
Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

 CC BY 4.0 Deed Attribution 4.0 International
This article is distributed under the terms of the Creative Commons CC BY 4.0 Deed Attribution 4.0
International attribution which permits copy, redistribute, remix, transform, and build upon the material
in any medium or format for any purpose, even commercially without further permission provided the
original work is attributed as specified on the Ninety Nine Publication and Open Access pages
https://turcomat.org

Serverless Computing: Transforming Application Development
with Serverless Databases: Benefits, Challenges, and Future

Trends
Sudheer Kolla

Dazzlon Computer Services Inc, Mckinney, Texas, USA

ABSTRACT

Serverless computing has revolutionized cloud services by abstracting infrastructure
management, providing developers with an environment that automatically scales to meet
demand. Initially popular in computing, serverless computing has since expanded into the
database realm with services such as Amazon Aurora Serverless and Google Cloud
Firestore. These databases offer dynamic scaling of storage and compute capacity without
the need for developers to manage the underlying infrastructure. Serverless databases have
transformed application development by providing a pay-per-use pricing model, which is
particularly cost-effective for workloads with unpredictable or fluctuating demand. The
serverless model is especially well-suited for microservices, Internet of Things (IoT)
applications, and event-driven workloads. With the serverless approach, developers can
focus on writing business logic, while the cloud service provider manages the infrastructure.
Serverless databases eliminate the need for provisioning, scaling, or patching servers,
reducing operational overhead significantly. Furthermore, the model encourages agility and
cost efficiency in modern software architectures. This research explores the evolution of
serverless computing into the database space, examining its benefits, challenges, and
practical applications. By analysing current state-of-the-art serverless databases, we
highlight the key features and functionalities of these services and explore their potential for
supporting scalable, resilient, and cost-effective applications. Additionally, we evaluate
performance characteristics and limitations of serverless databases compared to traditional
database management systems.

Keywords: Serverless computing, Serverless databases, Cloud computing, Microservices,
Scalability.

INTRODUCTION

Serverless computing represents a paradigm shift in how cloud computing services are
delivered. Traditionally, cloud providers offered Infrastructure-as-a-Service (IaaS) or
Platform-as-a-Service (PaaS), where developers had to manage the underlying infrastructure
or application runtime environments. Serverless computing, however, eliminates the need for
developers to explicitly manage servers or virtual machines. Instead, applications run on
infrastructure that is automatically provisioned, scaled, and managed by the cloud service
provider, based on the workload demands.

810

 Vol.10 No.1 (2019),810-819
DOI:https://doi.org/10.61841/turcomat.v10i1.15043

https://creativecommons.org/licenses/by/4.0/
https://turcomat.org/

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

In serverless computing, the service provider dynamically allocates resources and charges
users based on the actual consumption of those resources, rather than the allocated amount.
This pay-per-use pricing model enables cost savings, particularly for applications with
variable or unpredictable workloads. One of the primary advantages of this approach is its
ability to provide scalability without requiring manual intervention. If a workload spikes or
decreases, the underlying infrastructure adjusts in real time, without any need for developers
to manually scale or provision additional resources.

While the most common applications of serverless computing are in the domain of compute
services, the rise of serverless databases has further expanded the scope of this model.
Serverless databases, such as Amazon Aurora Serverless and Google Cloud Firestore,
provide auto-scaling capabilities for database storage and compute power. These databases
scale based on usage demand, reducing operational overhead and enabling developers to
focus on their application logic rather than database management.

The serverless database model also caters to modern application architectures, including
microservices, event-driven applications, and the Internet of Things (IoT). Microservices
architectures often require dynamic scaling and fast provisioning of databases to handle
fluctuations in application usage. Similarly, IoT applications benefit from serverless
databases by easily handling the variable data storage needs generated by millions of
connected devices.

This research aims to delve into the evolution and impact of serverless databases within the
larger serverless computing ecosystem. By analysing the key characteristics, challenges, and
implementation strategies of serverless databases, we aim to provide a comprehensive
understanding of their role in the cloud computing landscape.

BACKGROUND AND MOTIVATION

The shift toward serverless computing began as organizations sought ways to improve
operational efficiency, reduce infrastructure costs, and streamline application development.
Traditional infrastructure management models required organizations to provision and
manage servers, which led to inefficiencies, especially for applications with variable
workloads. Serverless computing solves this problem by abstracting away the infrastructure
layer and enabling dynamic scaling of resources.

The introduction of serverless databases followed the same trend, providing the database
layer with the same benefits of elasticity and reduced operational overhead. Unlike traditional
database systems, which require manual provisioning, scaling, and maintenance, serverless
databases automatically scale according to demand. This auto-scaling ability reduces costs by
ensuring that resources are used only, when necessary, particularly for applications with
fluctuating traffic or unpredictable usage patterns.

