
Turkish Journal of Computer and Mathematics Education Vol.12 No.2 (2021), 1866-1875

 Research Article

1866

Fast Frequent Item Mining from Big Data using Map Reduce and Bit Vectors

Thirumaran. S1, R. Nagarajan2

1Department of Computer Application, Alagappa Government Arts College, Karaikudi, India,
2Department of Computer and Information Science, Annamalai University, India

Thirumaran.s@gmail.com1

Article History: Received: 10 November 2020; Revised: 12 January 2021; Accepted: 27 January 2021;

Published online: 05 April 2021

Abstract: One of the most important areas that are constantly being focused recently is the big data and mining

frequent patterns from them is an interesting vertical which is perpetually being evolved and gained plethora of

attention among the research fraternities. Generally, the data is mined with the aid of Apriori based algorithms,

tree based algorithm and hash based algorithm but most of these existing algorithms suffer many snags and

limitations. This paper proposes a new method that overrides and overcomes the most common problems related

to speed, memory consumption and search space. The algorithm named Dual Mine employs binary vector

representation and vertical data representations in the map reduce and then discover the most patterns from the

large data sets. The Dual mine algorithm is then compared with some of the existing algorithms to determine the

efficiency of the proposed algorithm and from the experimental results it is quite evident that the proposed

algorithm “Dual Mine” outscored the other algorithms by a big magnitude with respect to speed and memory.

Keywords: Mining; Big Data; Bit Vectors; Map Reduce; Apriori & Hash Algorithm

1. Introduction

The main purpose of the data mining is to unearth the previously unknown patterns hidden beneath the raw

data [1]. The most common task that is hugely popular in the data mining vertical is frequent pattern mining where

the most frequently occurring items are found (market basket analysis, frequently purchased commodities by the

consumers, frequently visited web pages in a website). The pioneer in this frequent itemset mining is carried out

by Srikanthagarwal who proposed the Apriori algorithm [2]. The Apriori algorithm employs the test and generate

notion and then discovers the frequent patterns using level wise paradigm. But the most important drawback is

excessive generation of candidate itemset especially the 2-itemset candidates which will increase the operational

cost related to execution time and memory usage.

The FP-growth algorithm [3] is another popular frequent pattern mining algorithm that employs tree based

structure to unearth the frequently co-occurring item sets in the raw data. The important advantage of this

algorithm is that it scans the database only two times unlike Apriori which scans k time where k is the maximum

cardinality of the unearthed frequent patterns.

According to the author [Witten and Frank, 2000], the term Data mining is defined as a process discovering

hidden, anonymous, and putatively useful information from the given huge junk dataset. Data mining is one of the

most exciting information based invention development created by us to ease out decision making. Data mining

has become an essential service that can decode and unearth the cloaked patterns and data present clueless in the

raw data into human readable and understandable information for a wider usage. It has a wide scope of usage in

the field of marketing, bioengineering, gene technologies, finance, and engineering.

According to the authors David Hand, Mannila and Smyth [4] data mining is defined as,

“The analysis of (often large) observational data sets to find unsuspected relationships and to summarize

the data in novel ways that are both understandable and useful to the data owner”

2. Big Data

Big data is a mind boggling term for immense data sets having enormous, progressively changed and complex

structure with the difficulties of chronicling, investigating and imagining for additional methodology or results.

Big data consolidates data from email, online life, content reports, images, sound, video files, and from plenty of

sources that is absent in the customary social databases. Henceforth the big data will be unstructured, random and

irregular which represent a bigger risk in the investigation. Coming up next are the primary qualities of the big

data, and they are shown by 5V's,

Veracity-accentuations on the nature of the information crude data (e.g., suspiciousness, issue, and validity of

the data)

mailto:Thirumaran.s@gmail.com

Fast Frequent Item Mining from Big Data using Map Reduce and Bit Vectors

1867

Velocity – the speed at which data are filed or found (Speed and promptness).

Value - the handiness of data (Merit and worth).

Variety - different sorts, substance or configurations of data (Class, categories).

Volume-centers on the amount of data (Size and quantity).

