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Abstract 
This research focuses on the mathematical modeling of Hepatitis B virus (HBV) dynamics using optimal control 
theory to enhance understanding of transmission patterns and optimize intervention strategies. An ordinary 
differential equation (ODE) model is proposed, capturing the dynamics of HBV transmission through distinct 
compartments: susceptible, exposed, infected, liver cirrhosis, and removed. Advanced liver cirrhosis, a severe 
stage of chronic liver disease caused by sustained and progressive damage, has emerged as a critical non-
communicable health concern. The study employs mathematical simulations to analyze the impact of various 
control measures in mitigating HBV spread. Through the application of optimal control theory and the 
Hamiltonian principle, the research identifies effective strategies, such as vaccination, treatment, and awareness 
campaigns, to manage and limit HBV transmission. The primary objective is to minimize the number of 
individuals in the infected and cirrhotic stages while reducing associated intervention costs. By targeting HBV, a 
leading cause of cirrhosis, the study aims to lower the incidence of chronic liver disease. The findings highlight 
the importance of vaccination, effective treatment protocols, and public awareness in curbing the progression of 
HBV and reducing its long-term health impacts. This research provides crucial insights for public health policies 
and the development of targeted strategies to combat HBV and its complications. 
 
Keywords: Hepatitis B Virus; Liver cirrhosis latent; Optimal control theory; Treatment control and awareness 
campaign control. 
 

1. Introduction 

A number of viruses, including A, B, C, D, and E, can cause hepatitis, which is defined as inflammation of the 
liver. Liver illness is characterized by jaundice. Hepatitis B, a potentially lethal liver infection, is caused by the 
Hepatitis B Virus (HBV), a serious global health concern. Significant advancements have been made in the last 
ten years in the use of positive antiviral treatment for chronic HBV infection, which was initially documented 
three decades ago [1]. But this advancement has also made therapy more challenging. With 350 million chronic 
cases [2] worldwide and 4,000 new cases in the US in 2006, hepatitis B is a very common disease. According to 
estimates, between 2,000 and 4,000 people die each year from chronic Hepatitis B (CHB) liver disorders[3]. 
CHB develops in only 5% of immunocompetent persons with severe infection. The World Health 
Organization (WHO) estimated that in 2015, [4] 257 million people were living with HBV, resulting in nearly 
900,000 deaths. A 2006 Sampling Survey for HBV Epidemiology indicated that the HBsAg prevalence among 
children under five was less than 1%. [5] Chronic HBsAg carriers have significantly higher rates of hepatocellular 
carcinoma (HCC), cirrhosis, and mortality compared to those who have never been chronically HBsAg-positive. 
The annual incidence of HCC is 0.1% in asymptomatic HBsAg carriers, 1% in CHB patients, and 3-10% in those 
with cirrhosis. CHB patients develop cirrhosis at a rate of 2% per year [6]. Studies have shown significant 
differences in clinical outcomes among various diagnostic groups, including inactive HBsAg carriers, CHB 
without cirrhosis, and CHB with cirrhosis. A U.S. cohort study followed 400 HBsAg patients [7] (70% born in 
Asia) for over seven years. Among 110 inactive carriers, none developed HCC or died from liver-related diseases, 
and only one died from any cause. In CHB patients without cirrhosis, [8] 6% developed HCC and died from it, 
and 2% died from non-liver-related causes. In contrast, [9]16% of CHB patients with cirrhosis were diagnosed 
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with HCC, and [10] 42% died during the follow-up period, all from liver-related causes. Vertical transmission 
refers to the transmission of HBV from mother to fetus. 
 
One of the primary challenges in studying hepatitis B virus (HBV) infection is devising strategies to control and 
eradicate the infection across the entire population. Mathematical models are instrumental in optimizing resources 
and implementing control measures more efficiently and effectively. To illustrate the impact of carriers on HBV 
transmission, Roy M. Anderson and Robert M. May [11] employed a straightforward mathematical model. [12] 
Graham F. Medley Azra C. Ghani, R. M. Anderson [13] developed a mathematical model to formulate a strategy 
for eradicating HBV infection in New Zealand [14]. Zheo et al. [15] proposed an age-structured model to predict 
HBV transmission and assess the effectiveness of vaccination programs in China. Jingjing Pang, Lanlan Xu, Qiao 
Liu, Min Yao, Yi Zhang, Jie Ren, Yanjun Kang, Meng Wang, Li Liu, Guofeng Chen, Li Zhang, and Jidong Jia 
[16] created a model to evaluate the impact of vaccination on a population and the effectiveness of other control 
measures against HBV infection. Zhang and Zhou [17] provided analysis and applications for this model. 
 
The best possible management of infectious diseases Gul Zaman and Imran Khan [19] and Trimoty J. Wilt and 
Tatyana [18] suggested a mathematical model to control both acute and chronic HBV transmission. [20] Hepatitis 
B viral model by Julse L. Diyantag. Tahir Khan's Chronic HBV model [21] and Hussan Alrabiah, Mohammad 
Safi, Bashir et al.'s optimal control study are also available. Additionally, we observed the HBV treatment in a 
model by Kar.T.K. Batabyal, A [22]. The potential of pulse vaccination to successfully manage epidemics while 
maintaining stability in vaccination quantity and pulse intervals has been demonstrated using pulse vaccination 
epidemic models [23–24]. However, vaccine and treatment-based epidemic control methods can be expensive and 
not always practical. The HBV model can be drawn to prevent [25–26]. 

2. Hepatitis B virus and liver cirrhosis severity in whole world 

Liver cirrhosis has become a significant global health concern, affecting populations across both developed and 
developing countries. This condition typically results from the long-term progression of liver diseases such as 
Hepatitis B and C, fatty liver disease, or other previously undiagnosed liver conditions (as shown in Fig. 1). 
Cirrhosis is the result of ongoing liver damage caused by these diseases. Among these, Hepatitis B is the leading 
cause of chronic liver cirrhosis. Each year, Hepatitis B infects millions of people worldwide, contributing to a rise 
in cases of chronic cirrhosis. Of the four countries analyzed China, India, the United States, and Bangladesh, India 
exhibits a particularly high incidence of liver cirrhosis. The Indian population experiences a higher frequency of 
cirrhosis, while Bangladesh has a relatively lower incidence compared to the other countries. In Bangladesh, for 
instance, 5.3 deaths per 100,000 people are attributed to HBV infection. Hepatitis C, on the other hand, accounts 
for 30% of cirrhosis cases and 17% of hepatocellular carcinoma cases in the country. As illustrated in Fig. 1, the 
global distribution of liver diseases linked to Hepatitis B varies significantly, highlighting the widespread impact 
of HBV across different populations. 
 
 
 
 

 
 
 

Fig. 1. Hepatitis B infection-associated Death from 2010 to 2024 in the world. 

351 



Turkish Journal of Computer and Mathematics Education (TURCOMAT)  ISSN: 3048-4855 

352 
 

 
                          Vol. 15No. 3(2024):350-368 

 

 

 
2.1 Model formulation 
 
In this paper, we can express the communication forces at work and HBV resistor by using ordinary differential 
equations. The below model is given by five ordinary differential equations (ODEs) to demonstrate the active 
performance of hepatitis B virus. The collective human population at any instantaneous of time 𝒕 represented by 
𝑵(𝒕) has five different classes, namely 𝑺(𝒕) the susceptible class, 𝑬(𝒕) the exposed class i.e. are not infected at 
time 𝒕, 𝑰(𝒕) the infective class who are affected by infections and can convey at any time, 𝑳𝒄 the liver cirrhotic 
latent class who are affected by liver cirrhosis of the liver, 
                     

Fig. 2. Flow diagram of the compartmentalized model. 

