
Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

 CC BY 4.0 Deed Attribution 4.0 International
This article is distributed under the terms of the Creative Commons CC BY 4.0 Deed Attribution 4.0
International attribution which permits copy, redistribute, remix, transform, and build upon the material
in any medium or format for any purpose, even commercially without further permission provided the
original work is attributed as specified on the Ninety Nine Publication and Open Access pages
https://turcomat.org

ABSTRACT
Enterprise Terraform by HashiCorp is an advanced Infrastructure as Code (IaC) solution
designed to manage and automate complex infrastructure environments. Building on the
open-source Terraform tool, it offers enhanced features tailored for enterprise-level
operations, including multi-cloud and on-premises infrastructures. Key capabilities include
role-based access control (RBAC), workspaces, and policy as code through Sentinel, which
collectively support secure team collaboration, governance, and compliance across
infrastructure workflows. These features enable organizations to manage and provision
infrastructure consistently, whether it spans on-premises systems or multiple cloud providers.
Terraform Enterprise emphasizes scalability, ensuring that teams can manage large-scale
infrastructure efficiently while maintaining control over resource provisioning. With tight
version control system (VCS) integration, Terraform Enterprise facilitates automated
deployments and consistent environment management. Remote state management and secure
operations further ensure the reliability of deployments, reducing the risk of errors during
infrastructure changes. By offering policy as code, team collaboration, and secure operations,
Terraform Enterprise empowers organizations to streamline infrastructure provisioning,
ensuring agility, consistency, and control. This research article delves into the key features of
Enterprise Terraform, evaluates its implementation, and compares it with alternative IaC
solutions to highlight its strengths and potential areas of improvement for enterprise use.

Keywords: Terraform, Infrastructure as Code (IaC), Role-Based Access Control (RBAC),
Sentinel, Cloud Automation.

INTRODUCTION

Infrastructure as Code (IaC) has revolutionized the way organizations manage their
infrastructure. Traditional methods of infrastructure management, which relied on manual
configuration and scripts, were error-prone, difficult to scale, and often time-consuming. As
organizations moved to the cloud, the complexity of managing infrastructure grew
exponentially, and the need for automated, repeatable infrastructure provisioning became
critical. This is where Terraform and its enterprise counterpart, Enterprise Terraform, play
a pivotal role.

Enterprise Terraform: Optimizing Infrastructure Management with
Enterprise Terraform: Enhancing Scalability, Security, and

Collaboration
Sudheer Kolla

Unisoft Technology Inc, Gaithersburg, M aryland, USA

2038

Vol.10 No.2(2019),2038-2047
DOI:https://doi.org/10.61841/turcomat.v10i2.15042

https://creativecommons.org/licenses/by/4.0/
https://turcomat.org/

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

Terraform is an open-source IaC tool developed by HashiCorp. It allows developers and
operations teams to write declarative configuration files that describe the desired state of
infrastructure, which Terraform then provisions and manages. As organizations scale, they
often find themselves working with multiple cloud providers, on-premises infrastructure, and
a combination of different technologies. Managing these diverse environments without a
unified solution can lead to inefficiencies and security risks.

Enterprise Terraform builds upon the open-source version by introducing advanced
features specifically designed for enterprises. These features address challenges such as
multi-cloud deployments, team collaboration, governance, and compliance. It also integrates
with version control systems (VCS) and remote state management to streamline
automation. The focus of Enterprise Terraform is to simplify large-scale infrastructure
management, while also ensuring security and operational control.

One of the most compelling features of Enterprise Terraform is its ability to provide role-
based access control (RBAC) and workspaces. These features allow teams to work securely
in a collaborative environment, ensuring that different teams can work on their designated
resources without interfering with each other's work. Additionally, policy as code, powered
by Sentinel, allows organizations to enforce governance policies and ensure compliance with
industry standards.

Furthermore, Enterprise Terraforms remote state management capabilities ensure that the
state of the infrastructure is securely stored and consistently accessible, mitigating the risks
associated with inconsistent state files. Secure operations features, including state
encryption and audit logging, are critical for maintaining integrity in production
environments.

This research article explores the capabilities of Enterprise Terraform, its advantages over the
open-source version, and how it addresses the needs of modern enterprises for scalability,
consistency, and governance in infrastructure provisioning.

BACKGROUND AND MOTIVATION

In the past decade, the cloud has become the foundation for enterprise infrastructure,
enabling organizations to scale rapidly and optimize their resource utilization. However, as
infrastructure grows more complex with multi-cloud environments, hybrid cloud setups, and
the rise of microservices architectures, managing infrastructure manually has become
increasingly impractical. To address these challenges, Infrastructure as Code (IaC) solutions
such as Terraform have become essential tools for automating and managing infrastructure
deployment.

