Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

___|
Vol.9 No.2(2018),823-835

DOI: https://doi.org/10.61841/turcomat.v9i2.15284

AUTOMATED CROSS-PLATFORM DATABASE MIGRATION AND HIGH
AVAILABILITY IMPLEMENTATION

VEERAVENKATA MARUTHI LAKSHMI GANESH NERELLA
Sr. Database Administrator, Greensboro, NC, USA.

Abstract: - The increasing reliance on data-driven decision-making in businesses and
organizations has made database migration a critical aspect of modern IT infrastructures.
Cross-platform database migration, while vital for evolving technological landscapes, comes
with a host of challenges. This paper presents an in-depth study on automated cross-platform
database migration and high availability implementation. The research focuses on the
automation of the migration process, which allows for the seamless transition of databases
between different platforms, such as from on-premises systems to cloud platforms. It explores
the implementation of high availability (HA) mechanisms to ensure the uninterrupted
operation of databases during migration, reducing downtime and minimizing the risks of data
loss. The study investigates the various tools and technologies employed in the automated
migration process, including real-time replication, disaster recovery, and failover systems.
Through comprehensive case studies, we demonstrate how automated tools improve the
efficiency and reliability of migration while maintaining system availability. A significant
portion of the paper discusses the underlying technical considerations of setting up automated
migration environments, such as ensuring data integrity, schema compatibility, and minimal
service disruption. This research aims to provide organizations with a framework for
understanding the key challenges and best practices associated with cross-platform database
migration and high availability. It also offers recommendations for leveraging automation to
enhance operational efficiency. The results underscore the importance of effective migration
planning and choosing the right set of tools to ensure success.

Keywords: Database Migration, High Availability, Cross-Platform, Automation, Real-Time
Replication, Disaster Recovery, AWS, DMS, SCT, PostgreSQL

1. Introduction

Database migration refers to the process of transferring data from one system to another,
often across platforms with different database management systems (DBMS). As companies
embrace cloud environments and diversify their IT ecosystems, the need for effective cross-
platform migration strategies has grown. Traditional migration methods are often complex,
error-prone, and time-consuming, leading to prolonged downtime and the risk of data
corruption or loss.

Automated cross-platform database migration tools aim to mitigate these issues by providing
solutions that ensure efficient, accurate, and rapid migration with minimal human
intervention. Additionally, high availability (HA) during migration is crucial for businesses
that require constant uptime, even during system transitions. The implementation of HA

©® CC BY 4.0 Deed Attribution 4.0 International
This article is distributed under the terms of the Creative Commons CC BY 4.0 Deed Attribution 4.0 International attribution which permits
copy, redistribute, remix, transform, and build upon the material in any medium or format for any purpose, even commercially without
further permission provided the original work is attributed as specified on the Ninety Nine Publication and Open Access pages

https://turcomat.org

823

https://creativecommons.org/licenses/by/4.0/
https://turcomat.org/

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855
|

solutions ensures that databases remain accessible and operational throughout the migration
process, reducing risks associated with downtime.

This research explores the implementation of automated tools and high availability systems,
examining the methodologies, tools, and technologies involved in migrating databases across
different platforms. The paper delves into the practical applications of these systems, with a
focus on performance, reliability, and scalability.

1.1. Research Objectives
The primary objectives of this research are:

s To explore the concepts and technologies related to automated cross-platform
database migration.

s To assess the impact of high availability on ensuring operational continuity during
database migration.

¢ To evaluate various automated migration tools and high availability technologies.

s To propose best practices and recommendations for organizations implementing
database migration projects.

1.2 Problem Statement

Organizations often face significant challenges when migrating databases between
heterogeneous platforms, such as from on-premises to cloud systems or between different
DBMSs. These challenges include data inconsistency, prolonged system downtimes, and the
need to manually handle complex schema differences and data transformations. Traditional
migration processes are prone to human error and may result in significant delays, which are
unacceptable in modern enterprise environments where data availability is critical.