 
𝑹(𝒕) is the removed class who are removed for recovery, death, and any other means. Fig.2.[25] characterizes the 
flow chart of the model which embodies the segments of all the variable quantity taken from the population. We 
style a statement that the quantity of newborn transporters is overall lower than the sum of the shippers that have 
died and the population is fluctuating from hauler public to a constant immune public. 
Therefore 
 

𝑵(𝒕) = 𝑺(𝒕) + 𝑰(𝒕) + 𝑳𝒄(𝒕) + 𝑹(𝒕). 
 
In Fig. 2, we have presumed that a steady population with birth rate of per heads 𝒓 and per heads death rate 𝝁𝟎. σ 
is the infectiousness of haulers qualified to critical infection, β is the serious infection rate of exposed class, 𝜶 is 
the transmission rate and γ is the natural recovery rate of infective class. Here, the parameter µ is infected class 
cirrhotic getting number, δ is the retrieval rate of cirrhotic class, and є is the disease-persuaded death rate. We 
assumed two control parameters of vaccination rate control 𝒖𝟏 and treatment rate control 𝒖𝟐, and awareness 
campaign rate control 𝒖𝟑. Also, 𝒑𝜸 is the rate of infections cirrhosis declining in the liver cirrhotic class after 
being recovered. At the identical rate all epidemiological classes occur in ordinary death. Thus, the following 
equation describes the dynamics of the susceptible: 
 

𝒅𝑺

𝒅𝒕
= 𝒓 − 𝜶(𝑰 + 𝝈𝑳)𝑺 − (µ𝟎 + 𝒖𝟏)𝑺 

 
The population of buried compartment demonstrates the susceptible class infection. This population cuts by the 
transmission rate σ to the serious (infection) class and the rate of normal death per capita death rate µo.  
 
Now, we have the following equation: 
 

𝒅𝑬

𝒅𝒕
= 𝜶(𝑰 + 𝝈𝑳𝒄)𝑺 − (µ𝟎 + 𝜷)𝑬 
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The population of exposed class demonstrates the susceptible class for infection. This population reductions by 
the transfer rate σ. And the number of serious populations decreases by the natural death rate µ𝟎, and this class is 
abridged by the class moving to the continuing class at the rate 𝒑𝜸. 
Thus, for the infected individual class, we obtain the following equation: 

𝒅𝑰

𝒅𝒕
= 𝜷𝑬 − (µ + 𝜸 + µ𝟎)𝑰 

 
The hepatitis B virus is intensely diseased class grow the lingering period and then change to the lingering class 
at the rate 𝒑𝜸 and the newborn broods instinctive to diseased mas are un-immunized and treatment for this liver 
cirrhosis latent applicable in this situation, this class is amplified at the rate of 𝒖𝟐, and the class for education 
awareness campaign of people about the epidemiology about liver cirrhosis is amplified at the rate of 𝒖𝟑. We can 
see it is decreased by the natural death at the rate µ𝟎. 
So, to define the dynamics of the liver cirrhotic latent class, we express the following equation: 
 
 

𝒅𝑳𝒄
𝒅𝒕

= (µ + 𝒑𝜸)𝑰 − (µ𝟎 + 𝜹 + 𝜺 − 𝒖𝟐 + 𝒖𝟑)𝑳𝒄 
 
Lastly, the recovered class is summary by the same natural death rate and the following differential equation 
express by: 
 

𝒅𝑹

𝒅𝒕
= (𝜹 + 𝒖𝟐 + 𝒖𝟑)𝑳𝒄 − µ𝟎𝑹 + (𝜸 − 𝒑𝜸)𝑰 + 𝒖𝟏𝑺 

 
Therefore, combining all the differential equations, we finally obtain the following system of HBV called model 
(1): 
 
𝒅𝑺

𝒅𝒕
= 𝒓 − 𝜶(𝑰 + 𝝈𝑳𝒄)𝑺 − (𝝁𝟎 + 𝒖𝟏)𝑺,                                                            (1) 

𝒅𝑬

𝒅𝒕
= 𝜶(𝑰 + 𝝈𝑳𝒄)𝑺 − (𝝁𝟎 + 𝜷)𝑬, 

𝒅𝑰

𝒅𝒕
= 𝜷𝑬 − (𝝁𝟎 + 𝝁 + 𝜸)𝑰, 

𝒅𝑳𝒄
𝒅𝒕

= (𝝁 + 𝒑𝜸)𝑰 − (𝝁𝟎 + 𝜹 + 𝜺 + 𝒖𝟐 + 𝒖𝟑)𝑳𝒄, 

 𝒅𝑹
𝒅𝒕
= (𝜹 + 𝒖𝟐 + 𝒖𝟑)𝑳𝒄 − µ𝟎𝑹 + (𝜸 − 𝒑𝜸)𝑰 + 𝒖𝟏𝑺, 

 
And, initial conditions 𝑺 > 𝟎, 𝑬 ≥ 𝟎, 𝑰 ≥ 𝟎, 𝑳𝒄 ≥ 𝟎,𝑹 ≥ 𝟎. 
 
Now, we have three control variable quantity (𝒖𝟏, 𝒖𝟐, 𝒖𝟑): 

(i) Vaccination against hepatitis B prior to infection to prevent the disease. 
(ii) Post-infection treatment targeting the underlying causes that have led to the development of liver 

cirrhosis. 
(iii) Raising awareness campaign and implementing control measures for hepatitis B virus (HBV). 

 So, 𝒖𝟏(𝒕), 𝒖𝟐(𝒕) and 𝒖𝟑(𝒕) denotes the vaccination control, treatment control and awareness campaign control 
individually. We get, the system is an optimal control model. 
i.e set of control variables for this system (𝒖𝟏(𝒕), 𝒖𝟐(𝒕), 𝒖𝟑(𝒕)) ∈ 𝑼.Then for Labesgue measurable we can get, 

𝑼 = {(𝒖𝟏(𝒕), 𝒖𝟐(𝒕), 𝒖𝟑(𝒕)): 𝟎 ≤ 𝒂𝒊 ≤ 𝒖𝒊(𝒕) ≤ 𝒃𝒊 ≤ 𝒄𝒊 ≤ 𝟏, 𝒊 = 𝟏, 𝟐, 𝟑}; 
  ∀𝒕 ∈ [𝟎, 𝑻]. 
 
Form, these three control variables we can get now the model, 
 

𝒎𝒊𝒏𝑱(𝒖𝟏, 𝒖𝟐, 𝒖𝟑) = ∫(𝑰(𝒕) + 𝑳𝒄(𝒕) +
𝓐

𝟐
𝒖𝟏
𝟐 +

𝓑

𝟐
𝒖𝟐
𝟐 +

𝓒

𝟐
𝒖𝟑
𝟐)𝒅𝒕

𝑻

𝟎

 

We can redevelop the model as, 
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(𝑷𝒄) =

{
 
 
 

 
 
 

𝒎𝒊𝒏 𝑱(𝒙, 𝒖) = ∫𝑳(𝒕, 𝒙(𝒕), 𝒖(𝒕))𝒅𝒕

𝑻

𝟎

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐

𝒙̇(𝒕) = 𝒇(𝒙(𝒕)) + 𝒈(𝒙(𝒕)) + 𝒉(𝒙(𝒕)), 𝒖(𝒕), ∀𝒕 ∈ [𝟎, 𝑻]

𝒖(𝒕) ∈ 𝑼(𝒕), ∀𝒕 ∈ [𝟎, 𝑻]

𝒙(𝟎) = 𝒙𝟎

 

  
 

here,  𝒙(𝒕) =

(

 
 

𝑺(𝒕)
𝑬)𝒕)

𝑰(𝒕)

𝑳𝒄(𝒕)
𝑹(𝒕)

)

 
 

, 𝒈(𝒙) =

(

 
 

−𝑺      𝟎  
𝟎  𝟎
𝟎           𝟎
𝟎     − 𝑳𝒄
𝑺         𝑳𝒄 )

 
 
, 𝒉(𝒙) =

(

 
 

−𝑺      𝟎  
𝟎  𝟎
𝟎           𝟎
𝟎     − 𝑳𝒄
𝑺         𝑳𝒄 )

