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Abstract. Over the last several years, there has been a growing focus on the CL field in the context of machine learning and 
its goal to create models capable of learning new tasks step by step without loss of prior knowledge. Among these, catastrophic 
forgetting is especially challenging in real-world settings where the data experience changes over time. To this effect, what 
has become pivotal for models is mechanisms for memory update to enable the models to learn information as well as update 
what has been previously learned easily. This survey specifically investigates the memory update strategy in the continual 
learning setup wherein new categories and domains are continuously added in the text datasets including sentiment analysis, 
named entity recognition, text classification tasks etc. Moving on, three primary memory update strategies of memory replay, 
memory consolidation, and parameter isolation are discussed; this paper further addresses certain adaptations of the proposed 
methods for text-based applications. Memory replay means that part of previous data is stored to be replayed when new tasks 
are learned while memory consolidation strengthens only significant memories. Parameter isolation helps avoid masking 
previous tasks or overwriting the parameters when the machine learning algorithm is trained to accomplish new tasks. In this 
paper, we discuss the latest in these techniques and offer a thorough insight into their use in text datasets such as Amazon 
Reviews and Yelp Reviews.  Further, we outline the primary drawbacks of existing solutions for memory updates such as 
capacity limitations, domain variation, and continually learning without having access to new task information. In addition, a 
summary table of literature review identifying the most relevant works within the field is offered. Lastly, we discuss the 
remaining issues and potential research directions where more focus and development should be given in CL for text data by 
noting the importance of efficient and adaptive update policies towards the memory. 
 
Keywords: Continual Learning, Catastrophic Forgetting, Memory Update Mechanisms, Memory Replay, Memory 
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1. Introduction 
One of the major human learning characteristics, which is tightly connected with the concept of lifelong learning, 
is the capacity to learn new tasks without losing the knowledge, previously gained. Traditional machine learning 
models are generally trained in a one-step process that utilizes a single dataset. But in real-world scenarios, AI 
has to learn incrementally from continuously incoming sequences of data that changes over time. This type of 
learning is called continual learning (CL) or lifelong learning and has several issues, the most crucial one being 
catastrophic forgetting, which means that the model tends to overwrite and thus ‘forget’ previously learned 

information when trained on new tasks. Recently, there is an increasing focus on the employment of techniques 
by which the models acquire new knowledge progressively, which is highly useful in a non-stationary 
environment such as NLP. Cutting-edge uses of text analytics such as sentiment analysis, document 
categorization, and named entity recognition (NER) can just as often be faced with cases when new topics, 
domains or categories appear in the course of time. For instance, an AI system trained to recognize different types 
of movie reviews may later be required to sort restaurant reviews or articles. If the system does not implement 
ways and means to store and preserve the information about movie reviews to apply it when learning these new 
tasks, it is likely to experience catastrophic forgetting and perform badly on tasks it has previously learned. 
 
1.1 The Need for Memory Update Mechanisms 
To overcome the problem of catastrophic forgetting, several strategies to update memory have been introduced. 
These mechanisms are made to allow models to retain their learning capacity on jobs that they had previously 
learnt while they continue to learn new ones. The concept of memory update mechanisms is to allow certain 
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information to be retained and updated from previous tasks, so that models are responsive to the content, but are 
not overwhelmed with it. 
The primary memory update mechanisms used in continual learning are: 
Memory Replay: In this method some of the old data is stored and played back while the model is learning the 
new tasks. The model is able to remember prior tasks because during training for new tasks, such examples are 
recapitulated. 
Memory Consolidation: Derived from cognitive neuroscience, cognitive schemas include the strengthening of 
memories from the previous tasks that are found relevant. This static memory helps prevent important information 
from being overlooked despite changing the model with new data. 
Parameter Isolation: In this method, every model is provided unique parameters in order to learn the distinct 
tasks and faces no interconnection as a result. This minimises overwriting of parameter from previous tasks when 
the model gets new tasks to learn from. 
 
1.2 Continual Learning in Text-Based Applications 
 
Text data is challenging to apply to continual learning since it changes continuously and is rich in context. In the 
real application of the model such as sentiment analysis, there may be new domains, languages or categories later 
on which the model has to learn about while at the same time must recognize the sentiment of the domains learnt 
in the past. 
 
Let’s have a sentiment analysis system which has been trained using Amazon movie reviews as the training data 

set. About this, the system might have to classify reviews that pertain to other categories for example, Yelp 
restaurant reviews or book reviews at some point. If the system learns the new domain without mechanism for 
retaining that knowledge about movie reviews, then the system is likely to forget how to classify movie reviews 
again. This is the kind of scenario that often defines catastrophic forgetting in the contexts studied by neuroscience 
and neuro-robotics. To avoid such a situation, the system might use memory update techniques to periodically 
remind itself of the capability when it is learning restaurant reviews, such as replaying selected movie reviews. 
This is important especially in applications where text data is changing over time and is being generated frequently 
such as social network analysis, opinion mining, and real-time customer feedback. These applications require 
models that are able to update with new information but are also able to perform well on already existing tasks. 
 
1.3 Structure of the Paper 
In this survey, we give a detailed survey of memory update schemes for CL with special emphasis on text datasets. 
In the first section, we outline the conceptual foundations of continuous learning and identify the most critical 
problem in the field – catastrophic forgetting. We then go deeper to discuss the three primary forms of memory 
update which are; memory replay, memory consolidation, and parameter isolation and explain how each of the 
forms has been used in text related tasks such as sentiment analysis and Name entity recognition. 
We also provide a brief review of the major research papers in this area and discuss recent developments for 
continued learning and their effect on the performance of the model. The contributions of the most relevant articles 
are summarized in a literature review table. Last, we present some issues with the existing approaches and 
proposed research avenues to help improve continual learning methods that are more efficient and applicable in 
learning over dynamic text content data. 
 
