
Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

 CC BY 4.0 Deed Attribution 4.0 International
This article is distributed under the terms of the Creative Commons CC BY 4.0 Deed Attribution 4.0 International attribution
which permits copy, redistribute, remix, transform, and build upon the material in any medium or format for any purpose, even
commercially without further permission provided the original work is attributed as specified on the Ninety Nine Publication and
Open Access pages https://turcomat.org

Optimizing MongoDB Schemas for High-Performance MEAN
Applications

Sai Vinod Vangavolu

Nissan Motor Corporation, Sr. Full Stack Developer, Franklin, Tennessee, USA

ABSTRACT
MongoDB, a document-oriented NoSQL database, is crucial in modern web applications,
particularly in the MEAN (MongoDB, Express.js, Angular, Node.js) stack. The challenge with
optimizing MongoDB schemas exists because of the no-schema database design approach
combined with changing workload requirements. This article investigates the optimal approaches
to creating and optimizing MongoDB schema designs. It focuses on normalization and
denormalization decisions using shard and replication systems with workload-related
optimizations and scale-up capabilities. The article evaluates modern AI schema optimization
trends and computerized performance optimization that dramatically boosts operational efficiency
across extensive applications. MEAN applications will obtain superior scalability, reduced query
delays, and enhanced system performance through these implementation methods. When merged
with reliable data protection and schema longevity, the article will provide organizations with a
complete mold to optimize MongoDB schemas for peak operational efficiency.

Keywords: MongoDB, MEAN Stack, Schema Optimization, NoSQL Performance, Normalization,
Sharding

INTRODUCTION
Latent among NoSQL databases stands for MongoDB because it combines efficient semi-
structured data handling with scalability, flexibility, and high-performance query operations [1].
This database is essential for the MEAN stack, which stands among popular technology stacks
used to create web applications today. MongoDB functions differently than relational databases
because it allows developers to store data without schemas and to modify data structures in real-
time [2]. This data storage flexibility produces several performance and efficiency challenges but
requires proper schema optimization approaches [3].

MongoDB performs efficiently and reduces storage costs when its schema is optimized to meet
application requirements during data expansion [4]. The read performance of MongoDB takes
advantage of denormalization strategies because traditional relational databases base their data
consistency on normalization rules [5]. Schema optimization requires thorough workload
inspection to determine normalization versus denormalization since unsuitable choices affect
performance speed, CPU usage, and memory usage [6]. The horizontal scaling methods, including
sharding and replication, operate simultaneously with MongoDB to sustain low latency and high
availability throughout distributed systems [7].

3061

 Vol.11 N o.3(2020)3061-3068
 DOI: https://doi.org/10.61841/turcomat.v11i3.15236

https://creativecommons.org/licenses/by/4.0/
https://turcomat.org/
https://doi.org/10.61841/turcomat.v11i3.15236

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

Implementing AI schema optimization alongside automated performance tuning helps MongoDB
handle dynamic workloads effectively [8]. By using AI technology, these systems monitor user
requests to optimize indexing methods and propose changes to the database structure that enhance
system performance [9]. The upcoming developments of NoSQL performance engineering involve
databases with self-learning capabilities to optimize query execution, storage distribution, and
workload balancing efficiently [10]. The article examines basic MongoDB schema optimization
concepts and schema design obstacles while presenting upcoming developments that will influence
NoSQL performance engineering systems of the future.

UNDERSTANDING SCHEMA DESIGN IN MONGODB FOR MEAN APPLICATIONS
MongoDB database is popular among web developers because it is the foundation for numerous
contemporary web applications in the MEAN stack architecture. MongoDB operates through
document-oriented data storage, which uses Binary JSON (BSON) format as collections replace
relational database tables. The schema-less nature of MongoDB enables high flexibility when
working with intricate and changing data structures; therefore, it proves beneficial for programs
needing many schema modifications [1]. Various hurdles exist when there is no pre-defined
schema because these situations affect data consistency, performance, and the ability to scale
significantly for large datasets and complex queries. The efficiency of MongoDB suffers when
data schema remains improper since it impacts query execution performance, disk storage
requirements, and total system operability [2].