 
 

,  

𝒇(𝒙) =

(

 
 
 
 𝒓 − 𝜶(𝑰 + 𝝈𝑳𝒄)𝑺 − 𝝁𝟎𝑺

𝜶(𝑰 + 𝝈𝑳𝒄)𝑺 − (𝝁𝟎 + 𝜷)𝑬

𝜷𝑬 − (𝝁𝟎 + 𝝁 + 𝜸)𝑰
(𝝁 + 𝒑𝜸)𝑰 − (𝝁𝟎 + 𝜹 + 𝜺)𝑳𝒄
𝜹𝑳𝒄 + (𝟏 − 𝒑)𝜸𝑰 − 𝝁𝟎𝑹 )

 
 
 
 

 

 

𝒖(𝒕) = (

𝒖𝟏(𝒕)
𝒖𝟐(𝒕)

𝒖𝟑(𝒕)
) and the integrand of the presentation index is,  

 

𝑳(𝒙, 𝒖) = 𝑰(𝒕) + 𝑳𝒄(𝒕) +
𝓐

𝟐
𝒖𝟏
𝟐 +

𝓑

𝟐
𝒖𝟐
𝟐 +

𝓒

𝟐
𝒖𝟑
𝟐. 

 
3. Methods and materials 

This aspect is vital for explaining the positivity and boundedness of model (1), as these terms represent the 
population. Positivity and boundedness in population reviews can be seen as a common constraint due to the 
acceptance of limited resources. In this context, we present key findings on the existence of equilibrium for model 
(1), positive invariance, and the boundedness of solutions. 

3.1 System invariance of positivity 
 
Reorganize model (1) in relations explained as, 
 
 ∅(𝒕) = 𝑭(∅(𝒕)), 
 
Here,  ∅(𝒕) = (∅𝟏, ∅𝟐, ∅𝟑, ∅𝟒, ∅𝟓)𝑻 = (𝑺, 𝑬, 𝑰, 𝑳𝒄, 𝑹)𝑻, 
 
 ∅(𝟎) = (𝐒(𝟎), 𝐄(𝟎), 𝐈(𝟎), 𝐋𝐜(𝟎), 𝐑(𝟎))

𝐓 ∈  𝐑+
𝟓  

 

𝑭(∅) =

(

 
 
 
 

𝑭𝟏(∅)

𝑭𝟐(∅)

𝑭𝟑(∅)

𝑭𝟒(∅)

𝑭𝟓(∅)

)

 
 
 
 

=  

(

 
 
 
 

𝒓 − 𝜶(𝑰 + 𝝈𝑳𝒄)𝑺 − (𝝁𝟎 + 𝒖𝟏)𝑺

𝜶(𝑰 + 𝝈𝑳𝒄)𝑺 − (𝝁𝟎 + 𝜷)𝑬
𝜷𝑬 − (𝝁𝟎 + 𝝁 + 𝜸)𝑰

(𝝁 + 𝒑𝜸)𝑰 − (𝝁𝟎 + 𝜹 + 𝜺 + 𝒖𝟐 + 𝒖𝟑)𝑳𝒄
(𝜹 + 𝒖𝟐 + 𝒖𝟑)𝑳𝒄 − µ𝟎𝑹 + (𝜸 − 𝒑𝜸)𝑰 + 𝒖𝟏𝑺,

)

 
 
 
 

  

 
The condition is stress-free because of the shape 𝑭𝒊(∅)ǀ∅𝒊 ≥ 𝟎, 𝒊 = 𝟏,… . . , 𝟓. As said by the famous result of 
Nagumo, model (1) solution with an initial point ∅𝟎 ∈  𝑹+𝟓 , say ∅(𝒕) = ∅(𝒕; ∅𝟎),  is such that ∅(𝒕) ∈ 𝑹+𝟓  ∀ 𝒕 > 𝟎. 
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3.2 Boundedness 
 
Theorem 1: 
There exists a positive ∅  for nonzero for all solutions meet ∅ > (𝑺(𝒕), 𝑬(𝒕), 𝑰(𝒕), 𝑳𝒄(𝒕), 𝑹(𝒕)) for the extended 
time 𝑡. 
 
Proof:  
 
Completely model (1) solutions are greater than zero, In first compartment of (1) as  
 
 𝒅𝑺(𝒕)
𝒅𝒕

= 𝒓 − 𝜶(𝑰 + 𝝈𝑳𝒄)𝑺 − (𝝁𝟎 + 𝒖𝟏)𝑺 ≤ 𝒓 − (𝝁𝟎 + 𝒖𝟏)𝑺. 
 
Now,  𝒅𝑺(𝒕)

𝒅𝒕
< 𝟏 +

𝒓

𝝁𝟎+𝒖𝟏
 for extreme time 𝒕, 

 Let, 𝒕 > 𝒕𝟎. 
 
Then we get, 𝑹𝟏(𝒕) = (𝑺(𝒕), 𝑬(𝒕), 𝑰(𝒕), 𝑳𝒄(𝒕)). 
 
Now differentiating 𝑹𝟏 with respect to the model (1) solutions we get, 
 
 𝒅𝑹𝟏(𝒕)

𝒅𝒕
= −(𝝁𝟎 + 𝒖𝟏)𝑺 − 𝝁𝟎𝑬 − (𝝁𝟎 + µ + 𝜸)𝑰 − (𝝁𝟎 + 𝜹 + 𝜺)𝑳𝒄 + 𝒓  

           ≤ 𝒉𝑹𝟏(𝒕) + 𝒓, 
 
Here, 𝒉 = 𝒎𝒊𝒏 ((𝝁𝟎 + 𝒖𝟏), 𝝁𝟎, (𝝁𝟎 + µ + 𝜸), (𝝁𝟎 + 𝜹 + 𝜺)). 
  
Then we get, 
 𝑺(𝒕) ≤ 𝟏 +

𝒓

𝝁𝟎+𝒖𝟏
for 𝒕 > 𝒕𝟎. 

 ∅𝟏 exists, depends on the model (1), So we can say 𝑹𝟏(𝒕) ≤ ∅𝟏, finally 𝒕 ≥ 𝒕𝟎, 𝑬(𝒕), 𝑰(𝒕) and 𝑳𝒄(𝒕) are bounded 
above. 
Afterward the 3rd & 4th equations of model (1) and 𝑹(𝒕) are ultimately bounded above, where ∅ is maximum. 
Fig. 5 previously states that retain an appreciation on now & proven. This displays that model (1) is critical. 
 
 ∁= {(𝑺, 𝑬, 𝑰, 𝑳𝒄, 𝑹)ǀ𝟏 +

𝒓

𝝁𝟎+𝒖𝟏
≥ 𝑺 ≥ 𝟎, 𝑰 ≥ 𝟎, ∅ ≥ 𝑹}. 

Clearly, ∁ is convex. 
 
4. Optimal control presence 
 
To establish the existence of the optimal control, it is imperative to demonstrate the presence of both the state and 
the objective functional.  
 