2. Background and Challenges of Memory Update Mechanisms in Continual Learning 
Continual learning (CL), sometimes referred to as lifelong learning, is a machine learning setting where a model 
learns tasks iteratively without the ability to forget what it learned in previous tasks. This is a big deviation from 
the conventional architectures of machine learning models in which changes in the incoming data are not learned 
over time. In other practical usage scenarios like NLP that deals with text data which is on the constant production 
and can also undergo structural and material transformations, continual learning is advantageous. Another 
drawback of continual learning is known as catastrophic forgetting – when a model tends to overwrite the previous 
knowledge when learning something new. In the field of continual learning, the memory update mechanism is 
crucial in minimizing catastrophic forgetting while enabling the model to both store and apply knowledge acquired 
during previous tasks toward learning new tasks. The proposed mechanisms, including memory replay, memory 
consolidation, and parameter isolation, facilitate stable performance when addressing sequential tasks in complex 
environments, especially for text-based tasks. This section will describe each mechanism with referencing some 
of the recent studies performed. The figure 1, demonstrates the various sub-techniques of memory update, 
including memory replay, memory consolidation, parameter isolation, and a combination of both: It illustrates 
how replay helps store and bring back past data, consolidation ensures important information is pushed down, and 
parameterization ensures task interferences are eliminated. 
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Figure 1: Overview of Memory Update Mechanisms in Continual Learning 
 
2.1 Memory Replay 
Memory replay has been used frequently in order to mitigate catastrophic forgetting as a portion of previous 
experience is stored in replay buffer and introduced during the training of new tasks. It is useful for the model to 
maintain and update old knowledge in its database because of this process. Memory replay has been found most 
effective on text-based tasks where the conservation of past syntactic language or the sentiment has to be retained. 
Liu et al. [1] introduced a class-incremental, balanced CL framework incorporating a replay buffer containing 
samples from prior classes. This ensured new data were accounted for during new task training by replaying 
previous data. Zhu et al. [2] analyzed the implementation of the memory replay strategy in the incremental learning 
for fault diagnosis to maintain the knowledge about the old states while receiving new, noisy data. In text 
classification, Yan et al. [3] first proposed the hybrid replay and generative replay for hierarchical text 
classification. This approach demonstrated the enhancements in the retention of performance on tasks previously 
learned while at the same time the learning of new concepts. Similarly, Li et al. [9] presented an Adaptive 
Experience Replay mechanism (AdaER) for lifelong learning environment where the memory utilization depends 
upon the frequency of utilization of tasks using an Importance Estimator to minimize memory interference during 
context switches. 
 
2.2 Memory Consolidation 
Strengthening of earlier tasks provides the needed knowledge from previous tasks so that, it is not overwritten 
when performing the new task. Reflecting the concept of cognitive neuroscience, this strategy performs selective 
consolidation of specific parameters to avoid forgetting but enabling enough openness that it can learn new tasks. 
Continual learning systems are discussed in Wang et al. [14], which proposed a neuro-inspired adaptability 
mechanism that transfer important memories so that they will not be forgotten. This approach has been relevant 
in preserving the polarity and other rates of sentiment classification across different domains including products 
and services. Using memory consolidation, Zhang et al. [8] worked in the field of Named Entity Recognition 
(NER). Their approach of the forward and backward pass supported previously learnt entities to help the model 
retain the performance on the old entity while learning about new entities. Similarly, Song et al. [7] introduced 
the InfoCL model that applied information-theoretic approaches to combine important information in continual 
text classification tasks thus minimizing forgetting. 
 
2.3 Parameter Isolation 
In parameter isolation, each parameter is assigned to solve a different task, thereby averting an act that may overlay 
previous learnt knowledge by the later tasks. The approach is most effective in environments where activities are 
significantly dissimilar. In a capacity based approach, new memory is incorporated into the architecture in a 
different way with parameter isolation by Yao et al. [21], who gave their model an adaptive memory update 
feature. Text sentiment modeling, particularly in the current approach, gave the model a chance to save domain 
knowledge as it learned other domains. In addition, Luo et al. [6] considered the application of task-incremental 
learning with parameter isolation, proving that with a help of this technique forgetting could be combatted without 
additional learning sessions. Furthermore, Shi et al. [27] proposed an essential information-preserving scheme at 
the bit level as an additional means of contributing to parameter isolation and avoiding significant information 
loss during updates to tasks. Since important information is stored at the bit level, this approach efficiently 
minimizes catastrophic forgetting. 
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2.4 Hybrid Memory Mechanisms 
Recent works have therefore the table 1 targeted replay-based, consolidation-based, and parameter isolation-based 
approaches that help improve the performance of models in continual learning scenarios. Kong et al. [4] proposed 
an adaptive ensemble self-distillation mechanism as a solution that incorporates both the replay and consolidation 
methods in order to address forgetting issue in the pre-trained language models. Yan et al. [3] also discussed the 
use of hybrid models in hierarchical TC for retaining the old knowledge by using generative replay and selective 
consolidation. 

Table 1: Summary of Key Contributions on Memory Update Mechanisms in Continual Learning 
Paper Mechanism Application Outcome 
Liu et al. 
[1] 

Memory Replay 3D Object 
Classification 

Reduced forgetting via replay buffer 

Zhu et al. 
[2] 

Memory Replay Fault Diagnosis Improved performance under noisy 
conditions with incremental learning 

Yan et al. 
[3] 

Replay + Consolidation Text Classification Improved hierarchical classification with 
generative replay 

Li et al. [9] Adaptive Replay Lifelong Learning Improved memory efficiency with adaptive 
experience replay 

Kong et al. 
[4] 

Replay + Self-
Distillation 

Pretrained Language 
Models 

Enhanced performance with adaptive self-
distillation 

Yao et al. 
[21] 

Parameter Isolation + 
Replay 

Text Sentiment 
Analysis 

Retained cross-domain sentiment analysis 
through isolated parameters 

Zhang et 
al. [8] 

Memory Consolidation Named Entity 
Recognition (NER) 

Maintained entity recognition across 
domains 

Song et al. 
[7] 

InfoCL (Memory 
Consolidation) 

Text Classification Reduced catastrophic forgetting with 
information-theoretic consolidation 

Shi et al. 
[27] 

Bit-Level Preservation General Continual 
Learning 

Improved retention of information at the 
bit-level 

 
3. Applications of Memory Update Mechanisms in Text-Based Continual Learning 
Memory update mechanisms have been used in different text-based problems like sentiment analysis, named 
entity recognition, and text classification, among others. These applications show how memory replay, 
consolidation, and parameter isolation allow models to learn new tasks without forgetting previously learned tasks. 
The figure 2 gives an idea about the context where the memory update mechanisms are used including sentiment 
analysis, named entity recognition, and text classification. Every application is connected to the respective 
mechanism (memory replay for sentiment analysis or parameter isolation for NER). 