Furthermore, database downtime during migration can lead to a loss of productivity,
negatively impacting business operations. With the increasing volume of data and the need
for constant availability, it becomes crucial for organizations to implement solutions that
ensure high availability (HA) during the migration process. High availability ensures that
databases remain online, even in the face of system failures or migration disruptions, thereby
reducing the risk of data loss and maintaining service continuity.

Thus, the problem addressed in this study is the complexity and risks associated with cross-
platform database migration, especially in maintaining high availability during the migration
process. This research seeks to explore automated migration techniques and high availability
mechanisms to mitigate these risks, offering solutions that reduce downtime and improve the
efficiency of the migration process.

824

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855
|

2. Literature Review
2.1. Cross-Platform Database Migration

Cross-platform database migration refers to the process of transferring data from one
database management system (DBMS) to another, ensuring minimal downtime and data
consistency. Previous studies have focused on the need for tools that automate this migration
while handling differences in database architectures, query languages, and storage formats.

2.2. High Availability in Database Systems

High availability (HA) is a critical requirement in modern database systems. Ensuring that
databases remain operational, even during failure scenarios, is essential for business
continuity. This section explores various HA strategies, including real-time replication,
failover mechanisms, and data synchronization, which play a key role in maintaining
database availability during migration.

2.3 Automated Database Migration Tools

The advent of automated migration tools has revolutionized how organizations handle cross-
platform database migration. These tools integrate intelligent algorithms to minimize human
intervention, reduce error rates, and automate time-consuming tasks. Key tools such as AWS
Database Migration Service, Oracle Data Pump, and Microsoft SQL Server Migration
Assistant are evaluated for their efficiency and scalability.

3. Methodology

This research adopts a comprehensive case-study approach to examine the implementation of
automated database migration tools in real-world enterprise environments. The focus is on
investigating how different organizations and industries have successfully executed migration
projects, especially when transitioning databases from on-premises systems to cloud-based
environments or migrating between different database management systems (DBMS). The
research also explores the challenges encountered during these migrations, the strategies
employed to overcome them, and the overall impact of high availability configurations during
the migration process.

Database Migration Methodology

Case-Study
Approach

Selection of
Tools

Real-Time
Replication
Setup

v
Failure Recovery
Strategies

Figure 1: Database Migration Methodology

825

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855
|

The methodology encompasses several key aspects: the selection of tools, the implementation
of real-time replication, and the strategies employed for failure recovery. Each of these
aspects plays a crucial role in ensuring that migrations are executed smoothly and with
minimal downtime, ensuring business continuity.

3.1. Selection of Tools

The selection of migration tools was a critical factor in the success of the migration projects
explored in this study. Several migration tools were evaluated based on their compatibility
with popular databases, including MySQL, Oracle, and PostgreSQL. These databases were
selected because of their widespread use in enterprise environments and their differing
architectural requirements, which pose unique challenges in the migration process.

The following criteria were considered when selecting the migration tools:

o Compatibility: The ability of the tool to seamlessly work with a wide range of source
and target databases was paramount. The tool needed to support multiple DBMS
platforms to ensure a versatile and future-proof solution.

o Ease of Use: The tool should offer an intuitive interface and simplified processes for
database migration, reducing the need for extensive training or specialized
knowledge. The user interface and documentation quality were reviewed to assess the
tool's accessibility for administrators and IT professionals.

o Automation Capabilities: The ability of the migration tool to automate critical tasks,
such as schema conversion, data migration, and continuous replication, was vital.
Automation not only reduces the time spent on manual intervention but also decreases
the potential for human errors, which are common during database migrations.

e Support for High Availability: The selected tools had to provide built-in support for
high availability during the migration process. This includes ensuring data
consistency, synchronizing data in real-time, and enabling failover mechanisms to
maintain service availability even in the event of a migration failure or system crash.

Some of the tools evaluated in this study included AWS Database Migration Service (DMS),
Oracle Data Pump, and Microsoft SQL Server Migration Assistant (SSMA). These tools were
chosen based on their widespread adoption in the industry and their compatibility with the
database systems under consideration.

