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Abstract: In order to simulate the mathematical model of eliminating malaria by controlling the population of 
mosquitoes with insecticide and the insecticide's residual effects, the study developed a four-points hybrid block 
algorithm. The convergence and stability qualities of the block method are established. The block approach is 
applied after the variable control problems are generated using Pontryagin's principle. The forward-backward sweep 
methods of the block method are applied. The method is then implemented using a computer code using MATLAB 
R2018a mathematical software. According to the findings of this study, the simulated result from this approach 
displayed a significantly lower number of mosquitoes while lessening the negative effects of the insecticide, which 
in turn will reduce the high rate of malaria spreading. 
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1. Introduction  

Malaria remains a significant public health challenge, particularly in the tropical and subtropical regions. The 
World Health Organization (2021) reported over 200 million cases annually, underscoring the need for effective 
control strategies. Eliminating mosquitoes is necessary to prevent malaria, a mosquito-borne disease that is one of 
the main causes of death worldwide, particularly in Africa (Araujo et al., 2022). Application of insecticides to 
control mosquito populations has gained attention (Bashir et al., 2020; Araujo et al., 2022). 

Optimal control theory provides a mathematical framework for determining the best strategies to minimize or 
maximize a particular outcome, such as disease transmission (Adamu et al., 2024; Aduroja et al., 2024). Several 
studies have applied these principles to the management of mosquito populations through insecticide use. Araujo 
et al. (2022) developed a dynamic model integrating optimal control theory to optimize insecticide spraying 
schedules. Their findings indicated that strategically timed applications significantly reduced mosquito populations 
while minimizing costs and environmental impact. The model emphasized the importance of understanding 
mosquito life cycles and behavior to enhance the efficacy of insecticide application. 

Similarly, He et al. (2023) explored the use of optimal control strategies in Integrated Vector Management 
(IVM). Their research highlighted that combining insecticide treatments with environmental management could 
yield better outcomes in reducing malaria incidence. By utilizing a control strategy that adjusts the intensity of 
insecticide application based on mosquito density, the researchers demonstrated a substantial reduction in malaria 
transmission rates. 

The economic implications of insecticide application are crucial for public health decision making. Recent 
studies have assessed the cost effectiveness of optimal control strategies. Kweka et al. (2021) conducted a cost-
benefit analysis of various insecticide application methods, including indoor residual spraying (IRS) and 
larviciding. They found that optimal application timing and dosage significantly improved cost-effectiveness, 
making these strategies more appealing for national malaria control programs. Tusting et al. (2023) used a 
mathematical model to evaluate the economic impact of optimal insecticide use in rural settings. Their results 
indicated that targeted insecticide applications could reduce malaria transmission at a lower cost compared to 
blanket spraying approaches, thus providing a more sustainable solution for resource-limited settings. 
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Ordinary and partial differential equations form the foundation of many mathematical models used by 
researchers to describe a wide range of phenomena in the social sciences, technology, engineering, and sciences 
(Adamu et al., 2019). First order ordinary differential equations of Initial Value situations (IVPs) arise in many 
physical situations in our world today (Orakwelua et al., 2023; Olaiya et al., 2022). 

A few mathematical models of malaria transmission with and without a seasonal element were examined by 
(Fatmawati et al. 2021). A numerical simulation of the model and the provision of controls in the form of pesticide, 
treatment, and prevention all work together to reduce the number of infectious mosquitoes and exposed and 
infectious human population. In order to prevent mosquito populations from going extinct, (Araujo et al. 2022) 
investigated theoretical and numerical optimum control problems utilizing mobile devices that disperse pesticide. 

A thorough examination of an optimal control problem is conducted, and the ideal trajectory is derived utilizing 
optimality conditions. Forward Backward Sweep (FBS) is an iterative technique (Garret, 2015; Adamu, 2023). 
FBS solves the state "forward" in time first, then solves the adjoint "backward" in time to approximate the control 
function. The indirect method is the process of determining the best outcome by resolving the required conditions. 
With the vital benefit of not requiring an earlier assessment of the infimal cost function, Pontryagin's Maximum 
(or Minimum) Principle (PMP) is a potent technique for computing optimal controls (Garret, 2015; Lenhart & 
Workman, 2007; Adamu et al., 2023; Aduroja et al., 2024). 

Orakwelua et al. (2023) applied the forward-backward sweep approach utilizing the traditional Runge-Kutta 
method to limit the mosquito population in the ponds and marshes. This was done by adopting the best management 
strategies. Garret (2015) also used FBS in conjunction with the Classical Runge-Kutta Method (CRKM) to solve 
the Optimal Control Problem (OCP). As a result, CRKM emerged as the preferred option for utilizing FBS to solve 
optimal control problems. Davaeifar and Rashidinia (2017) state that the primary advantages of using FBPs in the 
collocation method's construction are its validity and reliability. It follows that a method with higher approximation 
accuracy will be obtained when FBPs are used in conjunction with the hybrid point. Adamu et al. (2024) develop 
an iterative method for simulating the insecticide and mosquito model. 

This study simulates the ideal control strategy for insecticide and mosquito population growth using a four points 
block algorithm. The impact of the insecticide used to kill mosquitoes and their number is demonstrated. 