 
Figure 2: Applications of Memory Update Mechanisms across Text-Based Tasks 

3.1 Sentiment Analysis 
Depending on the type and characteristics of text data, sentiment analysis systems may have to switch from one 
domain to another, for example, from product reviews to service reviews without losing the ability to classify the 
previous domain. This has been achieved through the use of memory replay. Memory replay has been introduced 
in a lightweight continual learning approach by Wang et al. [10] to maintain the performance across different 
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domains including Amazon and Yelp reviews. For instance, Zhu et al. [2] utilized memory update mechanisms to 
revisit important examples for sentiment analysis problems in the face of noise and domain shift. 
3.2 Named Entity Recognition (NER) 
The primary requirement of a NER system is that it must be capable of identifying both, known and unknown 
entities. Zhang et al. [8] applied memory consolidation to maintain information on the entities studied in NER 
tasks. This made it possible to counter the catastrophic forgetting by allowing the model to perform well on both 
the new and old entities. Song et al. [7] also reported the use of memory consolidation in the NER and claimed 
that using InfoCL would result in much improved retention in the tasks. 
3.3 Text Classification 
When it comes to text classification the table 2 describes the key applications and the models outcomes, for 
instance, in document categorization, it is a challenge to add new classes to learn while at the same time 
considering the former. Liu et al. [1] used replay buffer to memorize knowledge across the changing document 
categories and Yao et al. [21] used parameter isolation with replay for performing cross-da classification tasks 
including sentiment analysis. Qorich and El Ouazzani [3] also analyzed the use that may be made of more or less 
advanced optimizer algorithms and convolutional neural networks (CNN) in order to enhance continual learning 
models in text classification tasks. Using their experiments with CNNs and memory replay, their results 
demonstrate that text-based continual learning tasks can be optimized with the use of CNNs. 
Table 2: Key Applications of Memory Update Mechanisms in Text-Based Continual Learning 

Application Paper Mechanism Outcome 
Sentiment Analysis Wang et al. [10] Memory Replay Retained classification across domains 

of customer feedback 
Named Entity 
Recognition 

Zhang et al. [8] Memory Consolidation Retained recognition of old entities 
while learning new ones 

Text Classification Liu et al. [1] Replay Buffer Maintained performance across 
multiple evolving categories 

Sentiment Analysis Yao et al. [21] Parameter Isolation + 
Replay 

Enabled cross-domain sentiment 
analysis with minimal forgetting 

Named Entity 
Recognition 

Song et al. [7] Memory Consolidation 
(InfoCL) 

Significantly reduced catastrophic 
forgetting in entity recognition 

Text Classification Qorich and El 
Ouazzani [5] 

CNNs + Optimizer 
Algorithms 

Improved continual text classification 
performance with optimizers 

4. Challenges and Limitations of Memory Update Mechanisms 
Despite their efficiency, there are difficulties in implementing memory update mechanisms, specifically in terms 
of dataset size and domain change. The figure 8 summarizes the problem of memory update mechanisms in 
continual learning, including memory overhead, task interference, domain shifts, and task-free learning. It 
indicates how these challenges manifest themselves in application scenarios and which aspects are most strongly 
influenced. 
 

 
Figure 3: Key Challenges in Memory Update Mechanisms 

4.1 Memory Capacity Constraints 
Memory replay entails storing significant quantities of prior data depending on the tasks at hand, which can present 
challenges as tasks grow. Liu et al. [1] and Zhu et al. [2] also encountered memory issues in their work, indicating 
the potential of more memory optimization. Yan et al. [3] dealt with this through generative replay which 
minimized storage space but at the same time increased time-space cost. Chen et al. [24] discussed memory limits 
in continual learning environments and proposed methods for minimizing memory requirements when dealing 
with massive data flow. They suggest that their results demonstrate some drawbacks of the existing methods of 
memory replay, pointing to a high level of computational demand. 
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4.2 Scalability and Computation Efficiency 
While replay and consolidation affect the memory, they might be slow and both resource and time-consuming 
especially in large text-based tasks. In their work, Luo et al. [6] discussed the issues of low-power continual 
learning and showed that light memory replay could minimize overhead but ensure accuracy. They analyzed the 
efficiency of continual learning algorithms and stated that in some cases, the time consumption and other 
computational costs have to be restricted and optimized [12]. 
4.3 Domain Shifts 
Dealing with domain shifts is still problematic. In the study published by Winata et al. [13], domain shifts in 
multilingual tasks were investigated and the results showed that memory consolidation may help in maintaining 
effective language abilities. Another method to enhance context-awareness was introduced by Kong et al. [4] 
where self-distillation with memory replay was used to make pretrained language models more adaptable while, 
again, this came with the price of sensitive parameter tuning. To tackle the domain shifts, Ma et al. introduced a 
topology-aware graph convolution network for few-shot incremental learning [18] that exploits the graph 
structural information to retain prior knowledge. It is widely applied in structured data applications such as 
hierarchical classification and language modeling. 
4.4 Task-Free Continual Learning 
Continual learning with no additional tasks can be an issue as one cannot differentiate between tasks. Jin et al. 
[20] suggested gradient-based memory editing to work in task-free environments, but this method is time-
consuming, especially when applied to the text data sets. In the table 3 it has discussed about the key challenges 
of memory update mechanisms in text-based continual learning. 
 

Table 3: Key Challenges of Memory Update Mechanisms in Text-Based Continual Learning 
Challenge Description Example Solution Limitations 
Memory 
Capacity 
Constraints 

Limited capacity to store 
past examples 

Generative replay (Yan et 
al. [3]) 

Computational complexity, 
potential generation errors 

Memory Bounds Memory limitations during 
large-scale continual 
learning 

Memory optimization 
(Chen et al. [24]) 

Computational costs can be 
high in text-based continual 
learning 

Scalability and 
Efficiency 

High computational costs 
for frequent updates 

Lightweight memory 
replay (Luo et al. [6], 
Harun et al. [12]) 

Requires careful optimization 
to prevent overhead 

Domain Shifts Difficulty adapting to 
changes in data distribution 

Topology-aware learning 
(Ma et al. [18]) 

Domain shifts require 
extensive fine-tuning 

Task-Free 
Learning 

Adapting to tasks without 
clear boundaries 

Gradient-based memory 
editing (Jin et al. [20]) 

High computational cost, 
especially for large datasets 

 
5. Future Directions for Memory Update Mechanisms 
There are several directions for future work in memory update mechanisms that concern the current limitations: 
scalability, domain shift, or allowing to perform the update task without being given specific tasks to learn. 
5.1 Hybrid Memory Update Mechanisms 
Future systems should include both replay, consolidation, and parameter isolation, to both enhance memory 
storage and flexibility. Yan et al. [3] showed how generative replay can be complemented with selective 
consolidation and Kong et al. [4] discussed hybrid memory models combined with self-distillation. 
5.2 Dynamic Memory Allocation 
Dynamic memory allocation schemes could assign memory resources dynamically depending on the task 
complexity, as shown by Zhu et al. [2]. This could have helped to minimize memory constraints, though retaining 
aspects of important knowledge. There are schematic memory persistence and transience mechanisms proposed 
by Gao et al. [23] from which specific dynamic memory allocation schemes can be inspired. It also clearly 
demonstrated how the memory resources can be flexibly allocated according to the stability of the task memories 
particularly when the system is resource-limited. 
5.3 Domain-Agnostic Memory Mechanisms 
As the data are domain-agnostic, models need to perform better on such tasks. Domain shifts in multilingual 
learning were discussed by Winata et al. [13] and meta-learning approaches for domain generalization were 
proposed by Javed and White [22]. Further work has to elaborate these methods and implement new domain-
independent methods for updating memory. A work tackling the issue of online continual learning without storage 
limitations was conducted by Prabhu et al. [11], mite that the solutions presented should be pertinent to the 
memory systems which are domain agnostic. Their work focuses on how learning takes place in task-less settings 
where models need to learn across domains by having no clear line of what task they are pursuing. The table 4 
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summarized about the future work in the memory update mechanisms to avoid the issue of the catastrophic 
forgetting issues in neural network. 

