
Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

 CC BY 4.0 Deed Attribution 4.0 International

This article is distributed under the terms of the Creative Commons CC BY 4.0 Deed Attribution 4.0 International
attribution which permits copy, redistribute, remix, transform, and build upon the material in any medium or format
for any purpose, even commercially without further permission provided the original work is attributed as specified
on the Ninety Nine Publication and Open Access pages https://turcomat.org

React's Evolution and the Paradigm Shift of Hooks in Modern Web
Development

Vishnuvardhan Reddy Goli
UI Developer, Nissan, Tennessee, USA

Abstract
The component-based framework within React devised a new approach to frontend development
that enabled better code reuse alongside simplified maintenance procedures. Virtual DOM by
React established itself as a library leader by minimizing browser communication because of its
performance benefits. The Hooks feature from version 16.8 marked the most significant
evolutionary addition, allowing functional components to independently manage both state and
side effects without class components. Introducing Hooks like useState and useEffect brought state
management improvements that produced more condensed and easier-to-understand code. This
article investigates React’s development trajectory, the critical role of virtual DOM, and the

fundamental changes from Hooks to modern web application development. The article explores
distinct aspects to show how Hooks now controls software development methods and helps
programmers use functional code practices to boost application performance.

Keywords: React, virtual DOM, React Hooks, Front-end Development, Functional Programming,
State Management, Modern Web Applications

INTRODUCTION
The web development environment underwent significant change during the past ten years, leading
to React becoming the primary tool for developing interactive user interfaces. The former frontend
methodology based on imperative programming followed DOM manipulations directly, which
produced performance degradation along with complicated state control [1]. Facebook resolved
the developmental issues through React, which introduced a component-based library with
declarative programming to change how users-built interfaces. React-based development enables
developers to generate reusable components that boost development processes and application
performance [2].

The virtual DOM framework from React brings the most significant value to web development by
using minimal DOM manipulation to optimize user interface updates [3]. The virtual DOM
technology chooses proper component updates rather than performing full-page re-rendering,
producing better rendering performance than traditional approaches. Creating a virtual DOM
system turned React into a prime selection for Single Page Applications (SPAs) since dynamic
updates enhance user interaction [1].

787

 Vol. 10 No. 1 (2019):788-791
DOI:https://doi.org/10.61841/turcomat.v10i1.15127

https://creativecommons.org/licenses/by/4.0/
https://turcomat.org/

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

Developing class-based components in React faced challenges because it created complex
lifecycle management and verbose syntax problems [4]. The introduction of Hooks in React
version 16.8 provided functional components with an efficient way to handle state and side effects
in React version 16.8. The hooks useState and useEffect eliminated the need for class components,
which simplified code structure and enhanced performance [5]. This paper examines how React
has evolved through virtual DOM technology and Hooks integration and studies their impact on
contemporary web development methods.

THE RISE OF REACT AND ITS COMPONENT-BASED ARCHITECTURE
The development industry now recognizes React as a leading front-end solution that revolutionizes
web application structure and maintenance operations. Facebook created React to tackle
performance problems in dynamic web applications while introducing the declarative component
framework that increased both code maintainability and code reuse capabilities [1]. Web
developers traditionally handled DOM manipulation directly for inefficient development that
created performance slowdowns. Using a component-driven methodology, React allows
developers to create individual components for reusable, mostly scalable user interface sections
that boost project development speed. The new architectural design created a development path
that established controlled procedures for the long-term maintenance of large applications [2].

The component-based design of React serves as a major success factor because it facilitates quick
user interface update management. The updates to UI in traditional development tools, including
AngularJS, needed extensive computational power to function since the entire DOM had to be re-
rendered at a frequent rate [3]. Implementing a virtual DOM between the actual DOM and
application UI state represented React's solution to address inefficiency issues. The innovation
provided optimized rendering because updates only affected components that changed in response
to state modifications [1]. The component structure of React makes it operate smoothly with
software engineering standards to simplify state control while enabling component reuse.

Declarative programming has emerged as a key React feature that simplifies UI development by
keeping developers focused on content definition over update procedures [2]. React became more
approachable to developers through its paradigm shift, reducing the typical hurdles developers
faced while maintaining stateful applications. React gained more appeal through its broad library
ecosystem, including Redux and Context API, and its robust state management solutions [5].
Declarative UI development, combined with the transition, has enhanced front-end program code
understandability and enabled developers to adopt functional programming styles.

