where:

d

de;

!

‘ B ‘ g, d G1, ,
u (c;) = ,:‘3@? oo =20l + cl‘f) . —(c:) = 2,"3(’,:; Yl + c;} (16)

Substituting into the equation, we get:

i (___jii___) _ g1 (€ + ) —2e](e] +e]) (17)
dej \(e] +¢])? o (e + )3 '
= pef~t. G (Gt VPR el
(e +e))* o) s

Finally, we obtain:

A27T B _ B
o°U; 32 ReP—10-1 . €; — €
de;0e; v (r’*"i + ("’.3)1‘
/ i 6 (19)

We can see that:

82U,

22U,
0 e
; - If e > e, then 9¢;9¢:

-If e; < ¢, then 700 <

>0

This shows that the game does not satisfy the supermodular condition globally, but it has a”
conditional supermodular structure” in certain parameter ranges or local regions. This is
consistent with the real-world phenomenon of involution, where “competition amplifies after
a certain threshold.” For non-global supermodularity, we can introduce the following
definition:

Definition I'V.1. If a game satisfies the supermodular condition in a certain subset of the strategy
space, and this subset contains all feasible Nash equilibrium points, it is called a locally
supermodular game.

2°U;
In this model, when e; = ¢; and f is large, 9¢:9¢; >0 holds, 1.e., locally satisfying strategic
complementarity, and thus locally satisfying the supermodular structure. Therefore, we
introduce the following:

Strategic Complementarity Interval:{ (e;, e;) € R2 | |e; — ¢;| < €} (20)
In this region, there exists an equilibrium construction sequence

(the intersection points of the increasing best response functions):

ef ™ = BRi(c\"), €'V =BR;(e{") (21)

According to Tarski’s theorem, as long as the best response functions are monotonically
increasing and continuous, this sequence will converge to a stable point (¢1,€¢3) in the compact
set, 1.e., reaching an involution equilibrium. However, involution leads to social resource waste.
A Pareto improvement can be used to measure the social cost of involution. Let there exist a
low-effort configuration (" e1,e 2), which satisfies:
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Ui(e1,8) > Ui(el, e3), Us(e1,8) > Us(eq, e3) (22)

Then the current equilibrium (€1,€3) is a non-Pareto optimal state. To quantify this gap, we
introduce the social loss function:

2
L= Z (cefg - (‘6,?2)

i—1 (23)

where e°; is the ideal optimal effort level (the individual optimum without competitive
pressure). If L > 0, it indicates the “’purely resource loss caused by involution,” that is, the
social cost of "effort waste.”

IV-B EXTENSION OF THE TWO-PLAYER MODEL
Let the set of participants be i = 1,2,...,N, and each

participant chooses an effort level e; € [0,00). The utility is:

€i

Uiler,ea, -+ en) = — R—Fe
e (24)
We can further generalize the effort level e; to a function of effort g(e;), then the utility is:
Uiler,ea, - ,en) = \q(—) . }?—ceff
> i=19(¢;) (25)

where g(e;) can be a linear function or an S-shaped function, etc. If we set g(e;) = tanh(Be;), B
> () controls the intensity of marginal incentives. The derivative is calculated as follows:

gl(e) =B SeChz(Be), where sech(z) = (26)

(Uﬁ]l (x)

Substitute this into the partial derivative expression:

27 d gle;)
de; [g{en) + (N — Dgle”)
(28) _ g'(ei)(g(ei) + (N —1)g(e")) — g(ei)g'(e:)
(g(e )+(\—1)G( ))

Simplify:
R
(g(e:) + (N —1)g(e*))?