Table 4: Summary of Future Directions in Memory Update Mechanisms 
Future Direction Description Potential Impact 
Hybrid Memory 
Mechanisms 

Combine replay, consolidation, and 
parameter isolation 

Improved retention and adaptability 
across tasks 

Dynamic Memory 
Allocation 

Adaptive memory usage based on task 
importance and data complexity 

Optimized memory usage, reduced 
forgetting 

Schematic Memory 
Mechanisms 

Persistence and transience for dynamic 
memory allocation 

Improved memory efficiency in 
resource-constrained environments 

Domain-Agnostic 
Memory Mechanisms 

Develop mechanisms that generalize 
across multiple domains 

Improved adaptability to domain 
shifts and diverse datasets 

Task-Free Learning with 
Self-Supervision 

Self-supervised learning to adjust 
memory updates dynamically 

Enhanced scalability and adaptability 
in task-free environments 

Low-Resource Continual 
Learning 

Develop efficient algorithms for 
resource-constrained environments 

Expanded applicability in low-
resource settings 

Explainable Memory 
Mechanisms 

Incorporate explainability into memory 
update processes 

Increased transparency and trust in AI 
decision-making 

 
5.4. Applications of Memory Update Mechanisms in Real-World Scenarios 
Memory update mechanisms have significant relevance in real-world settings, especially in customer relations, 
medical practice, finance, and recommendation systems. Since self-driving cars and robotic process automation 
(RPA) are part of autonomous systems, they must recalibrate their systems with what is going around them. These 
systems need to be able to learn on going new tasks and environments as well as the previous knowledge acquired. 
Federated class-continual learning was conceptually investigated by Zhang et al. [16] this has a large import for 
self-sufficient systems that learn within various contexts. While updating its parameters and making decisions, 
self-driving cars may use federated learning to overcome catastrophic forgetting and remember previously driven 
routes. 

 
Table 5: Summary of Real-World Applications of Memory Update Mechanisms 

Domain Application Memory Mechanism Outcome 
Customer Service Sentiment analysis in 

reviews 
Memory Replay Retained classification accuracy 

across domains 
Healthcare Disease diagnosis and 

treatment 
Memory Consolidation Retained knowledge of earlier 

medical cases while learning new 
treatments 

Finance Fraud detection and 
stock analysis 

Memory Replay, 
Consolidation 

Improved detection of new fraud 
patterns while retaining older 
knowledge 

Personalized 
Recommendations 

E-commerce product 
suggestions 

Memory Replay Maintained relevant 
recommendations despite changing 
user preferences 

Natural Language 
Processing 

Multilingual systems Memory Consolidation, 
Replay 

Retained language proficiency 
across multiple languages 

Autonomous 
Systems 

Self-driving cars and 
robotics 

Federated Learning Retained previous knowledge while 
adapting to new environments 

In summary the table 5 shows the Memory update procedures play an important role for accumulating knowledge 
by training continual learning models that should be able to incorporate previous knowledge. Through a 
combination of memory replay, consolidation, and gradual parameter updating, these mechanisms are improving 
the capabilities of AI-enhanced applications for dynamic operational spaces such as customer support, healthcare, 
financial and trading, and recommendation services. 
6. Evaluating Memory Update Mechanisms in Text-Based Continual Learning 
Several evaluation metrics to evaluate the performance of memory update mechanisms, controlling for both 
knowledge retrieval performance and the extent to which new information can be learned without distorting 
previously learned material in continual learning systems. These metrics prove useful in text-processing 
applications like sentiment analysis, NER, and essentially any application of text classification where stability-
plasticity curves are used to evaluate storage stability to measure how well a model remembers what it has learned 
as it learns new information. This figure 4 shows the way of assessing the effectiveness of memory update 
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processes, which include accuracy, catastrophic forgetting rate, and backward transfer. Every metric is paired with 
certain tasks and processes. 

 
Figure 4: Key Evaluation Metrics for Memory Update Mechanisms 
6.1 Key Evaluation Metrics 
There are some standard performance measures that are widely known to evaluate memory update processes in 
continual learning systems. Among the most important are accuracy, catastrophic forgetting rate, average 
accuracy, backward transfer, memory overhead, and task-free learning ability.  The concept of Accuracy (Acc) is 
a commonly used measure that determines efficiency after training: the model’s ability to solve previously learned 

and new problems. Here, high performances on both sorts of problems suggest that the model is capable of 
acquiring new data, as well as being able to retain prior information. For instance, in class-incremental 3D object 
classification, Liu et al. [1] defined accuracy as the key criterion, and by means of accuracy, they proved that the 
proposed replay buffer mechanism positively affects performance in various tasks. 

Acc =  Correct Predictions 
 Total Predictions 

× 100   …………equation (1) 
The equation (1) Accuracy is a basic performance metric that evaluates how many correct predictions the model 
made out of the total number of predictions. It is expressed as a percentage, where higher values indicate better 
performance. For instance, if a model makes 80 correct predictions out of 100 total predictions, the accuracy 
would be 80%. This metric is useful for assessing the overall performance of a model on both newly learned tasks 
and previously encountered tasks after training. Catastrophic Forgetting Rate(CFR) measures the extent of a 
degradation of the performance on previously learnt tasks when a new set of tasks are learnt. Its execution at a 
lower rate indicates that the model loses less of what it has previously learned it as it integrates new information. 
Zhu et al. [2] used this metric in incremental learning for fault diagnosis, and discovered that replay and memory 
consolidation lowered forgetting rates notably, even despite noise. 