MongoDB differs from relational databases because it permits embedded documentation and
adjustable schemas to enhance system speed and adaptability. The database provides a structure
that protects developers from costly traditional join operations that severely negatively impact
performance within distributed systems [3, 10]. When using the MongoDB system, developers
must carefully design data structures for efficient retrieval and updates by considering application
requirements and query patterns. The absence of constraints in MongoDB allows improper schema
design to create multiple data duplicates while generating slow performance and increased
memory usage [6]. The fundamental requirement of developing high-performance MEAN
applications depends on understanding MongoDB data structure principles.

The schema design of MongoDB depends heavily on its indexing system because it optimizes both
performance and query performance. The indexing system in MongoDB differs from the key-
based structure used in relational databases since MongoDB uses single-field, compound, or
geospatial index methods [1]. The correct indexing implementation enables queries to access data
efficiently through methods that prevent entire collection scanning operations. Research indicates
that improper indexing methods increase CPU usage and response times, particularly in systems
that handle extensive datasets [2]. MongoDB enables users to create multiple secondary indexes
that improve performance when executing sorting and filtering operations in the database.
Appropriate index application knowledge provides necessary elements for both peak query
performance and lower resource usage.

MongoDB's schema design includes multiple aspects about how related data should be approached
and how storage elements should be organized. The method applied between embedding and

3062

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

referencing documents determines system performance and maintenance requirements [8].
Embedded documents provide swift read performance because they store data within a combined
structure that benefits systems with heavy read operations. When documents become too
embedded, they create storage problems because updates become inefficient, and the system uses
surplus store capacity [9]. Document referencing becomes simpler for managing data integrity
when using unique identifiers for identification. The reference system achieves this most
effectively with complex data integrations and continuous updates. The planning steps for schema
require evaluating various elements to maximize storage capabilities and query processing
performance in MEAN applications.

NORMALIZATION VS. DENORMALIZATION: TRADE-OFFS FOR PERFORMANCE
OPTIMIZATION
Two different MongoDB schema design strategies exist in normalization and denormalization,
leading to varying outcomes regarding data integrity, system performance, and scalability levels.
Data normalization in MongoDB implements relational database methods to break information
into distinct collections, which maintain consistent data and remove duplicates while boosting
updating speed [5]. Data embedded through the denormalization method improves performance
during read operations by reducing the need for join-like operations [10]. MongoDB applications
would use either normalization or denormalization based on their unique business requirements
because each method presents benefits and limitations. The normalization paradigm provides solid
data integrity and quick updates but produces search results requiring various lookups. Data
consistency suffers when denormalization is applied as it requires higher storage capacity and
increases difficulty in maintaining data consistency during updates [8]. However, denormalization
enhances read operations by minimizing complex aggregations and cross-collection queries [8].
The precise alignment of normalized and denormalized design aspects represents the key factor
for optimizing MongoDB schemas.

The main advantages of normalization exist in maintaining data consistency together with efficient
updates. When schemas apply normalization principles, the related data stays separate in different
collections through ObjectIDs, which create relational mappings [6]. This database structure stands
out for applications needing regular data updates because database changes need implementation
in one spot for general efficiency. A normalized schema shields MongoDB databases from
document bloating, which emerges when a document contains too much embedded data [9]. The
major disadvantage of normalization is the operational expenses required when accessing data
distributed across several collections. Developers must implement application-side joins or
aggregation pipelines in MongoDB since the database platform lacks relational features like
foreign key constraints or SQL-style joins, resulting in delayed and complicated query execution
[1].

Denormalization enhances performance and improves data efficiency by placing related
information directly inside a single document. The document-based organization enables faster
data retrieval when using a single document instead of running multiple collection queries [3].
Denormalization makes retrieving data from various collections unnecessary; thus, it decreases
both query times and allows systems to scale better [2]. However, denormalization comes with

3063

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

trade-offs. Maintaining data consistency across multiple documents containing duplicate data
becomes slow and complicated because updates must be applied in batches. MongoDB constructs
have a 16MB size limit that causes embedding to create performance troubles and storage space
inefficiencies [4].

Using schema design elements from normalization alongside denormalization results in the most
successful approach for MongoDB database optimization. Partially normalizing a database system
works best for systems that need speedy read performance since it embeds common data but
maintains reference links to large or seldom modified data [5]. Indexing strategies improve query
efficiency because their optimization methods rely on understanding workload patterns [1].
Organizations must choose normalization or denormalization based on their application workload
features, data access patterns, and performance needs. The development of optimal schema design
becomes possible by identifying which trade-offs to make [8].