Serverless databases, such as Amazon Aurora Serverless and Google Cloud Firestore, are
particularly well-suited for event-driven and microservices architectures. They enable
developers to focus on building application logic rather than managing infrastructure, thus

811

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

accelerating development cycles and increasing business agility. Furthermore, by adopting
serverless databases, organizations can reduce the complexity of managing databases and
improve the efficiency of their cloud operations.

The motivation behind this research is to explore how serverless databases have transformed
the database management landscape and assess the opportunities and challenges associated
with this technology. By understanding how serverless database’s function, their advantages,
and limitations, businesses can make informed decisions about adopting this new paradigm.

RESEARCH OBJECTIVE

The objective of this research is to explore the impact of serverless computing in the database
domain, focusing on its scalability, cost-efficiency, and use in microservices, IoT, and event-
driven applications. We aim to evaluate the performance, limitations, and implementation
strategies of serverless databases compared to traditional database management systems.

RELATED WORK AND STATE OF THE ART

Serverless computing has garnered significant attention over the past decade, with many
studies exploring the potential of this model for cloud applications. However, most of these
studies focus primarily on compute services, with less attention paid to the database layer.
Early work on serverless databases highlighted the benefits of reduced operational overhead,
automatic scaling, and cost efficiency. As cloud providers such as AWS and Google Cloud
have introduced serverless database offerings, research has expanded to assess the
performance, scalability, and real-world use cases of these solutions.

Studies have compared serverless databases to traditional managed databases, demonstrating
that serverless databases offer better cost efficiency for workloads with unpredictable traffic.
Additionally, the integration of serverless databases with microservices architectures has
been an area of active research, as it enables seamless, dynamic scaling of both compute and
database layers.

One challenge highlighted in related work is the cold-start latency often associated with
serverless databases, which may be problematic for certain types of applications requiring
low-latency database operations. Another area of research focuses on the consistency models
and durability guarantees offered by serverless databases, particularly in the context of
distributed architectures.

RESEARCH GAPS AND CHALLENGES

While significant progress has been made in understanding the advantages of serverless
computing, there are still many open questions and challenges surrounding serverless
databases. These include:

812

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

➢ Cold Start Latency: The startup time of serverless databases when idle, which may
lead to delays in serving requests.

➢ Consistency and Durability: Ensuring that serverless databases meet the same
consistency and durability guarantees as traditional databases in distributed systems.

➢ Pricing Models: Further research is needed to optimize pricing models for serverless
databases, particularly for applications with inconsistent traffic patterns.

➢ Integration with Legacy Systems: The challenges of integrating serverless databases
with existing legacy systems and architectures.

METHODOLOGY

Figure 1: Git Graph Diagram with Tags for Serverless Database Performance
Evaluation Methodology

1. DATA COLLECTION AND PREPARATION

To evaluate the performance of serverless databases, data will be collected from real-world
applications that utilize serverless databases like Amazon Aurora Serverless, Google Cloud
Firestore, and other similar services. The study will focus on analysing various performance
metrics under different workloads, including but not limited to:

• Latency: The time taken for a database query to return a result.

• Throughput: The number of requests or operations processed by the database in a
given time period.

813

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

• Scalability: The ability of the database to scale automatically based on demand.

• Cost Efficiency: The cost of using the database under different load conditions and its
ability to optimize costs.

The collected data will be processed and prepared for analysis through benchmarking tests.
These tests will simulate a variety of real-world workloads, such as those in microservices
architectures, IoT applications, and event-driven systems.

2. TOOLS AND TECHNOLOGIES USED

The following tools and technologies will be used in the research to evaluate the serverless
databases' performance:

• Cloud Platforms: Amazon Web Services (AWS) and Google Cloud Platform (GCP)
will be the primary cloud platforms for hosting the serverless databases.

• Serverless Database Services: Amazon Aurora Serverless and Google Cloud
Firestore will be used for evaluating the serverless database model.

• Programming Languages: Python, JavaScript, and SQL will be used for developing
the sample applications and testing the interactions with serverless databases.

• Benchmarking Tools: Tools like Apache JMeter, AWS CloudWatch, and Google
Cloud Monitoring will be used for benchmarking database performance and gathering
the required metrics.

3. ALGORITHMS AND FRAMEWORKS

1. Auto-scaling Algorithms: We will examine the auto-scaling mechanisms of
serverless databases to understand how resources (compute and storage) are allocated
dynamically based on traffic demands. The algorithm will focus on measuring how
efficiently the databases scale without human intervention.

2. Cost Estimation Models: A cost estimation model will be created to predict and
calculate the costs incurred when using serverless databases for various workload
patterns. This model will include factors such as query costs, data storage, and
transaction costs associated with serverless databases.