CFR =
1

𝑇
∑  𝑇
𝑡=1 (Acc𝑡

before − Acc𝑡
atter )   ………equation (2) 

The equation (2) CFR measures the degree to which a model forgets previously learned tasks when it learns new 
ones. Here, 𝑇 represents the total number of tasks. Acc 𝑐𝑡before  is the model's accuracy on task 𝑡 before learning a 
new task, and Acc𝑡after  is the accuracy on task 𝑡 after learning the new task. The difference between these two 
accuracies (before and after) gives the amount of forgetting. Averaging this difference across all tasks gives the 
overall forgetting rate. A lower CFR means the model retains more information from previous tasks, which is 
ideal for continual learning. Average Accuracy (AA) is defined as the sum of the accuracies of all the tasks taking 
after the model has learned each of them. It is particularly relevant in multitask environments because it provides 
equally optimal performance for new and prior tasks. Yan et al. [3] employed this metric to compare a combined 
memory replay and consolidation method applied to an hierarchy text categorization, with fairly stable results in 
all categories. 

AA =
1

𝑇
∑  𝑇
𝑡=1 Acc𝑡           ………equation (3) 

The equation (3) AA measures the model's performance across all tasks after it has completed learning. Here, 𝑇 
is the total number of tasks, and Acc𝑡 is the accuracy of the model on task 𝑡. By taking the average of the accuracy 
over all tasks, this metric provides a summary of the model's overall performance. It is particularly useful when 
evaluating how well a model balances performance across new and old tasks in multi-task learning scenarios. 
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Backward Transfer (BWT) is a method used to establish the impact of new learned tasks to those already learned. 
If the BWT obtained for a new learning is positive, it means that the subjects’ performance in new tasks enhances 

their performance in the past tasks; otherwise, if the BWT is negative, it is evident that forgetting occurs when 
new learning is applied. Thus, Song et al. [7] for instance, applied BWT on their InfoCL system and demonstrated 
how information theoretic memory enhancement facilitated backward transfer in text classification. 

BWT =
1

𝑇−1
∑  𝑇−1
𝑡=1 (Acc𝑡

after − Acc𝑡
before )   ………equation (4) 

The equation (4) BWT assesses how learning new tasks affects the performance on previously learned tasks. A 
positive BWT indicates that learning a new task has improved the performance on past tasks, possibly through 
some transfer of knowledge between tasks. A negative BWT, on the other hand, suggests that learning new tasks 
has caused forgetting of previously learned tasks. In the equation, 𝑇 − 1 represents all tasks except the most recent 
one, and the difference between Acc𝑡after  (accuracy on task 𝑡 after learning a new task) and Acc𝑡before  (accuracy on 
task 𝑡 before learning the new task) gives the transfer effect for that task. Memory Overhead (MO) evaluates extra 
amount of memory required to store past data or parameters in replay buffers, consolidated memory or isolated 
parameters. Ideally, lower memory overhead with minimal degradation of performance is the best case scenario 
since it will prove that the system can scale. In their own study, Luo et al. [6] showed that the use of the adaptive 
criterion for classification decreased the memory demand without compromising the classification efficiency. 

MO =
 Memory with Update Mechanism 

 Baseline Memory Usage 
     ………equation (5) 

The equation (5) MO measures how much extra memory is required to store the information necessary for the 
memory update mechanisms (like replay buffers or consolidated memories). The equation compares the memory 
required when using a memory update mechanism to the baseline memory usage (i.e., the memory used without 
these mechanisms). If the ratio is close to 1, it indicates that the model does not require much additional memory, 
making it more efficient. Lower memory overhead is desirable in systems where scalability and memory 
constraints are important considerations. Lastly, the capability of learning without the use of specific tasks can 
thus be quantified, and is referred to as the Task-Free Learning Ability (TFLA) of the model; this hybrid capability 
of learning new information as well as the ability of maintaining the prior learnt tasks is an important characteristic 
of intelligent models. While there is no fixed equation for TFLA, a common approach combines two key 
components: Adaptation Performance (AP) and Forgetting Rate (FR). One possible way to express TFLA is 
through an equation that accounts for both the model's performance across tasks and its ability to minimize 
forgetting.  Jin et al. [20] recommended a gradient technique for memory editing to be implemented for the model 
to learn for extended periods without a specific task while retaining task performance with minimum catastrophic 
forgetting. 

TFLA = 𝛼 ⋅
1

𝑇
∑  𝑇
𝑡=1 Acc𝑡 − 𝛽 ⋅

1

𝑇
∑  𝑇
𝑡=1 (Acc𝑡

before − Acc𝑡
after )      ………equation (6) 

The equation (6), 𝛼 and 𝛽 are weighting factors that balance between the two goals of adaptation and memory 
retention. The first term, 1

𝑇
∑𝑡=1
𝑇  Acc𝑡, represents Adaptation Performance (AP), which is the average accuracy 

across all tasks over time, measuring how well the model learns and performs on each new task. The second term, 
1

𝑇
∑𝑡=1
𝑇  (Acc𝑡

before − Acc𝑡
after ), reflects the Forgetting Rate (FR), indicating how much the model forgets previous 

tasks when learning new ones. A lower forgetting rate is preferable, as it means the model retains more of its prior 
knowledge. By combining these two components, TFLA, table 6 provides a way to evaluate how effectively a 
model adapts to dynamic environments where task boundaries are not explicitly defined, while minimizing the 
loss of past knowledge. 
Table 6: Key Evaluation Metrics for Memory Update Mechanisms in Text-Based Continual Learning 

Metric Description 
Accuracy (Acc) Measures performance on new and old tasks 
Catastrophic Forgetting Rate (CFR) Quantifies performance degradation on earlier tasks 
Average Accuracy (AA) Average accuracy across all tasks after learning 
Backward Transfer (BWT) Measures the impact of new learning on old tasks 
Memory Overhead (MO) Evaluates additional memory required for memory mechanisms 
Task-Free Learning Ability (TFLA) Assesses adaptation to tasks without explicit task boundaries 

6.2 Experimental Results 
Based on primary studies published in this field, several studies to experiment with memory update mechanisms 
have used various text-based datasets that are widely used across the globe. Most of these experiments are carried 
out in series where for instance, a model is trained in sequential tasks like sentiment analysis, text classification 
or NER to evaluate it using the metrics stated above. In the table 7, a summary is given of how different kinds of 
memory update mechanisms have been applied and evaluated over various tasks. The table 7 also maps each study 
to a corresponding experiment, with key metrics and outcomes identified to illustrate the performance and trade-
offs of using each memory update mechanism. Below is a detailed explanation of the table. 
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Table 7: Existing system Experimental Results 
SI. 
No Task Study Mechanism Key Metrics Results 

1 Sentiment 
Analysis 

Wang et al. 
[10] Memory Replay 

- Accuracy 
- Catastrophic 
Forgetting Rate 

- Accuracy: 85% across 
domains 
- Catastrophic Forgetting 
Rate: 0.12 

2 Sentiment 
Analysis 

Yao et al. 
[21] 

Parameter Isolation 
+ Replay 

- Accuracy 
- Memory 
Overhead 

- Accuracy: 84% 
- Memory Overhead: 
Kept low with selective 
parameter isolation 