WORKLOAD-DRIVEN SCHEMA DESIGN FOR QUERY OPTIMIZATION
MongoDB works best when adapting database schema based on workload requirements because
this structure organizes data in ways that improve access and operation performance. The ability
of MongoDB to adapt flexible data modeling introduces potential efficiency issues when
professionals fail to establish proper planning [1]. Designing optimal direct mechanisms depends
on understanding both query structures, the rates at which data is accessed, and the specifications
for indexing [9]. An adequately designed schema functions to cut down collection scans while
avoiding excessive data access and manages query response times to their minimum levels. The
improper design of MongoDB schemas generates several adverse effects, including excessive CPU
utilization, reaction delays, and increased disk operations [2]. Assessing real-life querying
behavior enables developers to create data structures that optimize the speed and performance of
their MEAN applications.

Indexing is the most powerful method to achieve optimal query execution in MongoDB. The
indexing system in MongoDB differs from traditional databases since it allows developers to
implement single-field, compound, and multikey indexes together with access pattern optimization
[1]. Proper indexing reduces scanned collection documents by retrieving only necessary items [4].
Tests show that optimal index creation allows queries to respond at least 50% faster, mainly when
applications require substantial read operations [3]. Implementing improper indexing leads to
diminished performance because it causes increased write overhead while using more memory
resources [5]. The explain () method from MongoDB and its query profiling tools must be used to
evaluate query execution plans and improve indexing strategies according to actual workload
patterns.

The aggregation pipelines serve a primary function in improving query execution performance
alongside index creation. MongoDB allows users to transform and analyze data efficiently through
its aggregation framework, which operates without making multiple database trips [6]. The
aggregation pipelines provide developers with tools to efficiently handle big data through
processing and grouping operations, thus minimizing client-side data processing requirements [8].
The execution of aggregation pipelines suffers from performance degradation, mostly during

3064

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

operations on enormous datasets [10]. For improved performance, designers should embed $match
along with $project stages at the beginning of the pipeline to reduce the processing of subsequent
stages [9]. The efficiency of aggregation queries in MEAN applications will decrease latency and
reduce resource utilization by properly understanding workload characteristics.

The procedure of schema design requiring workload input includes denormalization as a vital
optimization technique for query performance. Forum applications that require many updates
typically benefit from normalization, but read-intensive applications usually achieve better
performance through denormalization to prevent costly join operations and multiple data retrievals
[5]. High-read concurrency document unification speeds up document search time [2]. Document
size becomes increasingly large during extensive data denormalization, which diminishes storage
efficiency and makes update processes slow [1]. Such database schema design merges
normalization techniques with denormalization practices according to workload evaluations to
obtain high-performance levels, efficient data storage, and consistency maintenance [8]. The
MongoDB schema design should follow real-world query patterns to enable better scalability,
accelerate data procurement, and increase system performance efficiency.

SCALING MONGODB FOR HIGH-PERFORMANCE MEAN APPLICATIONS
The efficient scalability of MongoDB is crucial for maximizing performance in MEAN
applications since they process large amounts of data alongside many concurrent user transactions.
Redundancy and scalability through sharding and replication distinguish MongoDB from
relational databases since relational databases mainly scale by adding resources to a single server
[7]. Data distribution throughout multiple servers enabled through sharding decreases query
response time and strengthens system performance [3]. Replication technology provides both data
accessibility and protects against system failures. Combining MongoDB techniques allows the
system to achieve efficient scalability and maintain high-performance metrics. The wrong
implementation of sharding strategies results in unequal data spread, which produces performance
drops while raising storage expenditures [1]. A developer must create a meticulously designed
sharding strategy to achieve optimal scale that tracks application workload and query distribution
patterns.

The fundamental MongoDB sharding method allows MongoDB to manage enormous volumes of
data by splitting its database records across numerous servers. The method enhances read and write
operations through distributed storage to prevent individual nodes from achieving excessive
workload [2]. Among supported MongoDB sharding types are range-based, hash-based and zone-
based sharding, which have particular strengths [7]. Applications that need to run efficient range
search operations benefit from range-based sharding, but hash-based sharding provides even data
distribution across shards, which helps decrease hotspot problems [9]. Zone-based sharding allows
application developers to determine where their database stores data to enhance location-based
application performance. The choice of sharding key affects query systems negatively because it
causes poor data distribution and slower retrieval times [1]. The selection of appropriate shard
keys is a core factor determining how efficiently MongoDB sharding solutions work within big-
scale MEAN application environments.