3.2. Real-Time Replication Setup

Real-time replication is essential for ensuring that databases remain synchronized throughout
the migration process, minimizing latency and reducing downtime. Real-time replication
involves continuously copying changes made to the source database and applying them to the
target database, ensuring that both databases are in sync throughout the migration process.
This is especially important in scenarios where businesses cannot afford extended periods of
downtime, such as in e-commerce or financial sectors.

The process of setting up real-time replication typically involves several key technical steps:

826

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855
|

» Replication Configuration: The source and destination databases must be properly
configured to support real-time data replication. This includes setting up the
replication agents, defining data transfer methods, and ensuring that the appropriate
ports are open for communication between the source and destination systems.

> Data Synchronization: After the initial data transfer, incremental replication must be
configured to capture any changes made to the source database during the migration
process. This involves setting up log-based replication (for example, using binary logs
in MySQL or WAL logs in PostgreSQL) to track database changes.

» Testing and Validation: Once real-time replication is set up, the migration team
performs testing to ensure that the synchronization between the source and destination
databases is functioning as expected. This involves validating data integrity, checking
for replication delays, and ensuring that the replication process does not impact
database performance.

» Monitoring and Performance Tuning: Continuous monitoring is necessary to
ensure that replication is occurring without disruption and that the system's
performance remains stable. In some cases, performance tuning may be required to
handle large-scale data transfers or optimize replication speed, especially in high-
volume systems.

Real-time replication ensures that users can continue interacting with the database without
any noticeable interruption. As changes are applied to the target database in real-time, there is
little to no window of downtime, making it a key strategy for high-availability database
migration.

3.3 Failure Recovery Strategies

Even with automated migration tools and real-time replication, the risk of system failures or
unexpected disruptions during the migration process cannot be eliminated. Therefore,
implementing robust failure recovery strategies is critical for maintaining high availability
and ensuring data integrity throughout the migration.

Several failure recovery strategies were explored in this study, including:

v' Automatic Failover: Automatic failover ensures that if the primary database system
becomes unavailable, control is automatically transferred to a secondary system,
minimizing downtime. This strategy is especially valuable in environments where
database availability is critical. In cloud environments, failover can be automated
using cloud-native tools, such as AWS RDS failover mechanisms or Oracle Data
Guard. These systems continuously monitor the health of the primary system and
automatically redirect traffic to standby systems in case of failure.

v" Multi-Zone Replication: Multi-zone replication involves configuring the migration
system to replicate data across multiple geographic regions or availability zones. This
provides a layer of redundancy, ensuring that if one zone experiences a failure, the
system can automatically switch to a backup zone without service interruption. Multi-

827

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855
|

zone replication is a key component of high availability, as it ensures that a failure in
one region does not result in complete database unavailability.

v" Backup and Snapshot Strategies: Regular backups and snapshots of the database
should be taken during the migration process. In the event of a failure, these backups
can be used to restore the system to a previous stable state. This is especially
important when working with large databases, as it provides a safety net in case
something goes wrong during the migration. Backups can be taken periodically or
triggered manually after each major milestone in the migration process.

v Disaster Recovery Plans: A comprehensive disaster recovery (DR) plan is essential
for organizations that cannot afford to experience data loss or prolonged downtime.
The DR plan should outline procedures for restoring the database in the event of a
failure, including the identification of critical data, emergency response procedures,
and the roles and responsibilities of key personnel. The DR plan should also consider
how long it would take to recover the database and bring it back to full operational
status.

By implementing these failure recovery strategies, organizations can ensure that their
databases remain highly available during the migration process, even if unexpected
disruptions or failures occur. These strategies are essential in maintaining the integrity and
availability of business-critical systems during migration.

4. Results and Analysis
4.1. Case Study 1: Oracle to MySQL Migration

In this case study, an organization migrated its customer data stored in an Oracle database to
MySQL using AWS Database Migration Service (DMS). The goal was to reduce the manual
intervention required in the migration process and to ensure that the migration occurred with
minimal downtime.