4.1 Presence of the state variable 
 
The initial condition, along with state equation (1), can be expressed in the following manner, 
 
 𝑺′(𝒕) = 𝒓 − 𝜶(𝑰 + 𝝈𝑳𝒄 − 𝝁𝟎)𝑺 + (𝟎)𝑬(𝒕) + (𝟎)𝑰(𝒕) + (𝟎)𝑳𝒄(𝒕) + (𝟎)𝑹(𝒕)                      
 𝑬′(𝒕) = 𝜶(𝑰 + 𝝈𝑳𝒄)𝑺 − (𝝁𝟎 + 𝜷)𝑬 + (𝟎)𝑰(𝒕) + (𝟎)𝑳𝒄(𝒕) + (𝟎)𝑹(𝒕) 
 𝑰′(𝒕) = (𝟎)𝑺(𝒕) + 𝜷𝑬 + (𝟎)𝑰(𝒕) + (𝟎)𝑳𝒄(𝒕) + (𝟎)𝑹(𝒕)                                     (2) 
 𝑳𝒄′ (𝒕) = (𝟎)𝑺(𝒕) + (𝟎)𝑬(𝒕) + (𝝁 + 𝒑𝜸)𝑰 − (𝝁𝟎 + 𝜹 + 𝝐)𝑳𝒄 + (𝟎)𝑹(𝒕) 
 𝑹′(𝒕) = (𝟎)𝑺(𝒕) + (𝟎)𝑬(𝒕) + (𝟏 − 𝒑)𝜸𝑰 + 𝜹𝑳𝒄 − 𝝁𝟎𝑹 
 
We know that for total population size 𝑵(𝒕) we can get for this system, 
 
 𝑵(𝒕) = 𝑺(𝒕) + 𝑬(𝒕) + 𝑰(𝒕) + 𝑳𝒄(𝒕) + 𝑹(𝒕)  
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Differentiating this system with respect to t we get, 
 
 𝑵′(𝒕) = 𝑺′(𝒕) + 𝑬′(𝒕) + 𝑰′(𝒕) + 𝑳𝒄′ (𝒕) + 𝑹′(𝒕)                                               `   (3) 
 
Substituting the right-hand side of equation (2) into equation (3), we obtain 
 
 𝑵′(𝒕) = 𝒓 − 𝜺𝑳𝒄 − 𝝁𝟎𝑵(𝒕) 
 ⇒ 𝑵′(𝒕) + 𝜺𝑳𝒄 = 𝒓 − 𝝁𝟎𝑵(𝒕)  
 𝒊. 𝒆 𝑵′(𝒕) ≤ 𝒓 − 𝝁𝟎𝑵(𝒕) 
From this we get, 

 𝑵(𝒕) ≤ 𝒓

𝝁𝟎
+ (𝑵𝟎 −

𝒓

𝝁𝟎
) 𝒆−𝝁𝟎𝒕 = 𝑲𝟏 ∈ 𝑹+ and 

 𝒍𝒊𝒎
𝒕→∞

𝒔𝒖𝒑𝑵(𝒕) ≤ 𝑲𝟏 
 
This leads to the following conclusion, 
 
𝑺(𝒕), 𝑬(𝒕), 𝑰(𝒕), 𝑳𝒄(𝒕), 𝑹(𝒕) ≤ 𝑲𝟏  as 𝒕 → ∞. 
 
Subsequently, we can rewrite equation (2) in the following manner: 
 
 𝝎𝒕 = 𝑻𝝎 + 𝑬(𝝎)                                                                                                   (4) 
  

Where,  𝝎 =

(

 
 

𝑺(𝒕)
𝑬(𝒕)

𝑰(𝒕)

𝑳𝒄(𝒕)
𝑹(𝒕)

)

 
 

,  𝝎𝒕 =

(

  
 

𝑺′(𝒕)

𝑬′(𝒕)

𝑰′(𝒕)

𝑳𝒄
′(𝒕)

𝑹′(𝒕)

)

  
 

,  𝑬(𝝎) =

(

 

−𝜶(𝑰+𝝈𝑳𝒄)𝑺

𝜶(𝑰+𝝈𝑳𝒄)𝑺
𝟎
𝟎
𝟎

)

   and 

 

  𝑻 =

[
 
 
 
 
−𝝁𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 −(𝝁𝟎 + 𝜷) 𝟎 𝟎 𝟎

𝟎 𝜷 −(𝝁𝟎 + 𝝁 + 𝜸) 𝟎 𝟎
𝟎 𝟎 (𝝁 + 𝒑𝜸) −(𝝁𝟎 + 𝜹 + 𝜺) 𝟎

𝟎 −𝝁𝟎 𝟎 (𝟏 − 𝒑)𝜸 𝜹]
 
 
 
 

  

 
 

  𝑬(𝝎𝟏) − 𝑬(𝝎𝟐) =

(

  
 

−𝜶(𝑰𝟏+𝝈𝑳𝒄𝟏)𝑺𝟏

𝜶(𝑰𝟏+𝝈𝑳𝒄𝟏)𝑺𝟏

𝟎
𝟎
𝟎

)

  
 
−

(

  
 

−𝜶(𝑰𝟐+𝝈𝑳𝒄𝟐)𝑺𝟐

𝜶(𝑰𝟐+𝝈𝑳𝒄𝟐)𝑺𝟐

𝟎
𝟎
𝟎

)

  
 

  

 
Equation (4) represents a nonlinear system with coefficients that are bounded, so we get 
  
 𝑸(𝝎) = 𝝎𝒕 = 𝑻𝝎 + 𝑬(𝝎). 
 
To establish the existence of optimal control and the optimality system, it is necessary to ensure that the solution 
of the system remains bounded for a finite time. We, adopt that for 𝒖 ∈ 𝑼, there present a bounded solution. 
 
 |𝑬(𝝎𝟏) − 𝑬(𝝎𝟐)| = |−𝜶(𝑰𝟏 + 𝝈𝑳𝒄𝟏)𝑺𝟏 + 𝜶(𝑰𝟐 + 𝝈𝑳𝒄𝟐)𝑺𝟐| + | 𝜶(𝑰𝟏 + 𝝈𝑳𝒄𝟏)𝑺𝟏 −  𝜶(𝑰𝟐 + 𝝈𝑳𝒄𝟐)𝑺𝟐| 
 ≤ 𝟐𝜶(|𝑺𝟏||𝑰𝟏 − 𝑰𝟐| + |𝑺𝟏 − 𝑺𝟐||𝑰𝟐 + 𝝈𝑳𝒄𝟏|+|𝝈𝑺𝟐||𝑳𝒄𝟏 − 𝑳𝒄𝟐|) 
 ≤ 𝑴|𝝎𝟏 −𝝎𝟐| 
 
here  𝑴 = 𝟐𝒈𝑲𝟏. 
So, we get |𝑸(𝝎𝟏) − 𝑸(𝝎𝟐)| ≤ ‖𝑻‖|𝝎𝟏 −𝝎𝟐| + 𝑴|𝝎𝟏 −𝝎𝟐| ≤ 𝑲|𝝎𝟏 −𝝎𝟐|, 
Where 𝑲 = 𝒎𝒂𝒙(𝑴, ‖𝑻‖) < ∞. 
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Thus, it surveys that the function 𝑸 is uniformly Lipschutz continuous. Given the definition of the control 𝑼(𝒕) 
and the constraints on (𝑺, 𝑬, 𝑰, 𝑳𝒄);  𝑹 ≥ 𝟎 we can infer that a solution to the system (4) exists. 

4.2 Presence of objective function 
 
To prove the existence of the objective functional, we can apply the following theorem. 
 
Theorem 2: 

Let us consider the following,  𝖃̅(𝒕) = [
𝖃𝟏(𝒕)
⋮

𝖃𝒏(𝒕)
] 

 Where 𝒏 is the system of state variables, and let us consider 𝒖(𝒕) be a control variable by a set of acceptable 
controls 𝑼, that satisfy the following differential equation 𝖃𝒊′(𝒕) = 𝒈(𝒕, 𝖃𝒊(𝒕), 𝒖(𝒕)) for 𝒊 =  𝟏, 𝟐, ……  𝒏  with 
the related index. 
 

𝑱(𝒖) = ∫𝒇(𝒕, 𝖃̅(𝒕), 𝒖(𝒕)) 𝒅𝒕 

There, presence an optimal control which minimizes 𝑱̅(𝒖) if following conditions are satisfied: 
(i) 𝓕 is a non-empty set. 
(ii) The control set 𝑼 is closed. 
(iii)  And, the control set 𝑼 is convex. 
(iv) The right-hand side of the state system is continuous, bounded above by a linear amalgamation of 

the control and state variables, and can be expressed as a linear function with coefficients dependent 
on time and state. 