5 9/(e) - (N = Dg(e)] = 2ee; (29

Substitute g(e;) = tanh(Be;) and g'(e;) = B - sech?(Be;) into the above equation:

R 2
(tanh(Be;) + (N — 1) tanh(Be;))? B sech’(Bey) (30)
[(N — 1) tanh(Be;)] = 2ce; (31)

This expression can be used to solve for the stable effort level ex, which has consistency and
feedback structure. Implicit differentiation of the given equation can be used to verify.
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Taking the derivative of both sides with respect to e;:

(32) 9 1t
de; | (tanh(Be;) + (N — 1) tanh(Be;))?
(33) -B -sech®(Be;) - [(N — 1) tanh(Be;)]
(34) — 9 o,
= 7, [2ce;]

By the chain rule, we ultimately obtain:

A
de; ~ 7 (35)

This shows that as the effort strategy e; of other participants increases, the effort strategy e; of
participant i also increases. The involution phenomenon typically manifests as individuals’
increasing input in resources, effort, etc., but the returns or benefits they receive gradually
diminish. In this case, the Sshaped function can effectively characterize this phenomenon. The
characteristic of the S-shaped function is that as the input increases, the rate of increase in
output gradually diminishes. When the input is at low values, the function value increases
rapidly, and as the input increases, the increment slows down and eventually approaches an
upper limit (i.e., saturation). In the context of involution, this characteristic can simulate the
diminishing effect of individuals or organizations’ investments in competition.

IV-C DYNAMIC MODEL ANALYSIS

In reality, involution is not a one-time decision but a dynamic evolutionary process that
gradually forms through long-term repeated interactions. Therefore, consider the following
structure of an infinite repeated game model:

Let the set of participants be i = 1,2,...,N, and each participant chooses an effort level ¢'; € [0,0)
at each stage t = 0,1,2,.... Their current utility is:

ot
ul = _ole) R — c(el)?

i

Sisi9(e) (36)

where g(x) i1s a monotonically increasing incentive function, typically an S-shaped function
like g(x) = tanh(Bx), with B > 0 controlling the strength of marginal incentives.

The total utility of the participant is the sum of the discounted utilities over all stages:

U,,_:* stul, §€(0,1)
; (37)

where 0 is the discount factor, representing the participant’s
degree of future utility valuation.

The participant’s strategy is a mapping: oi: H' — ¢';, where H' represents the history information
set. For simplicity, we limit the analysis to the Markov Perfect Equilibrium (MPE) framework,
where the current strategy only depends on the previous period’s behavior levels. Assuming all
participants adopt symmetric strategies and there exists a stable state ¢’;= e*, such that for all
t
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¥ — o g(ffj) . _ el STT. (% a9g
et = omag{ Sty ey R o +OU} 69

This is equivalent to solving the following fixed-point problem:

d [ g(ei) R — ce

- = =0 ate =¢e"
de; | ge:) + (N — 1)g(e*) ‘

(39)

Considering the perturbation of the initial state €’ deviating from ex*, the system follows the
update path:

e;"' = BR(e" ;) where BR(") is the best response function (40)
If strategic complementarity exists (i.e., BR is monotonically increasing), then:
efl>el= el fe” if the initial level is too high (41)

To prove the existence of strategic complementarity, we need to show that the best response
function BR(-) is monotonically increasing. Specifically, we need to prove that for all
participants j = i, the best response function BR(e—;) is increasing with respect to the other
participant’s effort ¢;, i.e.:

OBR(e_i) _
Be; (42)

IV-D INVOLUTION TRAP AND INSTITUTIONAL DESIGN

This monotonically increasing dynamic path will lead to involution cascading, meaning that
individual behaviors are driven by feedback, continuously escalating, eventually reaching a
nonoptimal stable state.

Definition IV.2. (Involution Trap): If there exists a stable effort level eco > e°, where e° is the
socially optimal effort level, and all individuals cannot unilaterally escape from this state, the
system is said to be trapped in the involution trap.

Based on the model analysis, to break the involution trap and suppress or reverse the trend of
involution, the following measures should be taken:

1) Break the positive feedback loop: £ can be understood as the relative ranking weight in
the game. By adjusting S, the competitive pressure can be made more balanced, reducing
the incentive effect amplified by small differences. An absolute threshold reward and
punishment mechanism reduces the intense competition caused by relative comparisons
(refer to the simulation experiments section).