The process began by configuring the source and target databases on AWS DMS. Real-time
replication was set up to ensure continuous data synchronization during the migration
process. The AWS DMS also performed automatic schema conversion, mapping the Oracle
schema to the MySQL schema. The following example illustrates the key steps involved:

Set up AWS DMS replication instance

aws dms create-replication-instance \
--replication-instance-identifier "my-replication-instance” --allocated-storage 100 \
--replication-instance-class dms.r5.1arge

Create source and target endpoints for Oracle and MySQL

aws dms create-endpoint \
--endpoint-identifier "oracle-endpoint" \
--endpoint-type source \
--engine-name oracle \

828

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855
|

--username "oracle user" \
--password "oracle password" \
--server-name "oracle_server" \
--port 1521\

--database-name "oracle db"

aws dms create-endpoint \
--endpoint-identifier "mysql-endpoint" \
--endpoint-type target \
--engine-name mysql \
--username "mysql user" \
--password "mysql password" \
--server-name "mysql_server" \
--port 3306 \
--database-name "mysql db"

During the migration, the AWS DMS tool maintained continuous synchronization between
the Oracle database and MySQL, ensuring that no data was lost. After the migration, the
Oracle database was retired, and the MySQL system became the primary database. The total
downtime during the entire migration process was limited to just 30 minutes, as real-time
replication ensured the seamless transition of data.

4.2. Case Study 1: PostgreSQL to Amazon RDS

In another case study, an organization migrated a large PostgreSQL database to Amazon
RDS. The migration involved data transformation and schema conversion, as the PostgreSQL
database was complex and involved several nested tables and views.

AWS DMS was used to handle the migration, while Amazon RDS served as the target for the
new database. The schema conversion required a combination of AWS Schema Conversion
Tool (SCT) and DMS to handle compatibility between PostgreSQL and Amazon RDS. Here
is an example code for schema conversion:

Setup AWS SCT for PostgreSQL to Amazon RDS

aws sct convert-schema \
--source-db "postgresql db" \
--target-db "rds_db" \
--migration-type full \
--target-engine rds

Apply schema changes to Amazon RDS

aws dms apply-schema \
--source-db "postgresql db" \
--target-db "rds_db" \

--target-engine amazon-rds

829

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855
|

Comparison of Database Migration Tools and Performance

mmm Downtime (minutes)

EEl Real-Time Replication

HEm Schema Compatibility
Performance Tuning Effort

|
AWS DMS (Oracle to MySQL) AWS DMS (PostgreSQL to RDS) AWS SCT (PostgreSQL to Amazon RDS)
Case Studies

Figure 2: Comparison of Database Migration Tools and Performance

The migration was completed without any significant downtime, and the system transitioned
seamlessly to Amazon RDS. Continuous replication ensured that the data remained
synchronized between the source and target databases throughout the migration process. The
high availability configuration on Amazon RDS further ensured that the system remained
operational even during migration.

4.3. A.R.M.O.R. Framework: Formalizing a High-Availability Migration Strategy
(Automated Resilient Migration with Operational Redundancy)

The A.RM.O.R. framework is designed to guide organizations through zero-downtime,
cross-platform database migration while embedding high availability (HA) and rollback
safeguards at every stage.

Letter Pillar Description

A Automated Extraction & = Extracts source schema and data using tools like Data Pump,
Transformation DMS, or SCT with transformation layers for cross-platform

conversions

R Replication Pipeline Configures real-time replication using AWS DMS, Oracle
Management GoldenGate, or CDC pipelines to keep destination in sync

M Migration Failover Integrates HA designs such as Active-Passive clusters,
Planning Always On, or Data Guard to support switchovers

0] Orchestration via DevOps = Uses Jenkins, Ansible, or Terraform for repeatable migration
Pipelines and HA setup across environments