(v) The cohesive of the objective functional is a convex set on 𝑼. It is bounded underneath by −𝑫𝟐 +
𝑫𝟏(𝒖)

𝜼;  𝑫𝟏 > 𝟎 & 𝜼 > 𝟎. 
 
Now, defining 𝓕 as a class of (𝑺𝟎, 𝑬𝟎, 𝑰𝟎, 𝑳𝒄𝟎 , 𝑹𝟎, 𝒖). 

So, 𝒖 is a piecewise function on [0, 𝑇] with the control set in 𝑼. 

Proof (i): 

Let us consider, 

 𝑺̇ = 𝓕𝟏(𝒕, 𝑺, 𝑬, 𝑰, 𝑳𝒄, 𝑹),                                                                                         (5) 

 𝑬̇ = 𝓕𝟐(𝒕, 𝑺, 𝑬, 𝑰, 𝑳𝒄, 𝑹), 

 𝑰̇ = 𝓕𝟑(𝒕, 𝑺, 𝑬, 𝑰, 𝑳𝒄, 𝑹), 

 𝑳𝒄̇ = 𝓕𝟒(𝒕, 𝑺, 𝑬, 𝑰, 𝑳𝒄, 𝑹), 

 𝑹̇ = 𝓕𝟓(𝒕, 𝑺, 𝑬, 𝑰, 𝑳𝒄, 𝑹), 

Where 𝓕𝟏, 𝓕𝟐, 𝓕𝟑, 𝓕𝟒 and 𝓕𝟓 build up the righthand side of system below, 

 𝒅𝑺
𝒅𝒕
= 𝒓 − 𝜶(𝑰 + 𝝈𝑳𝒄)𝑺 − (𝝁𝟎 + 𝒖𝟏)𝑺                                     

 𝒅𝑬
𝒅𝒕
= 𝜶(𝑰 + 𝝈𝑳𝒄)𝑺 − (𝝁𝟎 + 𝜷)𝑬 

  𝒅𝑰
𝒅𝒕
= 𝜷𝑬 − (𝝁𝟎 + 𝝁 + 𝜸)𝑰 

  𝒅𝑳𝒄
𝒅𝒕
= (𝝁 + 𝒑𝜸)𝑰 − (𝝁𝟎 + 𝜹 + 𝜺 + 𝒖𝟐 + 𝒖𝟑)𝑳𝒄 

   𝒅𝑹
𝒅𝒕
= (𝜹 + 𝒖𝟐 + 𝒖𝟑)𝑳𝒄 − µ𝟎𝑹 + (𝜸 − 𝒑𝜸)𝑰 + 𝒖𝟏𝑺 

 

Let us consider 𝒖(𝒕) = 𝑫 for some constant 𝑫. 
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Now, 𝓕𝟏, 𝓕𝟐, 𝓕𝟑, 𝓕𝟒 and 𝓕𝟓 functions must adhere to linearity and exhibit continuity throughout. Additionally, 
their partial derivatives must be accounted for 𝓕𝟏, 𝓕𝟐, 𝓕𝟑, 𝓕𝟒 and 𝓕𝟓 with respect to altogether all states are 
constants. they are also continuous universally. 

 According to the aforementioned theorem, there is a sole solution that exists. Now, 

 𝑺 = Ω𝟏(𝒕), 𝑬 = Ω𝟐(𝒕), 𝑰 = Ω𝟑(𝒕), 𝑳𝒄 = Ω𝟒(𝒕) and 𝑹 = Ω𝟓(𝒕)  

According to the aforementioned theorem, there is a sole solution that exists. 

The solution that satisfies the initial conditions is thus established. Consequently, the collection of controls and 
corresponding state variables is not void. Therefore, condition (i) is fulfilled. 

Proof (ii): 

From definition, 𝑼 is closed. 

Now we yield three controls, 

 (𝒖𝟏, 𝒖𝟐, 𝒖𝟑) ∈ 𝑼 and 𝝀 ∈ [𝟎, 𝟏] such that 𝟎 ≤ 𝝀𝒖𝟏 + 𝟐𝝀𝒖𝟐 + (𝟏 − 𝟑𝝀)𝒖𝟑. 

Now we see that 𝝀𝒖𝟏 ≤ 𝝀 , 𝟐𝝀𝒖𝟐 ≤ 𝝀, and (𝟏 − 𝟑𝝀)𝒖𝟑 ≤ (𝟏 − 𝟑𝝀). 

So, 𝝀𝒖𝟏 + 𝟐𝝀𝒖𝟐 + (𝟏 − 𝟑𝝀)𝒖𝟑 ≤ 𝝀 + 𝟐𝝀 + (𝟏 − 𝟑𝝀) = 𝟏. 

Hence, we get, 

 𝟎 ≤  𝝀𝒖𝟏 + 𝟐𝝀𝒖𝟐 + (𝟏 − 𝟑𝝀)𝒖𝟑 ≤ 𝟏  

∀ (𝒖𝟏, 𝒖𝟐, 𝒖𝟑) ∈ 𝑼 and 𝝀 ∈ [𝟎, 𝟏]. 

 So, condition (ii) is fulfilled. 

Proof (iii): 

Let, 

 𝓕𝟏 ≤ 𝒓 − 𝒖𝟏𝑺 

 𝓕𝟐 ≤ 𝓚𝟏𝑬 

 𝓕𝟑 ≤ 𝜷𝑬 −𝓚𝟐𝑰 

 𝓕𝟒 ≤ 𝓚𝟑𝑰 − 𝑷𝟏𝑳𝒄 − 𝒖𝟐𝑳𝒄 − 𝒖𝟑𝑳𝒄 

 𝓕𝟓 ≤ 𝜹𝑳𝒄 + 𝑷𝟐𝑰 + 𝒖𝟏𝑺 + 𝒖𝟐𝑳𝒄 + 𝒖𝟑𝑳𝒄 

Then, form system (5) we get, 

 𝓕̅(𝒕, 𝖃̅, 𝒖) ≤ 𝒎̅

(

 
 
𝒕,

[
 
 
 
 
𝑺
𝑬
𝑰
𝑳𝒄
𝑹]
 
 
 
 

)

 
 
𝖃̅ + 𝒏̅

(

 
 
𝒕,

[
 
 
 
 
𝑺
𝑬
𝑰
𝑳𝒄
𝑹]
 
 
 
 

)

 
 
𝒖(𝒕), 

Where 𝑚̅

(

 
 
𝒕,

[
 
 
 
 
𝑺
𝑬
𝑰
𝑳𝒄
𝑹]
 
 
 
 

)

 
 
=

[
 
 
 
 
−𝑺 𝟎
𝟎 𝟎
𝟎 𝟎
𝟎 −𝑳𝒄
𝑺 𝑳𝒄 ]

 
 
 
 

 

This results in a linear function of the control 𝒖, defined in terms of time and state variables. Next, we can 
determine the bound of the right-hand side. Notably, all parameters are constant and non-negative. 
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Given that, 𝑺 and 𝑳𝒄 are restricted, and 𝒒 comprises the upper bound of the constant matrix, it follows that the 
right-hand side is bounded by a sum of the state and control variables. Therefore, condition (iii) is satisfied.  

Proof (iv): 

Let, 

 𝑳(𝒖) = 𝑰(𝒕) + 𝑳𝒄(𝒕) + 𝒖
𝟐, where 𝓐

𝟐
𝒖𝟏
𝟐 +

𝓑

𝟐
𝒖𝟐
𝟐 +

𝓒

𝟐
𝒖𝟑
𝟐 = 𝒖𝟐.  

Where the three controls variables are (𝒖𝟏, 𝒖𝟐, 𝒖𝟑) ∈ 𝑼 and 𝟎 < 𝝋 < 𝟏. 