2) Increase marginal cost awareness: Theoretically, an individual’s effort will have
“increasing marginal costs,” meaning that as effort increases, the marginal benefit
decreases. With the amplification of small differences, individuals may over-invest and
ignore cost effects. 1) According to the economic law of diminishing marginal utility, as
an individual increases their effort (such as work hours, study time, etc.), the utility or
return they receive gradually decreases. Without appropriate institutional or mechanism
guidance, individuals are prone to fall into the “over-effort” trap with no corresponding
reward. 2) Due to the “cognitive dissonance” principle, individuals may not clearly
perceive the cost of their efforts or may underestimate the loss caused by excessive effort.
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Therefore, institutional design or social advocacy is required to enhance individual
awareness of these costs and avoid over-investment. 3) From the perspective

of the ”consumerism trap” in sociological theory, excessive competition will lead individuals
into endless efforts, rather than genuinely pursuing self-value improvement.

3) Control institutional competition structure: For example, reduce excessive performance
comparisons in the workplace, and promote a diversified evaluation system in education.
In the workplace, the assessment can be expanded to include personal growth and team
collaboration, rather than just quantitative outcomes. In education, ’individual progress”
can be promoted instead of merely ranking competition.

4) Introduce cooperative mechanisms: Design cooperative incentive functions (e.g., team-
shared rewards) to shift individual behavior from zero-sum games to collaborative games,
increasing the motivation for win-win cooperation. Collaborative games, through
common goals and shared rewards, can effectively reduce the negative effects of pure
competition.

5) Institutional punishment for excessive effort: For example, setting a maximum working
hour limit, prohibiting mandatory overtime, setting limits on academic workload, etc., to
prevent physical and mental health problems caused by over-effort. Additionally, through
legislation or policy implementation, ensure that these restrictions are effectively
enforced.

The above measures can be understood as ”structural regulation” of the parameters in the game
model, weakening or eliminating the positive feedback pressure caused by strategic
complementarity. Further, an involution governance model based on mechanism design theory
can be generated. Let the institutional designer be the leader, and their goal is to maximize the
social welfare function y — s~ 1, . The following optimization problem can be considered:

N
ax SR — o I o TV (4
1111[=1(\ZIL [Ui(eie—i)] st e = rllhllifiL\ Ui(el,e_i;T)  (43)

where I" represents the institutional constraint mechanism (such as taxes, incentives, controls,
etc.), and G is the space of implementable institutional mechanisms. This model has multiagent
information game characteristics and requires an in-depth solution considering conditions such
as incentive compatibility and implementability.

V SIMULATION EXPERIMENTS

To verify the explanatory power and effectiveness of the supermodular game model for the
involution phenomenon, a series of simulation experiments were designed. These experiments
explore the impact of different parameters and heterogeneous participants on involution
equilibrium.

V-A EXPERIMENTAL DESIGN

The main objective of the experiments is to explore the evolution process and stability of the
involution phenomenon under different parameter combinations, with particular focus on the
following aspects:
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e Parameter Sensitivity Analysis: By varying the competition incentive coefficient ()
and individual effort cost coefficient (c), we analyze how these parameters affect the
involution equilibrium.

e Heterogeneous Participant Analysis: Simulate heterogeneous participants, i.e.,
differences in the objective functions and cost structures of different individuals, and
observe how these differences affect the involution mechanism.

V-B EXPERIMENTAL PROCESS
1) PARAMETER SENSITIVITY ANALYSIS

In this part of the experiment, the effects of different incentive strengths () and individual
effort cost coefficients (c) on the involution equilibrium were explored. By setting different
values for f (B =1.5,2.0,3.0,--- ,9.0) and ¢ (¢ =0.1,0.5,1.0,--- ,9.0), the relative payoff structure
and optimal response functions were calculated. Specifically, by adjusting these parameters,
we observed the regularities of strategy choices and equilibrium changes and plotted the
relative payoff structure graph (e.g., Figure 1) and the optimal response function graph (e.g.,
Figure 2). Figure 1 shows the relative payoff structure under different incentive strengths 3,
while Figure 2 displays the best response curve of participant i to competitor j’s effort ej under
different values of the effort cost coefficient c.

From Figure 1, it can be observed that when f is small (e.g., p = 1.5), the payoff structure is
relatively smooth, and the difference

implementation return (8=1.5) implementation return (8=2.0) implementation return (8=3.0)
-1.00 5 .