Because of the 5Vs" characteristics of big data, new kinds of calculation are required for managing,

questioning, and handling these big data so as to enable improved fundamental administration, comprehension,

and procedure upgrade. This saturates and prods research and practices in data science, which plan to make

organized or quantitative data scientific calculations to look at (e.g., evaluate, clean, change, and model) and mine

big data.

3. Background of the Paper

The Knowledge Data Discovery process includes not many advances driving from crude data to some type of

significant and valuable knowledge. The huge component of data present in a database regularly outperforms the

ability to break down and mine it productively, in this manner bringing about a slack to comprehend the data totally

in wording with the business needs like benefit, item infiltration in the market, and promotions.

Frequent itemset mining has increased tremendous significance among the examination society generally since

the business houses have become globalized. It is basic for the business houses to tap the accessible data assets

conveniently to the full degree to advance their items all inclusive. Numerous affiliation rule based frequent itemset

mining calculations are created and proposed by various research researchers to improve and support the volume

of business exchanges over the globe.

4. Scope of the Paper

The proposed work mainly focuses on the discovery of frequent patterns by utilizing bit vectors and map reduce

in very large databases and evades the time complexity which is considered as the main culprit in degrading the

performance of the algorithm speed while mining the data required. The proposed algorithm uses new pruning

technique to elude huge computation and unearth frequent patterns present in the very large databases. The primary

scope of this paper is to improvise and alleviate the complicated computations present in the state of the art existing

algorithms and to come up with a simple approach without huge computational cost and overheads to discover

frequent patterns.

5. Challenges in the Paper

Finding fascinating frequent itemset from the crude big data is an extreme undertaking as the whole procedure

includes part of entangled computations identified with frequent count, pruning of unpromising things and memory

related overheads bringing about expenses. So far numerous creators have proposed their methods to find frequent

examples however the vast majority of the current strategies proposed endures the serious issue of delivering an

enormous number of candidates and this confinement in fact decrease mining execution as far as speed and memory

space. The first test present in this paper work is to uncover the frequent item sets without compromising on the

speed, memory and search space.

6. Motivation

The inspiration of the proposed strategy depends on the assessment that for each kind of data and each sort of

client inclination, it is basic to give the new methodology to produce ideal outcomes which limit the computational

expense related to time as well as memory usage. The essential inspiration to complete this paper work is to give

the clients a methodology which can proficiently deal with extremely big data with no difficulty and simplicity out

the lumbering calculations required during the item set generation. The main reason which inspires adequate

number of analysts in this vertical is that abundant volume online data that are promptly accessible over the globe

and the majority of the firms are utilizing new and novel methods to pick up the bit of leeway and to draw in and

hold the customers.

7. Map Reduce

MapReduce [16] is a synchronous and extendable programming architecture for data, thorough applications

and specialized examination. MapReduce works just in Key/esteem sets. There are two phases of MapReduce

work, alluded to as Map stage and Reduce stage. The information is separated into various sections by the Map

stage. Each Map task gets a key/esteem set and creates a rundown of center key/esteem set. At that point the

Thirumaran. S, R. Nagarajan

1868

underline condition of MapReduce consolidations and mix all the center an incentive as indicated by the

indistinguishable center key, the underline condition of MapReduce sends the center an incentive to the reducer.

Every Reducer gets all the center records identified with a particular key and produces a final pair of key/esteem

set.

Figure 1. Map Reduce architecture

8. Proposed Approach

`

The proposed approach involves lot of process and the important procedures are enumerated here under with

some sample database. The sample database is shown in the table 1. The sample data shown in the table 1 is initially

processed to find the unique items present in the transactions, and then the data is represented in the binary format

as shown in the table 2. This binary table represents the bit vector representation and this minimizes the memory

usage considerably to a greater extent. The map reduce phases are employed shrewdly to alleviate the overheads

regarding the running time and the memory usage which is the major drawback in the existing algorithms.

Table 1. Sample database

TID ITEM LIST

1 N, O

2 M, O, Q

3 M, Q

4 N, O ,Q

5 M, N, O, P

6 M, N, O, Q

9. Procedure Find Unique

The procedure to find the unique items present in the table 1 is found using the following procedure shown in

the figure 2.