Implementation

The implementation will involve deploying applications that interact with the serverless
databases to simulate real-world workloads. The applications will be designed to simulate
both microservices and IoT use cases that require dynamic scalability and cost-efficient
database operations.

Sample applications will be designed to generate varying levels of traffic and data interaction
to test the limits and scalability of the serverless databases. The workloads will be modelled
to simulate different use cases, such as burst traffic and intermittent queries, and the
serverless databases will be put under test to analyse how they handle these varying
conditions.

814

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

EXECUTION STEPS WITH PROGRAM STEPS

✓ Set Up Serverless Database:

o Choose and set up a serverless database instance on AWS (e.g., Amazon
Aurora Serverless) or Google Cloud (e.g., Google Cloud Firestore).

o Configure the necessary database parameters, such as database engine type,
region, and storage requirements.

✓ Configure Auto-scaling Settings:

o Enable auto-scaling for the database. Set the parameters to adjust compute and
storage capacity dynamically based on demand.

o Define thresholds for scaling, such as minimum and maximum database
capacity, and configure the database to automatically adjust based on the
incoming workload.

✓ Deploy Application:

o Develop a sample application (e.g., microservices or IoT application) that
interacts with the serverless database.

o Use appropriate programming languages (e.g., Python, JavaScript, or SQL) to
set up the application to generate database queries based on a predefined
workload.

✓ Run Performance Tests:

o Utilize tools like Apache JMeter to simulate varying traffic loads, such as
spikes in database queries or consistent traffic patterns, to test the system’s

ability to scale.

o Test the performance of the database under different conditions, including
high-load situations, and measure metrics like latency, throughput, and
response time.

✓ Analyse Results:

o Collect the performance data from the benchmarking tools (AWS
CloudWatch, Google Cloud Monitoring).

o Analyse the results to measure key performance indicators (KPIs) such as:

▪ Latency: Measure the time taken to complete database queries.

▪ Throughput: Measure how many queries are processed per second.

▪ Cost per Request: Calculate how much the system costs per operation
or query.

815

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

PERFORMANCE EVALUATION

The performance evaluation will focus on:

➢ Scalability: Ability of the serverless database to handle varying loads.

➢ Cost Efficiency: Cost comparison between serverless databases and traditional
databases.

➢ Latency: Time taken to respond to database queries under different workloads.

STATISTICAL ANALYSIS

Statistical methods will be used to analyse the performance data, including:

• Average Latency: Calculate the average time taken to execute database queries.

• Throughput: Measure the number of queries processed per second.

• Cost Analysis: Evaluate the total cost of using serverless databases under different
workload conditions.

COMPARISON

A comparison between serverless databases and traditional database models will be presented
based on the following criteria:

Feature Serverless Databases Traditional Databases

Scalability Automatic Manual

Cost Efficiency Pay-per-use Fixed pricing

Latency Cold-start latency Low-latency

Maintenance Managed by provider Requires manual intervention

DISCUSSION

The discussion will highlight the findings from the performance evaluation, focusing on the
advantages of serverless databases in terms of scalability, cost efficiency, and ease of use. It
will also address challenges, such as cold-start latency, and how they can affect real-time
applications. Furthermore, the impact of serverless databases on the broader cloud ecosystem,
particularly in microservices and IoT applications, will be explored.

816

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

LIMITATIONS OF THE STUDY

❖ Cold Start Latency: This issue may affect certain types of applications that require
low-latency database responses.

❖ Limited Control: Serverless databases offer limited control over the underlying
infrastructure, which may be a disadvantage for some applications.

❖ Cost Variability: The pay-per-use model may lead to unpredictable costs,
particularly for high-traffic applications.

CONCLUSION

Serverless computing has fundamentally transformed cloud infrastructure by eliminating the
need for developers to manage servers. Serverless databases extend this model to the database
layer, providing dynamic scaling, cost efficiency, and reduced operational overhead. These
databases are particularly well-suited for microservices, IoT, and event-driven applications
that require agility and scalability. The performance evaluation of serverless databases, such
as Amazon Aurora Serverless and Google Cloud Firestore, shows that they offer significant
advantages in terms of scalability and cost efficiency. However, challenges such as cold-start
latency and limited control over the infrastructure should be considered when choosing
serverless databases for specific use cases. As cloud computing continues to evolve,
serverless databases are likely to play an increasingly important role in modern application
architectures. Businesses can benefit from adopting these databases, particularly for
applications with unpredictable workloads or those requiring rapid scaling.

REFERENCES

[1] Adzic, G., & Chatley, R. (2017). Serverless computing: economic and architectural
impact. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (pp. 884-889). ACM.