Then we can get, 

 𝒖𝟏𝟐 − 𝟐𝒖𝟏𝒖𝟐 − 𝟐𝒖𝟐𝒖𝟑 − 𝟐𝒖𝟑𝒖𝟏 + 𝒖𝟐𝟐 + 𝒖𝟑𝟐 = (𝒖𝟏 − 𝒖𝟐 − 𝒖𝟑)𝟐 ≥ 𝟎 

 ⇒ 𝒖𝟏
𝟐 + 𝒖𝟐

𝟐 + 𝒖𝟑
𝟐 ≥ 𝟐𝒖𝟏𝒖𝟐 + 𝟐𝒖𝟐𝒖𝟑 + 𝟐𝒖𝟑𝒖𝟏 

 ⇒ 𝝋(𝟏 − 𝝋)𝒖𝟏
𝟐 + 𝝋(𝟏 − 𝝋)𝒖𝟐

𝟐 + 𝝋(𝟏 − 𝝋)𝒖𝟑
𝟐 

 ≥ 𝟐𝝋(𝟏 − 𝝋)𝒖𝟏𝒖𝟐 + 𝟐𝝋(𝟏 − 𝝋)𝒖𝟐𝒖𝟑 + 𝟐𝝋(𝟏 − 𝝋)𝒖𝟑𝒖𝟏 

 𝒊. 𝒆.  𝝋 𝑳(𝒖𝟏) + (𝟏 − 𝝋) 𝑳(𝒖𝟐) + 𝝋(𝟏 − 𝝋)𝑳(𝒖𝟑) ≥ 𝑳(𝝋 + (𝟏 − 𝝋)𝒖𝟐 +𝝋(𝟏 − 𝝋)𝒖𝟑. 

So, this satisfy,  𝑳(𝒖) is convex on 𝑼. 

Now, we will prove, 

 𝑱(𝒖) ≥ −𝑫𝟐 + 𝑫𝟏(𝒖)
𝜼 with initial conditions i.e.  𝜼 > 𝟎, 𝑪𝟏 ≥ 𝟎 

Here, 

 𝑱(𝒖) = 𝑰(𝒕) + 𝑳𝒄(𝒕) +
𝓐

𝟐
𝒖𝟏
𝟐 +

𝓑

𝟐
𝒖𝟐
𝟐 + 

𝓒

𝟐
𝒖𝟑
𝟐, 

 𝑱(𝒖) = 𝑰(𝒕) + 𝑳𝒄(𝒕) + 𝒖𝟐 

[where 𝓐
𝟐
𝒖𝟏
𝟐 +

𝓑

𝟐
𝒖𝟐
𝟐 + 

𝓒

𝟐
𝒖𝟑
𝟐 = 𝒖𝟐] 

Now we get, 

 𝑱(𝒖) ≥ −[𝑰(𝒕) + 𝑳𝒄(𝒕)] + 𝒖
𝟐 

 = −𝑫𝟐 + 𝑫𝟏𝒖𝟐 

With initial condition 𝑫𝟐 > 𝟎 which rest on upper bounds of 𝑰(𝒕) & 𝑳𝒄(𝒕). 
We also get,  𝜼 = 𝟐 > 𝟏,𝑫𝟏 > 𝟎. 
Hence, the requirement (iv) is also fulfilled. So, the existence of objective functional has been recognized. 
4.3. Optimal strategy with control variable 
 
In this valuable chapter, optimal control philosophy of the Hepatitis B Virus model   submission is conversed. 
Optimal theory for control variable that qualifies us to enterprise a strategy for the control of many kinds of 
infectious diseases of many kinds. Now the optimal control theory is functional to the infection model of Hepatitis 
B Virus. For controlling the spread of this virus in the population, we know that, there exists three control variable 
they are 𝓾𝟏(𝒕) is vaccination control variable, 𝓾𝟐(𝒕) is treatment control variable and 𝓾𝟑(𝒕) is awareness 
campaign control rate. For these three optimal control variables 𝓾𝟏(𝒕), 𝓾𝟐(𝒕) and 𝓾𝟑(𝒕) is complete to aid the 
determination. These three control variables represent three techniques for controlling the disease in the 
population, 𝓾𝟏(𝒕) the requirement is to maintain continuity within a region, representing the administration of the 
drug to prevent the generation of new infected cells, 𝓾𝟐(𝒕) the requirement that means treatment is helping to 
reduction of the construction rate of the viruses in the infected class, and lastly, 𝓾𝟑(𝒕) makes the awareness 
campaign control rate that stated infection causing in public can get control by using education about these topic. 
Our main area of concentration here is to minimize the infection of Hepatitis B virus in total populations N(t) 
through a correct way that verves through susceptible class to infective class 𝑺(𝒕), exposed class 𝑬(𝒕), liver 
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cirrhotic latent class 𝑳𝒄(𝒕), critical infection class 𝑰(𝒕) complete the way foremost to a protecting resistant 
population 𝑹(𝒕). 
 𝒅𝑺
𝒅𝒕
= 𝒓 − 𝜶(𝑰 + 𝝈𝑳𝒄)𝑺 − (𝝁𝟎 + 𝒖𝟏)𝑺 − (𝟏 − 𝓾𝟏)𝑺 − (𝟏 − 𝓾𝟑)𝑺,                     (6)                            

 𝒅𝑬
𝒅𝒕
= 𝜶(𝑰 + 𝝈𝑳𝒄)𝑺 − (𝝁𝟎 + 𝜷)𝑬 − (𝟏 − 𝓾𝟏)𝑬,  

 
𝒅𝑰

𝒅𝒕
= 𝜷𝑬 − (𝝁𝟎 + 𝝁 + 𝜸)𝑰 − (𝟏 − 𝓾𝟐)𝑰,  

 
𝒅𝑳𝒄

𝒅𝒕
= (𝝁 + 𝒑𝜸)𝑰 − (𝝁𝟎 + 𝜹 + 𝜺 + 𝒖𝟐 + 𝒖𝟑)𝑳𝒄 − (𝟏 − 𝓾𝟐)𝑳𝒄 − (𝟏 − 𝓾𝟑)𝑳𝒄,   

 𝒅𝑹
𝒅𝒕
= (𝜹 + 𝒖𝟐 + 𝒖𝟑)𝑳𝒄 − 𝝁𝟎𝑹 + (𝜸 − 𝒑𝜸)𝑰 + 𝒖𝟏𝑺 + (1 − 𝓾1)𝑆 + (1 − 𝓾3)𝑆 + (1 − 𝓾1)𝐸 + (1 − 𝓾2)𝐼 +

(1 − 𝓾2)𝐿𝑐 + (1 − 𝓾3)𝐿𝑐 
 
When, 
 𝑺(𝟎) ≥ 𝟎, 𝑬(𝟎) ≥ 𝟎,   𝑰(𝟎) ≥ 𝟎,    𝑳𝒄(𝟎) ≥ 𝟎, 𝑹(𝟎) ≥ 𝟎                (7) 
 
To characterize the weight constants, we take 𝕬𝟏

∗ , 𝕬𝟐
∗ , 𝕬𝟑

∗ , 𝕬𝟒
∗ , 𝕬𝟓

∗ , 𝕬𝟔
∗ , 𝕬𝟕

∗  and 𝕬𝟖
∗ . Let for these objective function 

maximizations, 
 
 𝑱(𝓾𝟏(𝒕), 𝓾𝟐(𝒕), 𝓾𝟑(𝒕)) = ∫ {𝕬𝟏

∗𝑺(𝒕) + 𝕬𝟐
∗𝑬(𝒕) + 𝕬𝟑

∗𝑰(𝒕) + 𝕬𝟒
∗𝑳𝒄(𝒕), +𝕬𝟓

∗𝑹(𝒕) +
𝟏

𝟐
𝕬𝟔
∗𝓾𝟏

𝟐(𝒕) +
𝟏

𝟐
𝕬𝟕
∗𝓾𝟐

𝟐(𝒕) +
𝒕

𝟎
𝟏

𝟐
𝕬𝟖
∗𝓾𝟑

𝟐(𝒕)} 𝒅𝒕                             (8)     
 
Also, to minimize the objective functions, we have to discover the optimal control variables 𝓾𝟏∗(𝒕), 𝓾𝟐∗(𝒕), and 
𝓾𝟑
∗(𝒕), 

i.e.    