3065

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

MongoDB's data replication functionality is equally essential to scalability because it provides
robust fault tolerance and maximum data availability. The MongoDB replica set entails multiple
servers that designate one primary node and several secondary nodes [3]. System availability
remains continuous if hardware failure or network outages occur because a secondary node
automatically assumes control as the primary [8]. Application performance and system
responsiveness improve through replication because it enables read workload distribution across
multiple nodes [5]. The duration of write operation delays increases when you have too many
replicated systems because changes must propagate to every secondary node [10]. Programming
team members must set configuration parameters for read operation preferences and write
requirements before achieving perfection between system speed and data accuracy levels.
The efficient scalability of MongoDB systems exists through work-based configuration and
performance optimization methods. Latent MEAN applications demand accurate indexing plans,
performance optimization features, and server resource deployment systems to reach peak system
performance levels [2]. The MongoDB Profiler and Performance Advisor enable operators to track
query execution times to detect operation limitations [4]. The database load decreases when Redis
caching systems are implemented, which enhances performance [3]. System resources within
MEAN applications scale automatically according to demand requirements through implemented
scaling policies, which prevents unexpected performance issues [1]. The proper design of
scalability approaches allows MongoDB to provide fast performance for high-traffic applications
using resources efficiently.

AUTOMATED SCHEMA OPTIMIZATION AND FUTURE TRENDS IN NOSQL
PERFORMANCE ENGINEERING
Combining AI tools with machine learning algorithms constitutes automated schema optimization,
enhancing MongoDB's operational performance. Manual optimization of traditional schema
design requires long periods of work that often lead to mistakes, especially when working with
large applications that face changing workloads [8]. Evaluation tools in automated schema-tuning
systems analyze system data to produce real-time recommendations that boost performance [5].
These tools apply dynamic assessments to recommend denormalization plans, optimal sharding
keys, and indexing modifications from workload patterns. Implementing automated schema design
helps developers decrease request speeds and resource usage, which keeps applications effective
when growing data amounts [9]. MongoDB database implementations worldwide will widely
adopt AI-driven schema optimization tools because they ensure scalable and efficient MEAN
application security via continuous development.

Artificial intelligence uses activity analysis to transform modern NoSQL database procedures for
query optimization and indexing. Manually configured index systems exist in traditional databases
and deliver poor query execution times for busy applications [1]. AI solutions review past query
data to advise automatic index optimizations, which minimize data retrieval delays through better
index positioning [2]. The intelligent systems analyze query patterns to identify performance issues
before making materialized views and pre-aggregated data recommendations that boost system
output [4]. AI technology integration with query optimization functions raises MongoDB database
performance to 60% for read and write operations in systems that adapt workload patterns [10].

3066

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

The advancement of AI technology will make AI-driven indexing a vital operational framework
for automatic database optimization in MongoDB.

One major performance engineering trend in NoSQL integrates database systems that unite
standard data with unorganized data storage components. The strength of MongoDB with semi-
structured data does not apply to all applications since they need relational features like ACID
transactions and foreign key constraints [3]. Organizations achieve optimal performance with data
integrity by implementing hybrid databases that combine MongoDB with relational databases [7].
Schema design and query execution possibilities increase in multi-model databases combining
document and graph-based storage elements [6]. Future technological improvements in database
system compatibility and multi-platform search capabilities will boost MongoDB operations for
executing complex software sequences through efficient performance maintenance.
Self-learning NoSQL engines will be the main advancement for MongoDB schema optimization
because they can automatically adjust to workload variations as operations occur in real-time.
Predictive analytics combined with AI-driven workload forecasting will control key elements of
automatic schema changes and performance optimization [8]. These engines exhibit data model
restructuring capabilities that make applications perform optimally for read and write operations
[5]. Changes in distributed database architecture will boost MongoDB's scalability and fault
tolerance, establishing it as the leading choice for cloud-native applications [9]. Increased adoption
of automated performance engineering techniques is crucial for developing powerful MEAN
applications that scale efficiently and resist system failures because NoSQL databases keep
advancing.