2. Methodology 
2.1 Development of the block method 

Consider Polynomials approximate solution of the form 
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where .1−+= rsk  s  is the number of interpolation points and r  is the number of collocation points. 
Interpolating (1) at knx +  where sk ,...,3,2,1,0=  and collocating (2) at knx +  where  rk ,...,3,2,1,0=  gives a 
system of nonlinear equation of the form 
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where ),,( 0 mni xxv +  .,...,2,1 mi =   Solving (3) for the unknown parameters and substituting into (1) gives 
the continuous method 
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2.2 Stability Properties 

2.2.1 Order and error constant of the method 

Evaluating each row of (4) in a Taylor series about  nx   gives 
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2.2.2 Zero Stability of the Block Method 

The block method (5) is zero stable since the roots nszs ,...3,2,1, =  of the first characteristics polynomial 

( )z  is defined by 

( ) ( ) ( )  0det 01 =−= AA       (7) 

( ) 01334 =−=−   

 Solving for   we have  1,0,0,0= . Hence the block method (5) is zero stable. 

 

2.2.3 Consistency 

Since the method (5) has order 16 =p , therefore, the method is consistent. 

2.2.4 Convergence 

The method (5) is convergent since they are consistent and zero-stable. 
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2.2.5 Region of Stability 

This is achieved by substituting the test equation 𝑦′ = 𝜆𝑦 in the method and the result coded using MATLAB 8.5 
to give  

 
Figure 1: Region of Absolute Stability 

3. Numerical Examples 

The insecticide and mosquito model's parameter values, numerical analysis, and simulation are presented in the 
section below. It also illustrates how the mosquito population react to the application of insecticides in a yard. 

Problem: Supposed the population concentration of mosquitoes at time t  is given by ( )tx , and the population 
over a fixed period of time wished to be reduced. Assuming x  has a carrying capacity M  and growth rate r . An 
application of the substance which is known to decrease the rate of change of ( )tx , by decreasing the proportional 

rate to the amount of ( )tu  and ( )tx . Assumed the amount of the substance to be added at time t  is )(tu . Then  
the concentration of mosquitoes is taken to be )(tx  and the insecticide known to kill it taken to be )(tu . Hence, 
the optimal control problem for 4 days’ regimen is 

( ) dttutAxuxJ
u

2
4

0

)()(,min +=   

subject to  

.)0( ),()())(()( 0xxtxtutxMrtx =−−=  

where the population size at the initial point is given as 00 x . Here, term )()( txtu  pulls down the growth rate 
of the mosquito. Both mosquito and insecticide have negative effects on individuals around them, so both need to 
be minimized. Little amount is acceptable for both, there is then need to penalize for amounts too large, so quadratic 
terms for both will be analysed. 

The coefficient A  is the weight parameter, balancing the relative importance of the two terms in the objective 
functional (Adamu et al., 2024). 

Solution:  The optimality system of the problem is developed by first constructing the Hamiltonian 
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 The optimality condition is 
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 The adjoint equation is 
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 Using the optimality system, the numerical code is generated, written in MATLAB R2018a. The results are 
shown in Figures. 

First considering parameters ,10=M  ,3.0=r  ,10 =x  1=A  

 
Figure 2: The optimal Mosquito population and Insecticide 

The goal is to reduce the number of mosquitoes and lessen the impact of the insecticides on nearby people. In 
Figure 2, the mosquito population is growing when the carrying capacity M=10 and the weight parameter A=1, 
but it levels out and becomes constant, and when the insecticide is introduced and kept at a constant level; which 
kept the insecticide and mosquito population at parallel. The mosquito population starts to rise again on day three 
as the insecticide starts to fade, with rapid growth at the start and finish.  
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Varying the weight parameter A to A=1.5 

 
Figure 3: The optimal Mosquito population and Insecticide 

In Figure 3, the amount of insecticide applied is marginally higher when carrying capacity is kept at M=10 and 
the weight parameter is changed to A=1.5. For a longer time, it is evident that state and control are in balance. 
Starting at its maximum, the control gradually decreases before briefly becoming steady before dropping to zero. 
Up to day three, the state growth rate decreased and stabilized. However, the mosquito population grows quickly 
after the conclusion of the interval, when the insecticide's effects are no longer detrimental to the insects. 
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Figure 4: The Mosquito population growth rate when A is varied 

From Figure 4 show the combined mosquitoes population growth rate when the weight parameter is varied 
from 1 to 1.5. It shows that, the higher the weight parameter, the slower the growth of the mosquito population. 

Varying the parameter r to r=0.4 

 
Figure 5: The optimal Mosquito population and Insecticide 

 

A significantly higher amount of pesticide is needed in Figure 5 when the carrying capacity is kept at M=10 
and the growth rate parameter is changed once more to r=0.4. Long-term equilibrium between the insecticide and 
mosquito population has been noted. The insecticide is at its peak at first, then it starts to decline a little, then it 
stabilizes, and finally it drops to zero. Up until day 2.5, the state growth rate likewise decreased and stabilized. 
However, the mosquito population grows quickly after the conclusion of the interval, when the insecticide's effects 
are no longer detrimental to the insects. 

 
Figure 6: The Mosquito population growth rate when r is varied 
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From Figure 6 show the combined mosquitoes population growth rate when the growth rate parameter is varied 
from 0.3 to 0.4. It shows that, the lower the growth rate parameter, the slower the growth of the mosquito population. 

 

4. Conclusion 

Thus, examining the result, it is evident that applying an insecticide that lasts for four days slightly lowers the 
mosquito population; nevertheless, as soon as the pesticide's impact wears off, the population starts to grow once 
more. Additionally, the mosquito population decreases as more insecticide is used. Starting a second regimen 
around day 3 is the best approach to keep up a four-day regimen. 
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