 𝑱{𝓾𝟏∗ (𝒕), 𝓾𝟐∗(𝒕), 𝓾𝟑∗ (𝒕)} = 𝒎𝒊𝒏{𝑱(𝓾𝟏(𝒕), 𝓾𝟐(𝒕), 𝓾𝟑(𝒕)), 𝓾𝟏(𝒕), 𝓾𝟐(𝒕), 𝓾𝟑(𝒕) ∈ 𝑼},   (9) 
Conditional on the system (6). 
Where the control set, 
 𝑼 = {𝓾𝟏(𝒕), 𝓾𝟐(𝒕), 𝓾𝟑(𝒕)\𝓾𝒊(𝒕)}  
 
This set is Lebesgue measurable on [𝟎, 𝟏] region , 𝟎 ≤ 𝓾𝒊(𝒕) ≤ 𝟏, 𝒊 = {𝟏, 𝟐, 𝟑}. 
 
4.3.1 Presence of optimal control problem 
 
With the aim of display the existence of the optimal control problem, we start the reference [36]. For this reason, 
we prove the presence of the optimal control problems, we take into thought that the control system consuming 
all the conditions at initial stage at time 𝒕 = 𝟎. Positivity invariance bounded solution to the state system and with 
positive initial conditions seized the existence of bounded Lebesguemeasurable control [37-39]. For this 
determination we take the optimal control problems in system (6) and (9). So, for these optimal control problems 
(6) and (9), survey of the Lagrangian and Hamiltonian is essential. The Lagrangian optimal control problem is the 
following equation given below: 
 
 Ƚ{𝑺(𝒕), 𝑬(𝒕), 𝑰(𝒕), 𝑳𝒄(𝒕), 𝑹(𝒕), 𝓾𝟏(𝒕), 𝓾𝟐(𝒕), 𝓾𝟑(𝒕)} = 𝕬𝟏

∗𝑺(𝒕) + 𝕬𝟐
∗𝑬(𝒕) + 𝕬𝟑

∗𝑰(𝒕) + 𝕬𝟒
∗𝑳𝒄(𝒕), +𝕬𝟓

∗𝑹(𝒕) +
𝟏

𝟐
𝕬𝟔
∗𝓾𝟏

𝟐(𝒕) +
𝟏

𝟐
𝕬𝟕
∗𝓾𝟐

𝟐(𝒕) +
𝟏

𝟐
𝕬𝟖
∗𝓾𝟑

𝟐(𝒕).              (10)  
 
For optimize the minimal value of the Lagrangian equation, we can take Hamiltonian 𝑯 then the optimal control 
will represent as: 
 
𝑯 = Ƚ(𝑺(𝒕), 𝑬(𝒕), 𝑰(𝒕), 𝑳𝒄(𝒕), 𝑹(𝒕), 𝓾𝟏(𝒕), 𝓾𝟐(𝒕), 𝓾𝟑(𝒕)) + 𝕱𝟏

𝒅𝑺(𝒕)

𝒅𝒕
+ 𝕱𝟐

𝒅𝑬(𝒕)

𝒅𝒕
+ 𝕱𝟑

𝒅𝑰(𝒕)

𝒅𝒕
+ 𝕱𝟒

𝒅𝑳𝒄(𝒕)

𝒅𝒕
+ 𝕱𝟓

𝒅𝑹(𝒕)

𝒅𝒕
.                                                                         

…            (11) 
 
For this equation we can get some adjoint variables 𝕱𝟏(𝒕), 𝕱𝟐(𝒕), 𝕱𝟑(𝒕)(𝒕), 𝕱𝟒(𝒕), and 𝕱𝟓(𝒕) with respect to the 
optimal control variables 𝓾𝟏(𝒕), 𝓾𝟐(𝒕), and 𝓾𝟑(𝒕), 
 
 𝕱𝟏′ (𝒕) = −{𝕬𝟏

∗ − 𝕱𝟏(𝝁𝟎 + 𝜶𝑰 + 𝜶𝝈𝑳𝒄 + 𝒖𝟏 − 𝓾𝟏 −𝓾𝟑 + 𝟐) + 𝕱𝟐(𝜶𝑰 + 𝜶𝝈𝑳𝒄) + 𝕱𝟓(𝟐 − 𝓾𝟏 − 𝓾𝟑)} 
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 𝕱𝟐′ (𝒕) = −{𝕬𝟐
∗ − 𝕱𝟐(𝝁𝟎 + 𝜺 + 𝜷 − 𝟏) + 𝕱𝟑𝜺 + 𝕱𝟓(𝟏 − 𝓾𝟏)}, 

 
 𝕱𝟑′ (𝒕) = −{𝕬𝟑

∗ − 𝜶𝑺(𝕱𝟏 − 𝕱𝟐) − 𝕱𝟑(𝝁𝟎 + 𝜸 + 𝓾𝟐 − 𝟏) + 𝕱𝟒𝒑𝜸 + 𝕱𝟓(𝜸 − 𝒑𝜸 − 𝓾𝟐 + 𝟏)}, 
 
  𝕱𝟒′ (𝒕) = −{𝕬𝟒

∗ − 𝕱𝟏(𝒓 + 𝝈𝜶𝑺) + 𝕱𝟐𝝈𝜶𝑺 + 𝕱𝟒(𝒓 − 𝝁𝟎 − 𝝐 − 𝜹 + 𝓾𝟐 + 𝓾𝟑 − 𝟐) + 𝕱𝟓(𝜹 − 𝓾𝟐 + 𝓾𝟑)}, 
   
 𝕱𝟓′ (𝒕) = −{𝕬𝟒

∗ − 𝕱𝟓𝝁𝟎}, 
  
 𝓾𝟏(𝒕) = {

−𝕱𝟏𝑺−𝕱𝟐𝑬+𝕱𝟓(𝑬+𝑺)

𝕬𝟔
∗ }, 

  
 𝓾𝟐(𝒕) = {

−𝕱𝟑𝑰−𝕱𝟒𝑳𝒄+𝕱𝟓(𝑰+𝑳𝒄)

𝕬𝟕
∗ }, 

  
 𝓾𝟑(𝒕) = {

−𝕱𝟏𝑺−𝕱𝟒𝑳𝒄+𝕱𝟓(𝑺−𝑳𝒄)

𝕬𝟖
∗ }. 

 
Theorem 3: 
 
We can get from the control system (6), the three optimal controls, 
  𝓾∗(𝒕) = (𝓾𝟏∗(𝒕), 𝓾𝟐∗ (𝒕), 𝓾𝟑∗(𝒕)) ∈ 𝑼. 
 
 Then we get, 
 
 𝒎𝒊𝒏
(𝓾𝟏(𝒕),𝓾𝟐(𝒕),𝓾𝟑(𝒕))∈𝑼

𝑱(𝓾𝟏(𝒕), 𝓾𝟐(𝒕), 𝓾𝟑(𝒕)) = 𝑱(𝓾𝟏
∗(𝒕), 𝓾𝟐

∗(𝒕), 𝓾𝟑
∗ (𝒕)). 