VIRTUAL DOM AND PERFORMANCE ENHANCEMENTS IN REACT
The virtual DOM (VDOM) implementation in React represents a groundbreaking innovation
because it delivers enhanced performance in rendering operations. At the time web applications
used direct DOM manipulation which led to poor performance because every user action prompted
an update of the entire page structure [3]. The lightweight virtual DOM operated by React performs
efficient updates by holding a mirror memory version of the actual DOM. The new virtual DOM
comparison to the prior version enables React to detect changes before performing targeted updates

788

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

to the real DOM [1]. Diffing represents the reconciliation procedure which optimizes updates and
stops the unnecessary re-rendering of unchanged components for better application
responsiveness.

The virtual DOM implementation in React delivers its best performance along with Single Page
Applications (SPAs) that need dynamic updates to ensure smooth user experiences [3]. The
optimal pipeline of React enables SPAs to function through real-time interface updates without
disturbing user workflow because they operate differently from classic applications using multiple
pages. The React version 16 implemented fiber architecture to enhance rendering efficiency
through a new update structure that divides modifications into workable sections [1]. The
implementation of vital user interface updates as the first priority in React enables operations to
suspend non-essential work for better application responsiveness.

The fundamental element that affects React application scalability lies in its virtual DOM approach
that optimizes rendering processes. The intricate system of large-scale applications needs multiple
dependent user interface components [2]. React efficiently renders applications, so their
performance stays predictable even when faced with major state alterations. Users benefit from
the declarative approach because React eliminates the need to deal with DOM manipulations.
Thus, developers focus solely on building reliable interfaces with optimal performance [5]. The
continuous refinement of its virtual DOM implementation made React establish its position as the
leading choice for efficient front-end development.

THE INTRODUCTION OF REACT HOOKS: A PARADIGM SHIFT
The React 16.8 update included Hooks as a groundbreaking functionality that reshaped functional
component management of state alongside side effects. The coding standard among React
developers previously involved class-based components until Hooks fundamentally changed their
methods [1]. Lifecycle method components must be used in combination with
componentDidMount and componentDidUpdate to handle component state and side effects, but
these practices decrease code readability as well as maintainability. The Hooks API eliminated the
need for class components by giving functional components native capabilities for state
management and lifecycle event handling, thus simplifying code organization [3].

The useState Hook has become a standard tool for component-state management within functional
components without transitioning to class components, according to Graber et al. (2014). The new
coding style after the shift allows developers to handle declarative state declarations, which makes
them easier to approach and understand. The useEffect Hook replaces lifecycle methods to manage
data fetching and subscriptions, making asynchronous operation implementation easier [6, 7]. The
Hooks enable better code reusability and maintainability since they eliminate redundant code and
follow a functional state management approach [5].

Implementing custom Hooks in React allows developers to write modular functions for reusable
logic [2, 6]. The code organization improves through Hooks because developers can move shared
functionalities into standalone Hooks across components. Although Hooks provides React

789

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

developers with simplified development, it leads to management difficulties using useEffect
dependency arrays due to potential unintended re-rendering problems when not properly handled
[1]. Hooks constitute a transformative change in React's development, bringing the library closer
to contemporary functional programming styles despite their associated complications.

IMPACT OF HOOKS ON MODERN WEB DEVELOPMENT PRACTICES
Hooks' introduction has transformed current web development practices by affecting the way
coders write their programs and organizations structure their systems. The introduction of Hooks
resulted in a move towards functional programming standards because they decrease class
component usage, which encourages code features that are immutable and composable [2, 7]. More
predictable code structures became possible thanks to this transition which made state management
easier to maintain and reduced possible adverse effects during state management. The development
process has become streamlined through Hooks because they allow component logic to be reused,
thus obviating complex higher-order components and rendering props [3].