Procedure Discover Uniques (Input Data D)

INPUT: Input DataÐ

OUTPUT: Unique Items with Count

BEGIN:

1. Load the Input data Ð

2. Row Ř Ð do

3. Find Unique Items U[]and let the initial Count → 0

4. Close For

5. Row Ř Ð do

6. IF (U[] present in R) then

7. Increment Unique Item’s Count by 1

8. Close IF

9. Close FOR

10. Return the Unique Item[] with its respective Count value

END PROCEDURE

Figure 2. Pseudo code to discover the unique items

Fast Frequent Item Mining from Big Data using Map Reduce and Bit Vectors

1869

The procedure shown in the figure 2 produces the following output with their respective count values as shown

in then table 2.

Table 2. Unique items with their count

ITEMS COUNT PRESENCE

M 4 2, 3, 5, 6

N 4 1, 4, 5, 6

O 5 1, 2, 4, 5, 6

P 1 5

Q 4 2, 3, 4, 5

10. Procedure to Generate Bit Vector

Figure 3. Pseudo code to create binary table for the sample data

The first unique item is fetched from the table 2 and then the depending upon the presence of the item in the

sample transaction table (i.e.) if the item is present in the transaction row, then it is marked by “1” else it is

marked by “0” as shown in the final binary table 3.

Table 3. Binary table created using the Create Binary Table procedure

ITEMS T1 T2 T3 T4 T5 T6 Count

M 0 1 1 0 1 1 4

N 1 0 0 1 1 1 4

O 1 1 0 1 1 1 5

P 0 0 0 0 1 0 1

Q 0 1 1 1 1 0 4

Let us consider the first row as shown below and since the item “M” is present in the transactional rows T2,

T3, T5 and T6 they are marked with 1’s and the rest of the transactional rows are marked with 0’s.

The first step of the map reduce is applied to the binary table shown in the table 3 and the pseudo code is

shown here, and the results of the first stage of the operation is showcased in this section.

The first Map function is applied as shown in the following procedure and the generalized mapping function

is,

M 0 1 1 0 1 1

Thirumaran. S, R. Nagarajan

1870

Function Map1:

⟨The presence of each ItemID in row, recent transaction ID⟩→ ⟨Trans ID,

Item ID⟩
Pair ⟨Trans ID, Item ID⟩ Transaction database do

Emit ⟨Transaction ID, Item ID, 1⟩
Figure 4. First mapping function

This mapping function is applied to every transactional row present in the transaction database and the result

of the mapped data is showcased here under,

Table 4. Initial mapping result

Function Map1: RESULT

⟨1, N, 1⟩, ⟨1, Q, 1⟩, ⟨2, M, 1⟩, ⟨2, O, 1⟩, ⟨2, Q, 1⟩, ⟨3, M, 1⟩, ⟨3, Q, 1⟩, ⟨4, N, 1⟩,
⟨4, O, 1⟩, ⟨4, Q, 1⟩, ⟨5, M, 1⟩, ⟨5, N, 1⟩, ⟨5, O, 1⟩, ⟨5, P, 1⟩, ⟨6, M, 1⟩, ⟨6, N, 1⟩,
⟨6, O, 1⟩, ⟨6, Q, 1⟩.

To make it simple the first reduce function is applied to the data and this reduces the unwanted items and prunes

away the unpromising items from the database and there by reduces the memory space and the items discovered

will be decreased with a perpetual decrease in the time taken for the execution of the algorithm. The first reduce

function is showcased in the following figure 5.

Function Reduce1:

⟨item, transaction list⟩→ list of ⟨frequent item, transaction information⟩
element in⟨_ , element, _⟩ emitted by map1 function

InitializeCounter[element] = 0

InitializeList[element] =

transaction ∈⟨transaction ID, element, 1⟩ emitted by map1

Increment counter[element] by 1

List[element] = List[element] ∪ {transaction ID}

IFcounter[element] min support threshold then

Emit ⟨element, counter [element], List [element] ⟩.
Close IF

Close For

Close For

Figure 5. First Reduce function

The minimum support value is assumed to be 2 and the following result is produced by the first reduce function

as shown in the table 5,

Table 5. Initial Reduce result

Function Reduce1: RESULT

⟨M, 4, {2, 3, 5, 6}⟩, ⟨N, 4, {1, 4, 5, 6}⟩, ⟨O, 4, {2, 4, 5, 6}⟩, ⟨Q, 5, {1, 2, 3, 4,

6}⟩.