3 Named Entity 
Recognition 

Zhang et al. 
[8] 

Memory 
Consolidation 

- Average 
Accuracy 
- Memory 
Overhead 

- Average Accuracy: 
88% 
- Memory Overhead: 5% 
increase compared to 
baseline models 

4 Text 
Classification Yan et al. [3] Hybrid Replay + 

Consolidation 

- Backward 
Transfer (BWT) 
- Memory 
Overhead 

- Positive BWT in 15% 
of tasks 
- Average Accuracy: 
87% 
- Moderate memory 
overhead 

5 Text 
Classification 

Qorich and 
El Ouazzani 
[5] 

Optimizer 
Algorithms + 
Replay 

- Accuracy 
- Memory 
Overhead 

- Accuracy: 83% 
- Memory Overhead: 
Minimal due to efficient 
optimization algorithms 

6 Fault Diagnosis Zhu et al. [2] Memory Replay 
- Catastrophic 
Forgetting Rate 
- Accuracy 

- Forgetting Rate: 0.15 
- Accuracy: 84% under 
noisy conditions 

7 3D Object 
Classification Liu et al. [1] Memory Replay 

- Accuracy 
- Catastrophic 
Forgetting Rate 

- Accuracy: 90% 
- Forgetting Rate: 0.12 

8 Pretrained 
Language Models 

Kong et al. 
[4] 

Self-Distillation + 
Replay 

- Accuracy 
- Memory 
Overhead 

- Accuracy: 85% 
- Memory Overhead: 
Slight increase due to 
self-distillation 

9 
Task-Free 
Continual 
Learning 

Jin et al. [20] Gradient-Based 
Memory Editing 

- Task-Free 
Learning 
Ability 
- Catastrophic 
Forgetting Rate 
- Memory 
Overhead 

- Task-Free Accuracy: 
82% 
- Catastrophic Forgetting 
Rate: 0.14 
- Slightly higher memory 
overhead 

10 Named Entity 
Recognition 

Song et al. 
[7] 

InfoCL (Memory 
Consolidation) 

- Backward 
Transfer 
- Average 
Accuracy 

- Positive BWT in 20% 
of tasks 
- Average Accuracy: 
86% 
- Forgetting Rate: 0.10 

11 Multilingual 
Learning 

Winata et al. 
[13] 

Memory 
Consolidation + 
Replay 

- Accuracy 
- Memory 
Overhead 

- Accuracy: 83% across 
languages 
- Memory Overhead: 
Moderate due to replay 
buffer 

12 Few-Shot 
Learning 

Ma et al. 
[18] 

Topology-Aware 
Memory Replay 

- Accuracy 
- Memory 
Overhead 

- Accuracy: 80% 
- Memory Overhead: 
Kept low due to 
topology-aware structure 
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13 
Continual Named 
Entity 
Recognition 

Zhang et al. 
[16] 

Federated Learning 
+ Replay 

- Accuracy 
- Memory 
Efficiency 

- Accuracy: 83% in 
distributed settings 
- Efficient memory usage 
in federated learning 

14 Low-Resource 
Learning Luo et al. [6] 

Adaptive 
Classification + 
Replay 

- Memory 
Overhead 
- Accuracy 

- Low memory overhead 
with lightweight 
architecture 
- Accuracy: 84% 

15 Lifelong Learning Li et al. [9] Adaptive 
Experience Replay 

- Catastrophic 
Forgetting Rate 
- Memory 
Overhead 

- Forgetting Rate: 0.13 
- Memory Overhead: 
Reduced with dynamic 
memory allocation 

16 Federated 
Learning 

Zhang et al. 
[16] 

Federated Class-
Continual Learning 

- Accuracy 
- Catastrophic 
Forgetting Rate 

- Accuracy: 85% across 
distributed tasks 
- Forgetting Rate: Low in 
federated settings 

17 Healthcare 
Diagnosis 

Graffieti et 
al. [28] 

Memory Replay + 
Real-Time 
Learning 

- Task 
Accuracy 
- Real-Time 
Adaptability 

- Accuracy: 83% in 
dynamic environments 
- Efficient real-time 
learning for continual 
updates 

18 Schematic 
Memory 

Gao et al. 
[23] 

Memory 
Persistence and 
Transience 

- Memory 
Efficiency 
- Task 
Accuracy 

- Accuracy: 82% 
- Memory Efficiency: 
High due to adaptive 
allocation 

19 Stock Market 
Analysis 

Prabhu et al. 
[11] 

Online Continual 
Learning + Replay 

- Task-Free 
Learning 
Ability 
- Memory 
Overhead 

- Task-Free Accuracy: 
80% 
- Memory Overhead: 
Managed with task-free 
replay 

20 Medical Imaging Wang et al. 
[17] 

Residual 
Computing + 
Replay 

- Accuracy 
- Catastrophic 
Forgetting Rate 

- Accuracy: 86% 
- Forgetting Rate: Low 
due to residual memory 
updates 

21 Medical 
Diagnosis 

Wang et al. 
[14] 

Neuro-Inspired 
Adaptability 

- Accuracy 
- Memory 
Efficiency 

- Accuracy: 82% 
- Memory Efficiency: 
High with neuro-inspired 
techniques 

22 Efficient Learning 
Algorithms 

Harun et al. 
[12] 

Continual Learning 
Efficiency 

- Accuracy 
- Memory 
Overhead 

- Accuracy: 80% in 
large-scale tasks 
- Memory Overhead: 
Efficient with minimal 
overhead 

23 Adaptive 
Plasticity 

Liang and Li 
[15] 

Adaptive Plasticity 
Improvement 

- Stability-
Plasticity 
Balance 
- Task 
Accuracy 

- Accuracy: 84% with 
improved balance 
- Enhanced stability for 
long-term memory 
retention 

24 
Massively 
Multilingual 
Learning 

Winata et al. 
[13] 

Catastrophic 
Forgetting 
Mitigation 

- Forgetting 
Rate 
- Task 
Adaptability 

- Forgetting Rate: 0.11 
- Improved adaptability 
across multiple 
languages 

25 Federated 
Learning 

Zhang et al. 
[16] 

Federated Class-
Continual Learning 

- Task-Free 
Learning 
- Memory 
Efficiency 

- Memory Efficiency: 
Maintained in federated 
settings 
- Task-Free Adaptability: 
High 

26 Memory Bounds 
and Efficiency 

Chen et al. 
[24] 

Memory 
Optimization 

- Memory 
Overhead 

- Memory Overhead: 
Optimized 
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- Task 
Accuracy 

- Accuracy: 84% with 
memory-efficient 
algorithms 

27 Learning Vision 
Transformer 

Wang et al. 
[26] 