While the open-source version of Terraform is powerful and widely adopted, it was designed
for smaller teams or individual projects. Enterprises, with their more complex needs and
diverse teams, require additional capabilities such as team collaboration, RBAC, and
governance features. This is where Enterprise Terraform steps in, offering advanced

2039

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

features specifically tailored for large-scale, secure, and compliant infrastructure
management.

Organizations are also under increasing pressure to meet regulatory requirements and adhere
to internal security policies. With the growing complexity of cloud environments, enforcing
governance and compliance across various teams and departments has become a daunting
task. Sentinel, the policy-as-code framework in Enterprise Terraform, enables businesses to
define and enforce policies to ensure that their infrastructure meets compliance standards
without compromising agility.

The motivation behind adopting Enterprise Terraform is to help organizations maintain
consistency, control, and security in their infrastructure deployments. By leveraging IaC,
businesses can increase operational efficiency, reduce errors, and accelerate their
infrastructure provisioning, all while ensuring that best practices and compliance standards
are followed.

RESEARCH OBJECTIVE

The objective of this research is to explore the capabilities and features of Enterprise
Terraform by HashiCorp, assess its impact on managing complex infrastructure
environments, and evaluate its advantages over the open-source version. The study aims to
highlight how Enterprise Terraform empowers organizations with scalability, security, and
governance in infrastructure provisioning.

RELATED WORK AND STATE OF THE ART

Infrastructure as Code (IaC) has seen widespread adoption, with several tools available in the
market to automate infrastructure management. Terraform, Ansible, Chef, and Puppet are
among the most popular IaC tools used by enterprises today. Each of these tools offers unique
features for automating and managing infrastructure, but Terraform has emerged as one of the
most preferred solutions due to its declarative syntax, multi-cloud support, and extensibility.

While the open-source version of Terraform provides strong support for provisioning
infrastructure, managing state, and handling multiple cloud providers, it lacks advanced
features required by large enterprises. As a result, Enterprise Terraform has gained traction
as a solution for organizations looking to scale their infrastructure operations while
maintaining control and security.

In comparison to other IaC tools, Enterprise Terraform stands out due to its integration
with Sentinel, which enables policy as code, allowing businesses to enforce governance at
scale. This is particularly important in regulated industries like finance and healthcare, where
compliance with industry standards is mandatory. The workspaces feature also allows for
better team collaboration, making it easier for organizations to manage infrastructure across
different teams and environments.

2040

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

Despite the advances in IaC tools, challenges remain around scaling infrastructure
management, ensuring security, and enforcing governance. These issues are addressed by
Enterprise Terraform through features like RBAC, policy enforcement, and secure state
management.

RESEARCH GAPS AND CHALLENGES

Although Enterprise Terraform has been widely adopted, there are still several challenges
that organizations face when using IaC tools at scale:

❖ Multi-cloud management: Managing infrastructure across multiple cloud providers and
on-premises systems remains a complex challenge, particularly for enterprises with
hybrid environments.

❖ Governance and compliance: Ensuring compliance with regulatory requirements and
internal policies across a distributed infrastructure is difficult. While Sentinel offers a
solution, not all organizations have fully embraced policy-as-code practices.

❖ Security risks: As enterprises manage more critical infrastructure, ensuring security
during automated deployments becomes increasingly important. Secure state
management, encryption, and audit logs are crucial, but organizations must ensure proper
implementation.

❖ Learning curve: While Terraform is powerful, its complexity and configuration
requirements can be challenging for new users. Enterprises may require additional
resources to train their teams on best practices.

These challenges represent research gaps that need to be explored to further improve the
effectiveness of Enterprise Terraform in large-scale environments.

METHODOLOGY

This research adopts a qualitative and quantitative approach to evaluate the effectiveness
and capabilities of Enterprise Terraform in automating infrastructure provisioning. The
research will include case studies, surveys, and hands-on implementation to assess the
practical applications of Enterprise Terraform in real-world environments.

2041

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

Figure 1: Distribution of Research Methodology Components

Data Collection and Preparation

• Case studies: The research will focus on case studies from organizations that have
adopted Enterprise Terraform for managing multi-cloud and hybrid environments.

• Surveys: Surveys will be conducted with enterprise DevOps teams, infrastructure
managers, and security officers to understand the challenges and benefits of using
Enterprise Terraform.

• Implementation: A small-scale implementation of Enterprise Terraform will be
carried out to test its features in real-world conditions.

Tools and Technologies Used

• Terraform Enterprise: The primary tool used for infrastructure management and
automation.

• AWS, Azure, Google Cloud: For multi-cloud infrastructure provisioning.