The first reduce function prunes away the item or the element “P” as its count is one which is lesser than the

user defined minimum support value. The items M,N,O and Q are retained as their counts are found to be

(4,4,5,4).

The second mapping function is applied to the data and the pseudo code is shown in the following section,

Function Map2:

⟨frequent pattern p, its transaction information⟩→ ⟨transaction, item pair⟩

p in⟨p,_ , List[p]⟩ emitted by reduce1 Function

transaction ∈List[p] do

⟨transaction ID, element ID⟩ in transaction database do

if is Relevant(element, p) then

Emit ⟨transaction ID, {p} ∪ {element}, 1⟩.
Figure 6. Second Map function

Fast Frequent Item Mining from Big Data using Map Reduce and Bit Vectors

1871

The second mapping function produces the candidates that are formed from the map1 function (M, N, O, Q)

are processed and the first element M is considered and all the relevant element related to the item M is emitted,

they are,

⟨2, MO, 1⟩, ⟨2, MQ, 1⟩, ⟨3, MQ, 1⟩, ⟨5, MN, 1⟩, ⟨5, MO, 1⟩, ⟨6, MN, 1⟩, ⟨6, MO, 1⟩, and ⟨6, MQ, 1⟩. Note that

(i) items present in the transaction row 4 is not emitted as element M is not present and ⟨5, MP, 1⟩ is not emitted

as the item P is already pruned because its count is less than the user defined minimum support value.

Similarly the element N is considered and the following relevant elements are emitted, {⟨1, NQ, 1⟩, ⟨4, NO, 1⟩,
⟨4, NQ, 1⟩, ⟨5, NO, 1⟩, ⟨6, NO, 1⟩, ⟨6, NQ, 1⟩}. Note that

1. Items of the transaction row 3 are not emitted since that row does not contain the element N.

2. ⟨5, NP, 1⟩ is not emitted since the element P is pruned as its min_sup value is less than the user defined

support count.

3. Patterns ⟨5, MN, 1⟩ and ⟨6, MN, 1⟩are irrelevant since they are already processed by the second map

function.

Similarly the element O is considered and the following relevant elements are emitted, {⟨2, OQ, 1⟩, ⟨4, OQ, 1⟩,
⟨6, OQ, 1⟩}.

Finally for the element Q, there are no elements to emit since it does not have any relevant items.

Now the second Reduce function is applied and the result are shown in this section,

Function Reduce2:

⟨Element pair, list of common transactions⟩→ list of ⟨frequent element pair,

transaction information⟩,
P in⟨_ , Elementgroup P,_⟩ emitted by map2 Function

Initialize counter[P] = 0

InitializeList[P] =

transaction in⟨transaction, P, 1⟩ emitted by map2 Function

Increment counter[P] by 1

List[P] = List[P] ∪ {transaction}

if counter[P] min_Sup threshold then

Emit ⟨P, counter [P], List [P]⟩.
Close IF

Close For

Close For

Figure 7. Second Reduce function

The second reduce function produces the following results,

Table 6. Second Reduce Function Result

Function Reduce2: RESULT

⟨MN, 2, {5, 6}⟩, ⟨MO, 3, {2, 5, 6}⟩, ⟨MQ, 3, {2, 3, 6}⟩, ⟨NO, 3, {4, 5, 6}⟩,
⟨NQ, 3, {1, 4, 6}⟩, ⟨OQ, 3, {2, 4, 6}⟩.

The item pairs MN, MO, MQ, NO, NQ and OQ are frequent as the support of the corresponding pair is found

to be 2,3,3,3,3,3 as these six pairs appears at least in two of the transaction rows.

The third mapping and the reduce functions are applied and the pseudo code is showcased in the following

segment,

Function Map k-1:

⟨frequent item (k - 1) tuplet P, Transaction Information⟩→ ⟨Transaction,

Element k-tuplet⟩,

P in ⟨P,_ , List[P]⟩ emitted by Reducek-1 function

Transaction in List[P] do

⟨Transaction, element⟩ in transaction database do

If is Relevant (element, P) then

Emit ⟨Transaction, P ∪ {element}, 1⟩.