Lifelong Vision 
Transformer 

- Accuracy 
- Catastrophic 
Forgetting Rate 

- Accuracy: 85% 
- Forgetting Rate: Low in 
lifelong learning tasks 

28 Information 
Preservation 

Shi et al. 
[27] 

Bit-Level 
Information 
Preservation 

- Memory 
Overhead 
- Task 
Accuracy 

- Memory Overhead: 
Low due to bit-level 
preservation 
- Task Accuracy: 83% 

 
This table presents a clear, and orderly comparison of various memory update mechanisms on different tasks. It 
discusses the performance of each approach on accuracy, forgetting rate and memory efficiency, and how each 
method is strong and weak. This overview will help researchers and practitioners better understand such trade-
offs. 
6.3 Comparative Analysis of Memory Update Mechanisms 
The advantages and tradeoffs of each memory update mechanism are distinct depending on the task and data being 
used. Overall replay mechanisms have better retention over past tasks, but can incur higher memory overhead. 
But, consolidation mechanisms compromise between memory efficiency and knowledge preservation, a tradeoff 
that can often struggle in dynamic environments. In general, hybrid mechanisms combine different approaches 
and are flexible, although they might need some special tuning to get the best from such hybrid mechanisms. 

Table 8: The Overall Comparative Analysis of Memory Update Mechanisms 
Mechanism Advantages Disadvantages Suitable For 
Memory Replay - Strong retention of 

past tasks 
- Simple to implement 

- High memory overhead for 
large datasets 

- Tasks requiring frequent 
retention of past knowledge 

Memory 
Consolidation 

- Efficient use of 
memory 
- Effective for long-
term retention 

- May struggle with rapid 
domain shifts or dynamic 
tasks 

- Tasks where memory 
efficiency and retention are 
critical 

Parameter 
Isolation 

- Prevents task 
interference 
- Effective in task-
specific learning 

- Can lead to model bloat with 
an increasing number of tasks 

- Tasks requiring separate 
handling for distinct domains 

Hybrid 
Mechanisms 

- Combines strengths 
of different 
mechanisms 
- Flexible adaptability 

- Requires careful tuning 
- May increase computational 
complexity 

- Highly dynamic tasks where 
adaptability and flexibility are 
needed 

 
In order to understand the table 8 shows, how the effective real world text based continual learning tasks are being 
performed, it is crucial to evaluate the performance of memory update mechanisms. To evaluate the effectiveness 
of these mechanisms to retain past knowledge on learning new tasks, metrics such as accuracy, catastrophic 
forgetting rate and backward transfer measure how well the transfer capabilities capture and transfer essential 
information from previously learned tasks. Memory replay, consolidation, and hybrid mechanisms are shown 
through experimental results of sentiment analysis, NER, and text classification to be effective but each incurs 
overhead in overhead and adaptability. Therefore, as continual learning systems mature, we will require new 
methods for evaluating them and metrics for measuring progress for their full benefit in practical applications. 
7. Challenges and Open Research Directions 
Nevertheless, there exist several challenges in the development and optimization of memory update mechanisms 
for continual learning. These limitations of the existing approaches present further research challenges of how to 
overcome and develop new strategies to achieve better memory retention, scalability, and adaptability in dynamic 
environments. As highlighted in the figure 5 below, future work areas identified in the research include dynamic 
memory allocation, self-supervised learning, and explainable memory updates. Finally, it demonstrates how these 
new approaches can meet the challenges of today underlined in section 7. 
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Figure 5: Open Research Directions in Memory Update Mechanisms 

7.1 Scalability and Memory Efficiency 
Achieving scalability in models that work with huge datasets is one of the most pressing challenges in continual 
learning. In this case, more and more intensive storage of past examples or task specific parameters becomes 
costly in memory and computation as tasks increase. Memory Replay Issues: However, storing many examples 
in a replay buffer may cause memory overhead that grows with the size of the dataset and the number of tasks. 
This is especially a problem when new tasks keep showing up from new data sources (Wang et al. [10], Zhang et 
al. [8]) in applications e.g., sentiment analysis or NER. Potential Solutions: Later research could examine choices 
such as dynamic memory allocation, whereby memory resources are allocated according to task importance and 
the likelihood of catastrophic forgetting ([9] Li et al., [23] Gao et al.), and learn to detect and replace forgotten 
memories. Similarly, generative replay mechanisms may help relieve such memory constraints by synthetizing 
past data instead of retaining raw examples (Yan et al. [3]). 
7.2 Balancing Stability and Plasticity 
Continual learning models have to strike a balance between stability (keeping the knowledge for prior tasks) and 
plasticity (learning on new tasks). Memory replay and parameter isolation reduce catastrophic forgetting, but can 
also hinder a model's ability to quickly adapt to new tasks. Plasticity Constraints: Similarly, isolation of model 
parameters as proposed by Yao et al. [21] in sentiment analysis eliminates interferences between tasks but comes 
with the downsides of model bloat because the number of isolated parameter grows with every task. This decreases 
the ability of the model, to generalize and tackle new tasks, especially in resource constrained environments. 
Future Directions: Improvement techniques of adaptive plasticity, such as those proposed by Liang and Li [15], 
dynamically vary the model's flexibility between stability and plasticity. Breakthroughs in this area could arise 
from exploration of neuro inspired models that capture the brain's ability to consolidate memories that are critical, 
while being adaptive to new experiences (Wang et al. [14]). 
7.3 Domain Shifts and Catastrophic Forgetting 
A major challenge in continual learning is handling domain shifts: data distribution can change drastically between 
tasks. Catastrophic forgetting (Winata et al. [13]) often occurs when models face new domains or tasks that are 
substantially different from those they have previously learned. Models in multilingual learning (Winata et al. 
[13]) or few shot learning (Ma et al. [18]) need to adapt to new languages or categories while still being able to 
process previous ones. Similarly, in text classification, models suffer domain shifts when presented with new text 
categories (Yan et al. [3]). Approaches to Mitigate Forgetting, Existing techniques such as task-free continual 
learning (Jin et al. [20]) and federated continual learning (Zhang et al. [16]) can be extended to deal with domain 
shifts. Models could be endowed with the ability to autonomously detect domain shifts and perform the relevant 
memory updates without explicitly prescribed task boundaries using self-supervised learning. The figure 6 
illustrates catastrophic forgetting in a neural network that is dealing with text classification tasks. In this case, 
Task 1 involves the use of a neural network that is trained with a dataset of movie reviews, while Task 2 involves 
the same neural network being trained with restaurant reviews. This is indicated by the fact that after learning task 
2, the model performs well on restaurant reviews while after re-training on task 1, the model exhibits high 
performance on restaurant reviews but poor performance on movie reviews. 
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Figure 6: Catastrophic Forgetting in Text Classification across Sequential Tasks 