Hooks enable developers to successfully manage state in large application development processes.
Hooks brings new state management solutions to the market through Recoil and Zustand that
leverage React’s built-in global state capabilities [5]. Advanced systems created better application
architectures with flexible capabilities, decreasing the complexity of shared state data management
across multiple components. Hooks have established performance optimization best practices
through their impact on safe memoization patterns and recommending developers to reduce
redundant re-rendering [4].
Hooks have transformed frontend development through easier state management solutions and
code reusability features that match React with present-day functional programming patterns.
Hooks have established themselves as fundamental elements of React while defining the direction
of web development [1].

CONCLUSION
React’s development path has fundamentally transformed web development methods by

introducing an efficient system for building interactive user interfaces. Components laid the base
for declarative programming as they resolved maintainability and reusability issues in code. Single
page applications prefer the virtual DOM in React because it reduces unnecessary updates while
delivering improved rendering efficiency.

Frontend development underwent a significant change with the introduction of React Hooks 16.8.
Hooks introduced a simplified state management system and lifecycle events, which made class
component complexity obsolete. Hooks led to better functional programming, resulting in
applications with better predictions, maintainability, and scalability.

React has established robust industry benchmarks that direct developers to build contemporary
web applications. React’s function as a leading web ecosystem technology will strengthen through

its continual advancements of state management frameworks and performance enhancement
features. Implementing functional components along with Hooks marks a significant development
that ensures React will lead web development practices in the upcoming years.

790

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

REFERENCES

[1] CACM Staff, “React: Facebook’s functional turn on writing Javascript,” Communications of
the ACM, vol. 59, no. 12, pp. 56–62, Dec. 2016, doi: https://doi.org/10.1145/2980991.

[2] E. Bainomugisha, A. L. Carreton, T. van Cutsem, S. Mostinckx, and W. de Meuter, “A survey

on reactive programming,” ACM Computing Surveys, vol. 45, no. 4, pp. 1–34, Aug. 2013, doi:
https://doi.org/10.1145/2501654.2501666.

[3] Ł. Capała and M. Skublewska-Paszkowska, “Comparison of AngularJS and React.js

frameworks based on a web application,” Journal of Computer Sciences Institute, vol. 6, no. 6, pp.
82–86, Mar. 2018, doi: https://doi.org/10.35784/jcsi.645.

[4] M. Graber, T. Felgentreff, and R. Hirschfeld, “Solving Interactive Logic Puzzles With Object-
Constraints An Experience Report Using Babelsberg/S for Squeak/Smalltalk,” in Workshop on
Reactive and Event-based Languages and Systems (REBLS), 2014. Available:
https://www.semanticscholar.org/paper/Solving-Interactive-Logic-Puzzles-With-An-Report-S-
Graber-Felgentreff/d2e255991f653c8ea10e39be29b119ccdc9e2b60

[5] S. Ramson and R. Hirschfeld, “Active Expressions: Basic Building Blocks for Reactive

Programming,” The Art, Science, and Engineering of Programming, vol. 1, no. 2, Apr. 2017, doi:
https://doi.org/10.22152/programming-journal.org/2017/1/12.

[6] A. Tayanovskyy, S. Fowler, L. Denuzière, and A. Granicz, “Reactive Web Applications with

Dynamic Dataflow in F#,” in Preproceedings of IFL, 2014. Accessed: Feb. 12, 2018. [Online].
Available: https://ifl2014.github.io/submissions/ifl2014_submission_4.pdf

[7] J. A. Lundar, T.-M. Grønli, and G. Ghinea, “Performance Evaluation of a Modern Web

Architecture,” International Journal of Information Technology and Web Engineering, vol. 8, no.
1, pp. 36–50, Jan. 2013, doi: https://doi.org/10.4018/jitwe.2013010103.

791

https://doi.org/10.1145/2980991
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.35784/jcsi.645
https://www.semanticscholar.org/paper/Solving-Interactive-Logic-Puzzles-With-An-Report-S-Graber-Felgentreff/d2e255991f653c8ea10e39be29b119ccdc9e2b60
https://www.semanticscholar.org/paper/Solving-Interactive-Logic-Puzzles-With-An-Report-S-Graber-Felgentreff/d2e255991f653c8ea10e39be29b119ccdc9e2b60
https://doi.org/10.22152/programming-journal.org/2017/1/12
https://ifl2014.github.io/submissions/ifl2014_submission_4.pdf