Figure 8. K-1 Map function

Thirumaran. S, R. Nagarajan

1872

Figure 9. K-1 Reduce function

The elements/pair “MN” appears in two transactions T5 and T6 and it emits three relevant items {⟨5, MNO,

1⟩, ⟨6, MNO, 1⟩, ⟨6, MNQ, 1⟩}. Similarly the pair “MO” appears in three transactions T2, T5 and T6. This pair

emits two relevant items {⟨2, MOQ, 1⟩, ⟨6, MOQ, 1⟩}. The pair “NO” appears in three transactions T4, T5 and T6.

This pair emits two relevant items {⟨4, NOQ, 1⟩, ⟨6, NOQ, 1⟩}.

Now the reduce function is applied and the following frequent pattern result are found and they are,

{M, N, O}, {M, O, Q} and {N, O, Q}: ⟨MNO, 2, {5, 6}⟩, ⟨MOQ, 2, {2, 6}⟩, and ⟨NOQ, 2, {4, 6}⟩.
The next mapping function is applied (i.e.) map4 but since there are no relevant items, the function returns

nothing and algorithm ends after discovering the frequent item sets.

11. Experimental Evaluation

The proposed dual mine algorithm is evaluated with some synthetic datasets and compared with the existing

algorithms with respect to running time and memory usage. The results are illustrated and it clearly indicates that

the proposed DM algorithm outscores the existing algorithms by a good margin. The synthetic dataset are generated

by the IBM Quest data mining code. The parameters of the dataset are shown in the table 7.

Table 7. Parameters used in synthetic dataset generation

The proposed algorithm DM is compared with many existing algorithms to check the precise working against

the available best algorithms accessible in the research world. The comparison is made on execution time or

running time, memory utilization while execution, and on the volume of candidates produced during the execution

and the results are exhibited. The existing algorithms compared in this paper are illustrated in this section,

The bigFIM [6] algorithm a famous algorithm to discover frequent itemsets from big data and the bigFIM

algorithm combines the features of the Apriori algorithm and Eclat algorithm [7] to produce a hybrid approach and

discovers the frequent itemsets.

The parEclat [8] algorithm developed by Zaki is a parallel Eclat algorithm which utilizes vertical representation

of the data and then uses the concept of parallel computing to generate frequent itemsets from very large databases.

Function Reduce K 2:

⟨Element group, list of common transactions⟩→ List of ⟨frequent item group,

transaction information⟩

P in ⟨ , Element group P, ⟩ emitted by Mapk-1 Function

Initialize counter[P] = 0

Initialize List[P] =

Transaction in ⟨Transaction, P, 1⟩ emitted by Mapk-1Function

Increment counter[P] by 1

List[P] = List[P] ∪ {Transaction};

If counter[P] min_sup threshold then

Emit ⟨P, counter[P], List[P]⟩.
Close IF

Close For

Close For

Fast Frequent Item Mining from Big Data using Map Reduce and Bit Vectors

1873

The Single pass counting SPC algorithm [9] is an implementation of Apriori algorithm in parallel using map

reduce. Here in this algorithm the support count of the candidates is parallelized and the entire algorithm is

classified into two phases and operates well by overcoming the shortfalls present in the classical Apriori algorithm.

The proposed dual mine algorithm as well as the other existing algorithms are executed on the synthetic dataset

T4I2.5D1M and the resultant candidates that are generated are noted are shown in the table 8 and then compared

with the graphical representations as shown in the figure 10.

Table 8. Experimental evaluation on synthetic T30I20D10Mdataset regarding the volume of candidate

generated.

Figure 10. Candidate generation comparison for T30I20D10M synthetic database

As the density of the synthetic dataset is very large and transactions are long, the proposed DM algorithm

performance was considerably good and executed most of the time without abnormal exit and outscored most of

the other algorithms.

Table 9. Experimental evaluation on synthetic T30I20D10Mdataset regarding the running time.