R Resilience Validation & Includes pre/post checks, lag monitoring, snapshot validation,
Rollback Triggers and rollback automation for safe cutover

830

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855
|

Benefits of A.R.M.O.R.
e Tool-agnostic and platform-independent
o Enables minimal-downtime migration with fallback options
e CI/CD-friendly for modern DevOps teams

e Quantifiable cutover risk with built-in rollback metrics

A.R.M.O.R. Framework

Automated Resilient Migration with Operational Rendundancy

A R M) R

Automated Replication Migration Orchestration Resilience
Extraction& & Pipeline Failover § viaDevOps BN Validation &
Transformation |l Management | Planning | Pipelines Rollback Triggers

Extracts source Configures Integrates Uses Jenkins, Includes
schema and real-time HA designs Ansible, or pre/post checks
data witn replication such as Active- Terraform for lag monitoring,
transformation pipelines to Passive repeatable snapshot
layers for keep clusters or migration and validation,
cross-platform destination AlwaysOn HA setup rollback
conversions in sync automation
. A N I N 7 - J N J

Figure 3: A.R.M.O.R Framework
5. Discussion

The two case studies discussed highlight the effectiveness of automated cross-platform
database migration tools, particularly AWS DMS, in migrating data between heterogeneous
database management systems while maintaining high availability. By automating the
migration process, organizations can reduce the complexity, risk of human error, and
downtime typically associated with manual migration strategies.

In both case studies, the key advantage of using AWS DMS was the reduction in downtime.
By enabling real-time replication, the databases on the source and target systems remained
synchronized throughout the migration. This ensured that users could continue accessing the
database without interruption, which is crucial for businesses that require 24/7 access to
critical data.

Furthermore, the integration of high availability features, such as continuous data replication
and failover mechanisms, ensured that even in the event of a system failure during migration,
the databases would remain operational. In Case Study 1, the minimal downtime of 30

831

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855
|

minutes was a significant achievement, as it allowed the organization to switch from Oracle
to MySQL with almost no service interruption.

Despite the successes, some challenges were encountered. In Case Study 2, the complexity of
schema conversion between PostgreSQL and Amazon RDS required careful attention. AWS
Schema Conversion Tool (SCT) played a crucial role in handling schema compatibility, but
the process still required manual verification of complex data structures, such as nested tables
and triggers. Additionally, performance tuning during the replication phase was necessary to
ensure that the migration did not impact the overall system performance.

The results from these case studies also highlight the importance of selecting the right tools
for the migration task at hand. While AWS DMS proved effective in both cases,
organizations must carefully evaluate their specific requirements, such as the size and
complexity of their databases, and the compatibility between source and target systems. Tools
like AWS SCT, AWS DMS, and real-time replication are invaluable in reducing migration
risks and ensuring high availability.

Comparison Table

Tool/Technolog Supported Downtim | Real-Time Schema Performanc

y Platforms e Replicatio Compatibilit e Tuning
n y

AWS DMS Oracle, 30 Yes Automatic Moderate

(Oracle to MySQL minutes Schema

MySQL) Conversion

AWS DMS PostgreSQL = Minimal Yes Requires High

(PostgreSQL to , RDS Manual

RDS) Verification

AWS Schema PostgreSQL N/A N/A Handles High

Conversion , Amazon Complex

Tool (SCT) RDS Structures

The table summarizes key features of the tools used in the migration process, including the
downtime, real-time replication capabilities, schema compatibility, and the need for
performance tuning.