CONCLUSION
The schema optimization approach for MongoDB in MEAN applications depends on achieving
optimal data structure design for actual data usage patterns. Database performance benefits from
proper combinations between normalization and denormalization approaches in MongoDB
structures. Equipment-dependent schema optimization during workload planning strengthens
indexing functionality and enhances the execution of queries and aggregation routines. The
distributed systems benefit from scalability methods that comprise shard distribution and data
replication to achieve resilient systems. Automating schema adjustments and indexing through AI-
based optimization reduces operator labor and enhances performance. The development of NoSQL
systems will depend heavily on self-optimizing engines for their role in adaptive performance
management. Strategic best practices enable developers to preserve application excellence,
scalability, and responsiveness for rising data volumes.

REFERENCES
1. T.-D. Nguyen and S.-W. Lee, “I/O characteristics of MongoDB and trim-based optimization

in flash SSDs,” in EDB ’16, Oct. 2016. doi: https://doi.org/10.1145/3007818.3007844.
2. Y. Zhao, “Research on MongoDB Design and Query Optimization in Vehicle Management

Information System,” Applied Mechanics and Materials, vol. 246–247, pp. 418–422, Dec.
2012, doi: https://doi.org/10.4028/www.scientific.net/amm.246-247.418.

3067

https://doi.org/10.1145/3007818.3007844
https://doi.org/10.4028/www.scientific.net/amm.246-247.418

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

3. Y. Punia and R. Aggarwal, “Implementing Information System Using MongoDB and Redis,”

International Journal of Advanced Trends in Computer Science and Engineering, vol. 3, no.
2, 2014, Available: http://www.warse.org/IJATCSE/static/pdf/file/icace2014sp05.pdf

4. J. Yao, “An Efficient Storage Model of Tree-Like Structure in MongoDB,” in International
Conference on Semantics, Knowledge and Grids (SKG), Aug. 2016, pp. 166–169. doi:
https://doi.org/10.1109/skg.2016.036.

5. V. Reniers, Dimitri Van Landuyt, A. Rafique, and Wouter Joosen, “Schema design support for

semi-structured data: Finding the sweet spot between NF and De-NF,” in 2017 IEEE
International Conference on Big Data (Big Data), Dec. 2017. doi:
https://doi.org/10.1109/bigdata.2017.8258261.

6. N. Gorla, V. Ng, and D. M. Law, “Improving database performance with a mixed

fragmentation design,” Journal of Intelligent Information Systems, vol. 39, no. 3, pp. 559–576,
Apr. 2012, doi: https://doi.org/10.1007/s10844-012-0203-x.

7. L. Xiang, J. Huang, X. Shao, and D. Wang, “A MongoDB-Based Management of Planar
Spatial Data with a Flattened R-Tree,” ISPRS International Journal of Geo-Information, vol.
5, no. 7, p. 119, Jul. 2016, doi: https://doi.org/10.3390/ijgi5070119.

8. M. J. Mior, “Automated schema design for NoSQL databases,” in Proceedings of the 2014
SIGMOD PhD symposium, Jun. 2014. doi: https://doi.org/10.1145/2602622.2602624.

9. C. de Lima and R. dos Santos Mello, “A workload-driven logical design approach for NoSQL
document databases,” in Proceedings of the 17th International Conference on Information
Integration and Web-based Applications & Services, Dec. 2015. doi:
https://doi.org/10.1145/2837185.2837218.

10. M. DiScala and D. J. Abadi, “Automatic Generation of Normalized Relational Schemas from

Nested Key-Value Data,” in Proceedings of the 2016 International Conference on
Management of Data - SIGMOD ’16, 2016. doi: https://doi.org/10.1145/2882903.2882924.

11. Kommera, H. K. R. (2014). Innovations in Human Capital Management: Tools for Today's
Workplaces. NeuroQuantology, 12(2), 324-332.

12. Vaka, Pavan Reddy. "Zero-Day Vulnerabilities." International Journal of Innovative Research
in Science, Engineering and Technology, vol. 1, no. 2, 2012, pp. 318-322.

3068

http://www.warse.org/IJATCSE/static/pdf/file/icace2014sp05.pdf
https://doi.org/10.1109/skg.2016.036
https://doi.org/10.1109/bigdata.2017.8258261
https://doi.org/10.1007/s10844-012-0203-x
https://doi.org/10.3390/ijgi5070119
https://doi.org/10.1145/2602622.2602624
https://doi.org/10.1145/2837185.2837218
https://doi.org/10.1145/2882903.2882924