1.00 1.00

075 -0.75 075

- 0.50 - 0.50 - 0.50

(effort

0102030405060 7080
& (effort)

0102030405060 080

e (effort

0102030405068

-0.25 -0.25 -0.25

~0.00 -0.00

0102 0 4% & N0 0 01020 4 % & N & 010 20 % & 5 & M &
& (effort) & (effort) & (effort)

implementation return (8 =4.0) implementation return (8 =5.0) implementation return (8 =6.0)
-1.00

075

-0.50

’»025

- 0.00

e (effort)
01020304050607080
e (effort)
01020 304050 60 70 80
e (effort)

0102030405060 7080

01020 440 5%« N & 0 10 20 0 & %0 €@ 0 &

01020 % & 5% & N &
& (effort) & (effort) & (effort)

implementation return (8=7.0) — implementation return (8 =28.0) T implementation return (8=9.0) —
R -0.75 H 075 .-
£3° : g £23
2 -0.50 £ 3 050 g &
e8] -0.25 g 025 68
= 0.00 S -0.00 s:

010 20 0 & 0 & N &
e (effort) € (effort) € (effort)

0 1020 0 4 % & M &

01020 0 &£ %0 & 0 &

Fig. 1. Heatmap showing the impact of different incentive strengths 8
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Fig. 2. Best response curve under different c values

in effort has a small impact on the payoff, which is reflected in the relatively uniform color
distribution. As P increases, the payoff structure becomes more asymmetric, especially when
ej is large, where the relative payoff for ei significantly decreases, reflected in more purple
regions. When the  value reaches a high level (e.g., B = 9.0), the difference in effort has a more
significant impact on the relative payoff, with the payoft curve changing sharply. Overall,
increasing [ strengthens the effect of differences in participants’ effort levels, so that under
certain conditions, participants with lower effort levels will face lower payoffs.

From Figure 2, it can be observed that for small values of ej, particularly when ¢ = 0.1, the best
response ei of participant i shows a large value and decreases rapidly as ej increases, indicating
that participant i responds with higher effort to lowereffort participant j. As c increases,
especially when c reaches a large value (e.g., ¢ = 8.0 and ¢ = 9.0), the best response curve for
participant i flattens. This indicates that when c is higher, participant i’s effort level becomes
less sensitive to ej, and the effort level tends to a smaller and more stable value. When ¢j
increases further, all best response curves show a decreasing trend, suggesting that regardless
of the value of ¢, participant i will choose a lower effort level when ej is high, demonstrating a
certain “defensive” strategy. Overall, the variation in ¢ reflects participant i’s response
mechanism to participant j’s effort level, with lower values of ¢ leading to stronger reactions
in the early stages, while higher values of ¢ make participant i1 adopt a more conservative
strategy.

Further analysis of the relative payoff function for g(ei) = tanh(Bei), B > 0, and the effect of
different values of B on the involution phenomenon is shown in Figure 3.
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From Figure 3, it can be observed that when the value of B is small (B =0.1,0.2,0.3), the change
in the tanh function is relatively smooth, and the relative payoff changes slowly with respect
to ei. In this case, the effort level has a small impact on the relative payoff. As the effort level
increases, the change in relative payoff is small, and the color variation is relatively uniform.
As B increases (B =0.4,0.5,0.6), the slope of the tanh function increases, and the color changes
in the heatmap become more noticeable, indicating that the relative payoft becomes more
sensitive to changes in effort level. In this case, when ei is small, the relative payoff changes
slowly, but as ei increases, the growth rate of the relative payoff increases, and the color
gradient in the chart becomes more pronounced. When B increases to higher values (B =
0.7,0.8,0.9), the slope of the tanh function becomes very steep, and the heatmap shows that the
relative payoft is extremely sensitive to changes in ei. At this point, when ei is small (close to
zero), the relative payoff tends to zero, while for large ei, the relative payoff approaches 1. The
heatmap displays a very strong color gradient, indicating that effort level has a dramatic impact
on relative payoff.

Overall, as B increases, the sensitivity of the payoff function to effort level increases, which is
reflected in the more intense color changes in the heatmap. This phenomenon reflects the
typical feature of involution, where competition intensifies, ultimately leading to efficiency
reduction.