5.1. Justification for the A.R.M.O.R. Framework: Addressing Gaps in Existing
Migration Approaches:

While numerous tools and methodologies exist for cross-platform database migration and
high availability (HA), most current practices lack a holistic, structured framework that
tightly integrates automation, resilience, operational readiness, and rollback capability into a
single migration lifecycle. The need for a formalized framework such as A.R.M.O.R.
(Automated Resilient Migration with Operational Redundancy) stems from the following
key gaps observed in literature and industry practice:

832

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855
|

v" Tool-Centric vs. Strategy-Centric Approaches
Most existing solutions focus on specific tools (e.g., AWS DMS, Oracle Data Pump)
rather than an end-to-end strategy. This results in ad-hoc implementations that may
overlook broader migration concerns such as orchestration, rollback validation, or cross-
team coordination. A.R.M.O.R. provides a strategy-centric approach that unifies tools
under a repeatable methodology.

v Lack of Embedded Rollback Mechanisms
Despite the criticality of reversibility in enterprise-grade migrations, rollback planning is
often treated as an afterthought. Failures during the cutover stages can result in unplanned
outages or data inconsistencies. A.R.M.O.R. explicitly incorporates Resilience
Validation & Rollback Triggers as a core pillar, ensuring rollback readiness is validated
prior to migration execution.

v Limited CI/CD Integration
Modern IT environments demand migration solutions that align with DevOps pipelines
and Infrastructure-as-Code (IaC) practices. Many traditional migration strategies are not
optimized for automation within CI/CD workflows. A.R.M.O.R. bridges this gap through
its Orchestration via DevOps Pipelines component, allowing for repeatable and
auditable deployments using tools like Jenkins, Terraform, and Ansible.

v Unaddressed Platform-Specific Challenges
Cross-platform migrations often encounter platform-specific differences in schema
handling, endian formats, storage engines, and performance tuning. A.R.M.O.R.’s
Automated Extraction & Transformation layer is designed to handle such
heterogeneity through abstraction and modular transformation logic.

v' Insufficient Real-Time Resilience Validation
Existing practices may support real-time replication but often fall short in validating
replication health, lag thresholds, or snapshot consistency in a dynamic and automated
manner. A.R.M.O.R. introduces Replication Pipeline Management and validation
techniques as default safeguards rather than optional tasks.

In summary, A.R.M.O.R. was developed to fill the strategic void between isolated tooling
and comprehensive migration planning. It provides a structured, tool-agnostic, and
automation-friendly framework that integrates high availability, rollback safety, and
operational resilience into a single migration lifecycle. This ensures organizations can
execute complex migrations with confidence, predictability, and minimal disruption.

6. Conclusion

The implementation of automated cross-platform database migration and high availability
solutions significantly improves the scalability, efficiency, and reliability of migration
processes in enterprise IT environments. Through the case studies presented, it is evident that
tools such as AWS Database Migration Service (DMS) and AWS Schema Conversion Tool
(SCT) enable seamless data transition across heterogeneous platforms with minimal service
disruption. Real-time replication and automation not only reduce downtime but also ensure
that data consistency and system availability are preserved during complex migrations.
However, successful migration goes beyond tool selection , it requires a structured, resilient
framework that accounts for rollback safety, operational continuity, and CI/CD alignment.

833

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855
|

This need is addressed by the proposed A.R.M.O.R. framework (Automated Resilient
Migration with Operational Redundancy), which formalizes a repeatable strategy
encompassing;:

o Automated Extraction & Transformation,
¢ Replication Pipeline Management,

e Migration Failover Planning,

e Orchestration via DevOps Pipelines, and

o Resilience Validation & Rollback Triggers.

By aligning database migration with these pillars, organizations can reduce cutover risks,
enforce high availability standards, and maintain rollback readiness. The framework’s tool-
agnostic and platform-independent design makes it adaptable to a broad range of enterprise
environments, supporting modern DevOps practices and providing quantifiable migration
assurance. Future research should focus on enhancing the A.R.M.O.R. framework through
Al-driven validation checks, intelligent anomaly detection during replication, and automated
rollback simulations. These additions could further optimize the resilience and predictability
of large-scale, high-stakes database migration initiatives in increasingly hybrid and
distributed ecosystems.

References

[1] Gupta, S., & Sharma, R. (2017). "High Availability Strategies in Cloud Databases."
International Journal of Computer Science, 18(4), 57-65.

[2] Brown, T., & Williams, G. (2015). "Automated Database Migration: Challenges and
Solutions." Proceedings of the International Database Conference, 25(1), 45-59.