• Sentinel: For policy enforcement.

• Version Control Systems (VCS): GitHub and GitLab for versioning and
collaboration.

Algorithms and Frameworks

• Terraform Configuration: Writing Terraform scripts for infrastructure provisioning.

• Sentinel Policies: Defining and enforcing governance policies to ensure compliance.

• RBAC: Setting up roles and permissions to manage team access to infrastructure.

2042

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

Implementation

1. Set up Terraform Enterprise: Install and configure Terraform Enterprise to
provision infrastructure across AWS, Azure, and Google Cloud.

2. Create Workspaces: Set up workspaces for different teams, such as development,
staging, and production.

3. Define Sentinel Policies: Write and apply Sentinel policies to ensure compliance
with internal security and governance standards.

4. Configure VCS Integration: Integrate Terraform Enterprise with a version control
system (e.g., GitHub) to manage code changes and automate deployments.

System Architecture

The architecture will include:

• Multi-cloud infrastructure managed using Terraform Enterprise.

• Workspaces to manage different environments.

• RBAC to control team access to various parts of the infrastructure.

Development Environment

• Terraform Enterprise will be set up in a private cloud environment, integrated with
public cloud providers (AWS, Azure, Google Cloud) for provisioning resources.

• Version control systems (VCS) such as GitHub will be used to store Terraform
scripts and manage changes.

EXECUTION STEPS

1. Set Up Terraform Enterprise:

o Install Terraform Enterprise and configure it with appropriate authentication
methods.

2. Provision Multi-cloud Infrastructure:

o Write Terraform scripts to provision infrastructure on AWS, Azure, and
Google Cloud.

o Example Terraform script for provisioning AWS EC2:

provider "aws" {

 region = "us-west-2"

}

2043

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

resource "aws_instance" "example" {

 ami = "ami-0c55b159cbfafe1f0"

 instance_type = "t2.micro"

}

3. Create Workspaces:

o Create workspaces for different environments (e.g., dev, staging, production).

o Use Terraform CLI to initialize and select workspaces.

4. Apply Sentinel Policies:

o Define policies using Sentinel to enforce compliance during deployments:

policy "no-ec2-in-us-east-1" {

 rule {

 resource "aws_instance" {

 region != "us-east-1"

 }

 }

}

5. Configure RBAC:

o Set up RBAC to control user access to different workspaces and resources
within Terraform Enterprise.

PERFORMANCE EVALUATION

The performance of Enterprise Terraform will be evaluated based on:

1. Scalability: Ability to manage large-scale infrastructure across multiple cloud
providers.

2. Compliance enforcement: Effectiveness of Sentinel policies in ensuring
governance.

3. Team collaboration: Efficiency of collaboration using workspaces and RBAC.

STATISTICAL ANALYSIS

2044

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

The effectiveness of Enterprise Terraform will be analysed by comparing infrastructure
provisioning times, error rates, and compliance adherence before and after adopting the tool.

Comparison

Feature Terraform
Enterprise

Other IaC Tools (e.g.,
Ansible)

Multi-cloud support Yes Limited

Policy enforcement (Sentinel) Yes No

Team collaboration (RBAC,
Workspaces)

Yes Limited

Remote state management Yes No

VCS Integration Yes No

DISCUSSION

The use of Enterprise Terraform offers significant benefits over other IaC tools,
particularly for organizations operating in multi-cloud environments. The ability to manage
infrastructure across multiple cloud providers, enforce governance through Sentinel, and
ensure team collaboration via workspaces makes it a powerful tool for enterprise-grade
infrastructure management. However, challenges remain, particularly in managing complex
configurations and ensuring that policies are effectively enforced.

LIMITATIONS OF THE STUDY

This study is limited by the scope of the case studies and the size of the implementation.
Future research could include more extensive case studies across different industries and
larger-scale implementations to further evaluate the performance and effectiveness of
Enterprise Terraform.

CONCLUSION

Enterprise Terraform offers a robust solution for managing large-scale, multi-cloud
infrastructures. By combining Terraform's flexibility with advanced enterprise features like
workspaces, RBAC, and Sentinel for policy enforcement, it empowers organizations to
automate infrastructure provisioning while ensuring security and governance. Its integration
with version control systems and support for remote state management provide additional
layers of reliability and scalability. While challenges related to governance, security, and
learning curves persist, Enterprise Terraform offers substantial benefits for enterprises

2045

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

looking to achieve greater agility and consistency in infrastructure provisioning. The adoption
of this tool can lead to increased operational efficiency, better compliance adherence, and
faster delivery of cloud-native applications.