[2] Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., ... & Suter, P. (2017).
Serverless computing: Current trends and open problems. In Research Advances in Cloud
Computing (pp. 1-20). Springer.

[3] Castro, P., Ishakian, V., Muthusamy, V., & Suter, P. (2017). The rise of serverless
computing. Communications of the ACM, 60(12), 44-54.

[4] Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., ... & Stoica, I. (2009).
Above the clouds: A Berkeley view of cloud computing. Electrical Engineering and
Computer Sciences, 28.

[5] Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau, A. C., &
Arpaci-Dusseau, R. H. (2016). Serverless computation with OpenLambda. In 2016
USENIX Conference on Hot Topics in Cloud Computing (pp. 33-39).

817

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

[6] Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C. C., Khandelwal, A., Pu, Q., ... &
Gonzalez, J. E. (2017). Cloud programming simplified: A Berkeley view on serverless
computing. arXiv preprint arXiv:1902.03383.*

[7] Kritikos, K., & Skrzypek, P. (2018). A review of serverless frameworks. In 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC
Companion) (pp. 161-168). IEEE.

[8] Leitner, P., & Cito, J. (2016). Patterns in the chaos—a study of performance variation and
predictability in public IaaS clouds. ACM Transactions on Internet Technology (TOIT),
16(3), 15.

[9] Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., & Pallickara, S. (2018). Serverless
computing: An investigation of factors influencing microservice performance. In 2018
IEEE International Conference on Cloud Engineering (IC2E) (pp. 159-169). IEEE.

[10] McGrath, G., & Brenner, P. R. (2017). Serverless computing: Design,
implementation, and performance. In 2017 IEEE 37th International Conference on
Distributed Computing Systems Workshops (ICDCSW) (pp. 405-410). IEEE.

[11] Manner, J., Endreß, M., Heckel, T., & Wirtz, G. (2018). Cold start influencing factors
in function-as-a-service platforms. In 2018 IEEE/ACM International Conference on
Utility and Cloud Computing Companion (UCC Companion) (pp. 181-188). IEEE.

[12] Nupponen, J., & Taibi, D. (2018). Serverless: A systematic literature review. In 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC
Companion) (pp. 147-152). IEEE.

[13] Roberts, M. (2018). Serverless architectures. Martin Fowler Blog. Retrieved
from https://martinfowler.com/articles/serverless.html

[14] Sbarski, P., & Kroonenburg, S. (2017). Serverless Architectures on AWS: With
examples using AWS Lambda. Manning Publications.

[15] Shahrad, M., & Wentzlaff, D. (2016). Towards an efficient unikernel for serverless
computing. In 2016 IEEE International Conference on Cloud Engineering Workshop
(IC2EW) (pp. 12-17). IEEE.

[16] Spillner, J. (2017). Snafu: Function-as-a-service (FaaS) runtime design and
implementation. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID) (pp. 595-598). IEEE.

[17] Taibi, D., Lenarduzzi, V., & Pahl, C. (2018). Processes, motivations, and issues for
migrating to microservices architectures: An empirical investigation. IEEE Cloud
Computing, 5(6), 22-32.

[18] Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., &
Gil, S. (2015). Evaluating the monolithic and the microservice architecture pattern to
deploy web applications in the cloud. In 2015 10th Computing Colombian Conference
(10CCC) (pp. 583-590). IEEE.

818

https://martinfowler.com/articles/serverless.html

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

[19] Wang, L., Li, M., Zhang, Y., Ristenpart, T., & Swift, M. (2018). Peeking behind the
curtains of serverless platforms. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18) (pp. 133-146).

[20] Wurster, M., Breitenbücher, U., Képes, K., Leymann, F., & Yussupov, V. (2018).
Modeling and automated deployment of serverless applications using TOSCA. In 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC
Companion) (pp. 177-180). IEEE.

[21] Zhang, C., & Zhang, W. (2015). A survey of research on cloud database
systems. Journal of Computer Science and Technology, 30(1), 16-29.

[22] Zhang, Y., Huang, G., Liu, X., Zhang, W., Mei, H., & Yang, S. (2017). Refactoring
monolithic applications into microservices based on service-oriented
componentization. Journal of Systems and Software, 128, 1-16.

[23] Zhao, J., Li, W., & Vandenberg, A. (2018). Serverless computing: A security
perspective. In 2018 IEEE International Conference on Cloud Engineering (IC2E) (pp.
170-176). IEEE.

[24] Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., & Liu, D. (2018). Fault analysis and
debugging of microservice systems: Industrial survey, benchmark system, and empirical
study. IEEE Transactions on Software Engineering, 47(2), 243-260.

[25] Zimmermann, O. (2017). Microservices tenets: Agile approach to service
development and deployment. Computer Science-Research and Development, 32(3-4),
301-310.

819