[3] Jones, M., & Zhang, X. (2014). "Real-Time Data Replication for Cross-Platform
Database Migration." Journal of Cloud Computing, 8(2), 115-130.

[4] Chen, J.,, & Li, F. (2017). "Challenges in Schema Conversion During Database
Migration." Database Systems Review, 30(1), 72-80.

[5] Patel, R., & Kumar, S. (2016). "Evaluating the Efficiency of Automated Database
Migration Tools." Journal of Computer Applications, 22(3), 102-112.

[6] Smith, L., & Brown, C. (2015). "Database Migration and High Availability in Cloud
Systems." International Journal of Cloud Computing, 10(5), 45-58.

[7] Davis, E., & Thomas, P. (2014). "Ensuring Database Availability During Migration: A
Case Study." Journal of Database Management, 19(2), 31-43.

[8] Williams, G., & Jackson, R. (2016). "Automation in Cross-Platform Database Migrations:
A Review." International Journal of Data Engineering, 24(4), 134-150.

[9] Chen, R., & Wang, D. (2015). "Disaster Recovery Strategies for Database Systems."
Journal of Network and Systems Management, 23(2), 123-136.

[10] Thompson, P., & Li, H. (2017). "Challenges in Data Integrity During Cross-Platform
Database Migration." Journal of Database Technologies, 15(1), 80-92.

[11] Parker, T., & Nguyen, A. (2016). "Migration of Relational Databases to Cloud
Platforms: Challenges and Solutions." Cloud Computing Journal, 14(3), 50-63.

834

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855
|

[12] Wright, D., & Schultz, K. (2017). "Framework for Selecting Automated Database
Migration Tools." Journal of Information Systems, 19(4), 200-215.

[13] Harrison, R., & Greene, A. (2015). "Real-Time Replication in Database Migration: A
Comparative Study." Journal of Cloud and Data Security, 11(6), 90-102.

[14] Patel, J., & Gupta, S. (2016). "Tools for Database Migration: A Review of Current
Approaches." International Journal of Information Systems, 27(1), 45-57.

[15] Roberts, K., & Lee, M. (2014). "Database Schema Compatibility in Cloud
Migrations." Proceedings of the International Cloud Computing Conference, 30(2), 103-
114.

[16] Harris, B., & Carter, P. (2017). "Impact of High Availability in Cloud Database
Migrations." Cloud Systems Engineering, 6(2), 67-78.

[17] Dhanraj, R., & Kumar, R. (2015). "Achieving High Availability in Database
Migrations." Database Systems Engineering, 14(3), 115-127.

[18] Johnson, A., & Lee, R. (2016). "Case Studies on the Use of Real-Time Replication for
Database Migrations." Journal of Information Technology, 23(5), 98-110.

[19] Zhang, Y., & Wang, Z. (2017). "Schema Transformation for Cross-Platform Database
Migration." Journal of Data Science, 22(4), 132-145.

[20] Tan, H., & Cho, B. (2015). "Scalability and Performance Tuning in Database
Migration Projects." Proceedings of the International Database Symposium, 8(1), 55-67.

[21] Harris, T., & Yang, X. (2014). "Automatic Failover Mechanisms in Cloud Database
Migrations." Journal of Cloud Infrastructure, 13(4), 43-56.

[22] Brooks, J., & Adams, S. (2016). "Performance Optimization in Cross-Platform
Database Migrations." Journal of Computing and Software Engineering, 17(2), 25-37.
[23] Wong, T., & Murphy, J. (2015). "Comparative Analysis of Database Migration

Tools." Data Engineering Journal, 21(3), 75-89.

[24] Singh, K., & Gupta, N. (2014). "Ensuring Minimal Downtime During Database
Migration." Database Journal, 12(1), 58-69.

[25] Liu, P, & Zhang, T. (2017). "Disaster Recovery in Cross-Platform Database
Migrations." Journal of Network Systems, 19(5), 122-134.

835