REFERENCES

[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., ... & Zaharia,
M. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50-
58. https://doi.org/10.1145/1721654.1721672

[2] Brikman, Y. (2016). Terraform: Up & Running: Writing Infrastructure as Code. O'Reilly
Media.

[3] Buyya, R., Broberg, J., & Goscinski, A. (2011). Cloud computing: Principles and
paradigms. Wiley.

[4] Erl, T., Puttini, R., & Mahmood, Z. (2013). Cloud computing: Concepts, technology &
architecture. Prentice Hall.

[5] Fowler, M. (2014). Microservices: A definition of this new architectural term. Retrieved
from https://martinfowler.com/articles/microservices.html

[6] HashiCorp. (2017). Sentinel: Policy as code. Retrieved
from https://www.hashicorp.com/sentinel

[7] HashiCorp. (2018). Terraform Enterprise documentation. Retrieved
from https://www.terraform.io/docs/enterprise/index.html

[8] Humble, J., & Farley, D. (2010). Continuous delivery: Reliable software releases through
build, test, and deployment automation. Addison-Wesley.

[9] Kavis, M. J. (2014). Architecting the cloud: Design decisions for cloud computing service
models (SaaS, PaaS, and IaaS). Wiley.

[10] Leite, L., Rocha, C., Kon, F., Milojicic, D., & Meirelles, P. (2019). A survey of
DevOps concepts and challenges. ACM Computing Surveys (CSUR), 52(6), 1-
35. https://doi.org/10.1145/3359981

[11] Morris, K. (2017). Infrastructure as code: Managing servers in the cloud. O'Reilly
Media.

[12] Newman, S. (2015). Building microservices: Designing fine-grained systems.
O'Reilly Media.

[13] Pahl, C., & Jamshidi, P. (2016). Microservices: A systematic mapping study. In 2016
IEEE 9th International Conference on Cloud Computing (CLOUD) (pp. 758-761).
IEEE. https://doi.org/10.1109/CLOUD.2016.0111

2046

https://doi.org/10.1145/1721654.1721672
https://martinfowler.com/articles/microservices.html
https://www.hashicorp.com/sentinel
https://www.terraform.io/docs/enterprise/index.html
https://doi.org/10.1145/3359981
https://doi.org/10.1109/CLOUD.2016.0111

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

[14] Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2017). Cloud container technologies:
A state-of-the-art review. IEEE Transactions on Cloud Computing, 7(3), 677-
692. https://doi.org/10.1109/TCC.2017.2702586

[15] Richardson, L., & Ruby, S. (2007). RESTful web services. O'Reilly Media.

[16] Roberts, M. (2018). Serverless architectures. Retrieved
from https://martinfowler.com/articles/serverless.html

[17] Sbarski, P., & Kroonenburg, S. (2017). Serverless architectures on AWS: With
examples using AWS Lambda. Manning Publications.

[18] Sharma, S., & Coyne, B. (2015). DevOps for dummies. John Wiley & Sons.

[19] Sommerville, I. (2011). Software engineering (9th ed.). Addison-Wesley.

[20] Taibi, D., Lenarduzzi, V., & Pahl, C. (2018). Processes, motivations, and issues for
migrating to microservices architectures: An empirical investigation. IEEE Cloud
Computing, 5(6), 22-32. https://doi.org/10.1109/MCC.2018.2883743

[21] Turnbull, J. (2014). The Docker book: Containerization is the new virtualization.
James Turnbull.

[22] Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., &
Gil, S. (2015). Evaluating the monolithic and the microservice architecture pattern to
deploy web applications in the cloud. In 2015 10th Computing Colombian Conference
(10CCC) (pp. 583-590). IEEE. https://doi.org/10.1109/ColumbianCC.2015.7333475

[23] Wettinger, J., Breitenbücher, U., & Leymann, F. (2014). Standards-based DevOps
automation and integration using TOSCA. In 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing (UCC) (pp. 59-68).
IEEE. https://doi.org/10.1109/UCC.2014.15

[24] Zimmermann, O. (2017). Microservices tenets: Agile approach to service
development and deployment. Computer Science-Research and Development, 32(3-4),
301-310. https://doi.org/10.1007/s00450-016-0337-0

[25] Zhang, C., & Zhang, W. (2015). A survey of research on cloud database
systems. Journal of Computer Science and Technology, 30(1), 16-
29. https://doi.org/10.1007/s11390-015-1506-5

2047

https://doi.org/10.1109/TCC.2017.2702586
https://martinfowler.com/articles/serverless.html
https://doi.org/10.1109/MCC.2018.2883743
https://doi.org/10.1109/ColumbianCC.2015.7333475
https://doi.org/10.1109/UCC.2014.15
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s11390-015-1506-5