CANDIDATE GENERATION

SYNTHETIC DATASET NAME - T30I20D10M

Algorithm

Name

Minimum Support Threshold Values

0.30 0.35 0.40 0.45 0.50

bigFIM 15979306 13869626 11082983 8986831 7832207

parEclat 14977863 13737290 10168736 8562617 7856108

SPC 15885615 12050275 10155162 8050726 7857153

DM 13866342 1087526 9875638 7051636 6601887

RUNNING TIME (SEC)

SYNTHETIC DATASET NAME - T30I20D10M

Algorithm

Name

Minimum Support Threshold Values

0.30 0.35 0.40 0.45 0.50

bigFIM 2989 2678 2188 1805 1665

parEclat 2676 2410 2108 1716 1587

SPC 2420 2219 1957 1692 1502

DM 1898 1778 1588 1403 1201

Thirumaran. S, R. Nagarajan

1874

Figure 11. Run time comparison for T30I20D10M synthetic database

The proposed DM algorithm performed extremely well along with the SPC algorithm on the denser datasets

and the proposed DM algorithm worked without out of memory error even for a very small minimum support

count value (0.15). But BigFIM performed very badly and suffered many glitches. The memory based comparison

was carried out in the next section.

Table 10. Experimental evaluation on synthetic T30I20D10Mdataset regarding the memory usage.

Figure 12. Memory usage comparison for T30I20D10M synthetic database

MEMORY USAGE (MB)

SYNTHETIC DATASET NAME - T30I20D10M

Algorithm

Name

Minimum Support Threshold Values

0.30 0.35 0.40 0.45 0.50

bigFIM 1880 1682 1481 1231 1003

parEclat 1610 1428 1150 1151 953

SPC 1418 1285 1187 1015 917

DM 1205 1187 1021 963 803

Fast Frequent Item Mining from Big Data using Map Reduce and Bit Vectors

1875

The memory consumption of the proposed dual mined algorithm was better than most of the existing algorithms

and bigFIM algorithm performed the worst and the rest of the algorithm performed quite medially but lagged

behind the DM algorithm.

12. Conclusion

The experimental evaluation of the three existing algorithms along with the proposed DM algorithm is carried

out on dense synthetic dataset, the outcome of the experiments proved that the proposed algorithm fares better in

consuming minimum memory, generates very less candidates and more importantly consumed very less time to

complete the execution and the overall performance of the proposed algorithm was extremely good.

References

1. Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. “Mining association rules between sets of items

in large databases”. In Proceedings of the 1993 ACM SIGMOD International Conference on Management

of Data (SIGMOD 1993), Washington, DC, USA, pages 207-216. ACM, 1993.

2. Rakesh Agrawal and Ramakrishnan Srikant. “Fast algorithms for mining association rules in large

databases”. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB 1994),

Santiago de Chile, Chile, pages 487-499. Morgan Kaufmann Publishers Inc., 1994.

3. Jiawei Han, Jian Pei, and Yiwen Yin. “Mining frequent patterns without candidate generation”. SIGMOD

Records, 29(2):1-12, May 2000.

4. David Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data Mining. Adaptive Computation

and Machine Learning. MIT Press, Cambridge, Massachusetts, 2001.

5. Apache Hadoop (2013). MapReduce Tutorial, Hadoop 1.2.1 Documentation.

https://hadoop.apache.org/docs/r1.2.1/mapred-tutorial.htm.

6. Sandy Moens, Emin Aksehirli, and Bart Goethals. Frequent itemset mining for big data. In 2013 IEEE

International Conference on Big Data, pages 111{118. IEEE, 2013.

7. Mohammed J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine Learning,

42(12):31-60, January 2001.

8. Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li. Parallel algorithms for

discovery of association rules. Data Mining and Knowledge Discovery, 1(4):343{373, 1997.

9. Ming-Yen Lin, Pei-Yu Lee, and Sue-Chen Hsueh. Apriori-based frequent itemset mining algorithms on

mapreduce. In Proceedings of the Sixth International Conference on Ubiquitous Information Management

and Communication, ICUIMC ’12, pages 76:1-76:8, New York, NY, USA, 2012. ACM.

https://hadoop.apache.org/docs/r1.2.1/mapred-tutorial.htm