7.4 Task-Free Continual Learning 
Continual learning under the task free scenario, in which we see a stream of data and need to continuously learn 
without any explicit notification indicating task boundaries, is challenging. Given the lack of linear tasks, the 
model needs to learn how to detect on its own if the data distribution has changed and to adopt an appropriate 
learning strategy for this new shift. Challenges, without forgetting, it is hard for models to learn new information 
while retaining old knowledge. In addition, they must autonomously detect task transitions, thus introducing 
additional computational overhead to memory updates (Jin et al. [20], Prabhu et al. [11]). Future Research, the 
Gradient based memory editing (Jin et al. [20]) represents a promising way to deal with task free learning. Possible 
further research would be to include meta learning or self-supervised learning techniques so that the model can 
learn task boundaries dynamically. In this context, the flexibility of the model in real life would be improved, 
since the data is continuously changing. 
7.5 Low-Resource Continual Learning 
Continual learning models for low-resource environments like smartphones or embedded systems must do this in 
the presence of limited memory and computation, and constrained power budgets. The memory update 
mechanisms existing so far, however, often need to use a lot of memory resource, which is not available in such 
environments (Luo et al. [6]). The Challenges is in low-resource environments, models must accomplish this while 
keeping memory overhead low and still potentially learn new tasks without forgetting previous ones. In these 
settings, the trade-off between memory efficiency and performance becomes very critical. Finally, lightweight 
continual learning architectures that optimize both performance and memory usage could be investigated in future 
work. Li et al. [9] presented mechanisms of experience replay, but they could be adapted to work efficiently in 
low resource settings. Furthermore, quantization or memory efficient architectures may also bring progress to 
continual learning deployment onto edge devices (e.g., Luo et al. [6]). 
7.6 Explainability in Memory Update Mechanisms 
While AI systems are integrated deeper and deeper into critical applications such as healthcare & finance, the 
need for Explainable AI (XAI) increases. In high stakeholder’s domains, users must trust and understand how 

models apply and retain knowledge over time (Graffieti et al. [28]). In many memory update mechanisms, such 
as memory replay and parameter isolation, users cannot get explanations of the reasons for decisions being made 
or why past knowledge has been retained due to these mechanisms functioning as 'black boxes.' If models could 
be developed to support explainable memory update mechanisms we would be able for them to reason about why 
knowledge is retained or forgotten. Continual learning systems can be made more transparent and trustworthy, 
through the use of techniques such as an attention mechanism, saliency map, or rule based model. In particular, it 
would be valuable for the user to have insights about how the memory updates affect the decisions (Graffieti et 
al. [28]), and this would be even more critical in regulated industries such as healthcare or autonomous systems. 
 
 
 
 
 
 
 

76 



Turkish Journal of Computer and Mathematics Education (TURCOMAT)  ISSN: 3048-4855 

 
 

 

Table 9: Challenges and Open Research Directions in Memory Update Mechanisms 
Challenge Description Current Solutions Future Directions 

Scalability and 
Memory 

Efficiency 

Large datasets lead to 
memory overhead with 
replay and task-specific 

parameters 

Memory replay, 
parameter isolation 
(Wang et al. [10], 
Zhang et al. [8]) 

Dynamic memory allocation 
(Li et al. [9], Gao et al. [23]), 
Generative replay (Yan et al. 

[3]) 
Balancing 

Stability and 
Plasticity 

Difficulty in retaining old 
knowledge while learning 

new tasks 

Parameter isolation 
(Yao et al. [21]), 

Adaptive plasticity 
(Liang and Li [15]) 

Neuro-inspired models (Wang 
et al. [14]), dynamic plasticity 

improvements 

Domain Shifts 
and Forgetting 

Models forget old 
knowledge when 

introduced to significantly 
different data 

Task-free learning (Jin 
et al. [20]), Memory 

consolidation (Song et 
al. [7]) 

Self-supervised learning for 
domain shifts (Winata et al. 
[13]), Federated continual 
learning (Zhang et al. [16]) 

Task-Free 
Continual 
Learning 

No predefined task 
boundaries make 

detecting task transitions 
difficult 

Gradient-based memory 
editing (Jin et al. [20]) 

Meta-learning, self-supervised 
learning for task-free 

environments (Prabhu et al. 
[11]) 

Low-Resource 
Continual 
Learning 

Memory and computation 
limits in low-resource 
environments (mobile 

devices, etc.) 

Lightweight memory 
replay (Luo et al. [6]) 

Quantization techniques, 
memory-efficient architectures 

(Li et al. [9]) 

Explainability in 
Memory Updates 

Users need to understand 
why and how past 

knowledge is retained in 
high-stakes areas 

Current memory 
updates operate as black 

boxes 

Explainable AI, attention 
mechanisms for transparency 

(Graffieti et al. [28]) 

 
In the table 9, While memory update mechanisms have seen progress, significant challenges remain in continual 
learning ranging from scalability and domain shifts to task-free learning to deployment in low resource settings. 
More adaptive, scalable, and explainable memory mechanisms must be developed that meet the need for plasticity 
and stability while accounting for real world application constraints, and future research should work to meet 
these requirements. Addressing these open research directions will prepare continual learning systems to deal with 
continually changing, complex problem spaces, and in turn, lead to more effective and transparent AI solution in 
diverse domains. 
8. Conclusion  
In this survey, we review several memory update mechanisms of continual learning in the place of its use in text 
(sentiment analysis, named entity recognition (NER), text classification). However, learning continuously is hard, 
as it needs to simultaneously remembered past knowledge, learn new tasks, while minimizing problems such as 
catastrophic forgetting and memory overhead. However, such mechanisms as memory replay, memory 
consolidation and parameter isolation have already shown great promise in coping with these challenges. 
However, memory replay has been shown to be effective and work in other scenarios, but memory overhead to 
store and replay old data may be prohibitive. For memory consolidation, it allows us to selectively retain important 
information, whereas parameter isolation prevents interference between tasks, but it is prone to model bloat with 
increasing number of tasks. Replay, consolidation, and parameter isolation are being combined into hybrid 
mechanisms that are more flexible in maintaining a balance between stability and plasticity, especially in dynamic 
and large scale settings. However, there remain challenges including scaling these solutions to real world 
applications, handling large domain shifts, and improving performance in low resource environments. Exploring 
dynamic memory allocation, generative replay, task free continual learning, and explainabilty in memory update 
processes offer open research paths towards more transparent and scalable systems. Advancements in these areas 
will be critical to advancing continual learning systems and their ability to adapt and be robust in performing in 
myriad applications, including healthcare, customer service, autonomous systems and beyond. 
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