2) HETEROGENEOUS PARTICIPANT ANALYSIS

Heterogeneous participants are introduced to simulate diversity in real-world scenarios.
Specifically, it is assumed that each participant has differences in their objective functions and
cost structures, which can be simulated by introducing the parameter o to model individual
heterogeneity. For example, participants i and j differ in their effort costs, with o controlling
the impact of cost on individual behavior. To better understand how heterogeneity affects
participant behavior in the game, we visualize the effect of different heterogeneity parameters
a and competitors’ efforts ej on the optimal response function ei through heatmaps, as shown
in Figure 4.

From Figure 4, it can be seen that as ej increases, the optimal response function ei with respect
to ej shows a clear increasing trend. Especially at higher values of ¢j, the optimal response
function increases more significantly, indicating that as competition pressure increases,
participants also increase their effort accordingly, thereby intensifying the involution
phenomenon. Furthermore, as the heterogeneity parameter a increases, individual strategy
choices become more sensitive. This suggests that different types of participants show more
divergent behavior in the game, leading to greater instability in the overall game and further
promoting involution.
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V-C Experimental Results Explanation

The main experimental results obtained from the above experiments are as follows:
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e Impact of Incentive Strength: As the competition incentive coefficient  increases, the
effort differences among participants are rapidly amplified, and the system’s involution
significantly intensifies. The system exhibits stronger competition reinforcement
effects. As ¢ increases, individual effort input gradually decreases, which affects the
equilibrium state of the entire game system. At lower values of c, participants tend to
increase their effort to gain a competitive advantage, while at higher values of c, the
marginal cost of effort becomes too high, leading individuals to choose a lower effort
level, ultimately entering a lower involution equilibrium.

e Impact of Heterogeneous Participants: After introducing heterogeneous participants,
the system’s stability and equilibrium changed. Differences in objective functions and
cost structures led to greater strategy differences among participants, which further
affected the formation and evolution of involution.

VI CONCLUSION AND OUTLOOK
VI-A MODEL SUMMARY AND THEORETICAL CONTRIBUTIONS

Based on supermodular game theory, various forms of involution models were constructed,
including two-player or multi-player static games as well as dynamic repeated game models.
Through rigorous mathematical derivations and structural analysis, the simulation experiments
further validated the model’s predictive capability and demonstrated the dynamic response of
system behavior and resource loss patterns under typical parameter structures. Overall, the key
characteristics of involution revealed by the model are as follows:

Strategic complementarity is the fundamental driving force behind the involution mechanism.
The effort levels between participants have a mutually amplifying effect, forming a positive
feedback loop.

e Involution equilibria are non-Pareto optimal. The game structure leads to a decrease in
individual utility and low social resource allocation efficiency.

e Dynamic evolutionary paths carry the risk of trap lock-in. In repeated interactions, the
system may stabilize in a highinput, low-efficiency state.

e The competition incentive strength f and the discount factor J are crucial parameters
driving the amplification of effort levels.

e Supermodular games provide a tool for parameter sensitivity analysis. Through
comparative static analysis, key regulatory parameters and institutional intervention
levers can be identified.

This model systematically explains the involution phenomenon in various fields such as
education, the workplace, and business, with good theoretical extensibility and practical
adaptability. It points out that involution is not caused by individual laziness or greed but is an
inevitable result of the game structure. The solution to involution does not require “everyone
to stop striving” but to avoid falling into the institutional trap of “everyone having to strive.”
Therefore, the path to solving involution must begin at the institutional level, optimizing
resource allocation rules and reconstructing incentive mechanisms, so as to break out of the
”competition-based inefficiency” collective trap and move toward a “coordinated and
effective” social equilibrium.
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VI-B RESEARCH OUTLOOK

Future research can expand in the following directions: considering incomplete information
scenarios regarding f or others’ effort levels among participants; introducing cost structure or
objective function differences to explore local and global equilibria in hierarchical games;
combining real-world institutional environments for institutional simulations to test the
feasibility of optimal mechanisms; studying the stability and disturbance response of involution
equilibria from a dynamic systems perspective; and the ultimate goal is to organically integrate
micro-incentive mechanisms, game structures, and macro-institutional optimization to provide
theoretical support and empirical tools for solving the involution dilemma.
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