 
Proof: 
 
For, proving this, we can use many several techniques shown in [38]. Now all states variables are positive. So, we 
can say that this process will reducing the problem, And the obligatory convexness of these objective functional 
is explained as 𝓾𝟏(𝒕), 𝓾𝟐(𝒕) and 𝓾𝟑(𝒕) is satisfied. The control variables set 𝓾𝟏, 𝓾𝟐, 𝓾𝟑 ∈ 𝑼 is convex and 
closed. 
 Furthermore, the integrand of the objective functional is given below 
 𝕬𝟏

∗𝑺(𝒕) + 𝕬𝟐
∗𝑬(𝒕) + 𝕬𝟑

∗ 𝑰(𝒕) + 𝕬𝟒
∗𝑳𝒄(𝒕), +𝕬𝟓

∗𝑹(𝒕) +
𝟏

𝟐
𝕬𝟔
∗𝓾𝟏

𝟐(𝒕) +
𝟏

𝟐
𝕬𝟕
∗𝓾𝟐

𝟐(𝒕) +
𝟏

𝟐
𝕬𝟖
∗𝓾𝟑

𝟐(𝒕)  
This objective functional is convex proceeding the control set 𝑼, which implies the proof. Now for our planned 
control problem, we excavated an optimal solution. We can also use the Pontryagin maximum principle [39] for 
finding solution to our control problem. By using this principle, we can get the Hamiltonian, 
 
 𝑯 = Ƚ(𝑺(𝒕), 𝑬(𝒕), 𝑰(𝒕), 𝑳𝒄(𝒕), 𝑹(𝒕), 𝓾𝟏(𝒕), 𝓾𝟐(𝒕), 𝓾𝟑(𝒕)) + 𝕱𝟏

𝒅𝑺(𝒕)

𝒅𝒕
+ 𝕱𝟐

𝒅𝑬(𝒕)

𝒅𝒕
+ 𝕱𝟑

𝒅𝑰(𝒕)

𝒅𝒕
+ 𝕱𝟒

𝒅𝑳𝒄(𝒕)

𝒅𝒕
+ 𝕱𝟓

𝒅𝑹(𝒕)

𝒅𝒕
. 

 
Now we get the nontrivial vector function 𝕱(𝒕) = (𝕱𝟏(𝒕), 𝕱𝟐(𝒕), … , 𝕱𝒏(𝒕)) that exists.  
For considering (𝔂∗, 𝓾∗) as an optimal solution we can get the solutions, 

 
𝒅𝔂

𝒅𝒕
=
𝝏𝑯(𝒕, 𝔂,𝓾, 𝕱)

𝝏𝓾
, 

𝟎 =
𝝏𝑯(𝒕, 𝔂,𝓾,𝕱)

𝝏𝓾
, 

 𝕱′(𝒕) = −
𝝏𝑯(𝒕, 𝔂,𝓾, 𝕱)

𝝏𝓾
. 

For the necessary conditions of the Hamiltonian, we can get the above results. 
 
5. Numerical Simulation 
In this section, we solve the proposed 𝐒𝐄𝐈𝑳𝒄𝑹 model numerically. The model contains ten parameters, where 
some of which are obtained from literature and some are assumed. Graphical results are displayed using the initial 
values 𝑺 = 𝟎. 𝟗𝟗, 𝑬 = 𝟎. 𝟎𝟏, 𝑰 = 𝟎, 𝑳𝒄 = 𝟎,𝑹 = 𝟎  and all the parameters showed in Table 1. The simulations are 
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performed with time 160 days. Dynamics of SEI𝐿𝑐𝑅 model we can get firstly in Fig. 3. Then the optimal control 
model is simulated. For the simulations of the optimal control model (3), we first solve the optimality systems 
when no treatment is employed. So that we take the control variable 𝒖𝟏 ≠ 𝟎(i.e treatment control,𝒖𝟐 = 𝟎). The 
simulation results in the absence of treatment are shown in Figs.4-10. Also, we run the program of the optimal 
control model (3) when no vaccination strategy is employed. Hence, we take the control variable 𝒖𝟐 ≠ 𝟎 (i.e 
vaccination control, 𝒖𝟏 = 𝟎) and the simulations are presented in Figs.7-10. 
Table 1. Parameter specifications of model (3). 
 

Descriptions Parameters Values Ref. 

Transmission rate 𝜶 0.4 Assumed 

Rate of exposed to infected 𝜷 0.2 Assumed 

Recovery rate of infected 𝜸 0.06 Assumed 

Rate of infection to liver cirrhosis 𝝁 0.03 Assumed 
Recovery rate of liver cirrhosis latent 𝜹 0.02 Assumed 

Per heads birth rate 𝒓 0.0121 [26] 

Per heads death rate 𝝁𝟎 0.95 [26] 
the infectiousness of haulers qualified to 
critical infection 

𝝈 0.00693 [26] 

Disease infected death rate 𝜺 0.02 [26] 
 

Rate of moving from convalesce to liver 
cirrhosis transmits 

𝒑 0.25 [26] 

Vaccination rate control 𝒖𝟏 0.1 Assumed 
Treatment rate control 𝒖𝟐 0.1 Assumed 

The dynamics of the 𝐒𝐄𝐈𝑳𝒄𝑹 model is presented in Fig. 3. This figure shows the behavior of susceptible, exposed, 
infected populations of HBV, liver cirrhosis populations and recovered individuals. This indicates the individuals 
of all the compartment will tend to zero except the susceptible class. This figure also showed that the susceptible 
class decreases with time and about 45 days it stops decreasing as the recovered individuals become re susceptible 
due to loss of immunity and join the class S. It is also shown that the exposed population with time. Similar results 
also observe in the case of infected individuals.  

 

 
 

Fig.3. Dynamics of 𝐒𝐄𝐈𝑳𝒄𝑹 model. 
 
Now we can get the (Fig. 3-4) for the dynamics of susceptible, exposed, Infective, liver cirrhosis latent and 
recovered individuals when only vaccination control (𝒖𝟏) is employed as optimal control by using optimal control 
theory. 
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Fig. 4. Dynamics of 𝐒𝐄𝐈𝑳𝒄𝑹  model when only vaccination control (𝒖𝟏) is employed as optimal control. 

In Fig. 4 this model provides insights into the effects of vaccination control (𝒖𝟏) on the spread and dynamics of 
a disease within the populations of susceptible, exposed, infected, liver cirrhosis latent and recovered. This model 
showing us that the susceptible population reduces and the recovered population recovered with vaccination 
control by using optimal control theory. Now when we take 𝒖𝟏 ≠ 𝟎(i.e treatment control,𝒖𝟐 = 𝟎 ). Then we get 
the Fig. 8 dynamics of susceptible and recovered populations in the presence of vaccination, providing insight 
into how influences the population fractions over time. 

 

 

Fig. 5. Dynamics of exposed individuals when only vaccination control (𝒖𝟏) is employed as optimal control. 

In Fig. 5 provides a more comprehensive understanding of the impact of vaccination control (i.e 𝒖𝟏 ≠
𝟎 and treatment control, 𝒖𝟐 = 𝟎) on exposed individuals within the population. It includes the effect of 
vaccination on reducing the exposed population and increasing the recovered population. 

This Fig. 10 provides a comprehensive view of how vaccination of infected individuals affects the spread of 
disease and the dynamics of different population compartments. 
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Fig. 6. Dynamics of infected individuals when only vaccination control (𝒖𝟏) is employed as optimal control. 

This Fig. 6 provides a clear representation of the progression and control of liver cirrhosis within a population, 
including the impact of vaccination on thepopulation dynamics. vaccination control (i.e 𝒖𝟏 ≠
𝟎 and treatment control, 𝒖𝟐 = 𝟎) gives the liver cirrohosis control with time. The plot shows the imact of 
vaccination on individuals with cirrhosis.This Fig. 7 simplifies the dynamics but effectively illustrates the balance 
between recovery and vaccination in the context of a recovered population . This plot demonstrate the effects of 
constant new recoveries and reduction due to vaccination.Similarly, we can get the Fig. 8-9 for the dynamics of 
susceptible, exposed, Infective, liver cirrhosis latent and recovered individuals when only treatment control (𝒖𝟐) 
is employed as optimal control by using optimal control theory. Now when we take treatment control 𝒖𝟐 ≠ 𝟎(i.e 
vaccination control,𝒖𝟏 = 𝟎 ), then we can get the figures below, and this figures discuss how the disease spreads 
and envolves in a population considering the treatment effect on infected individuals. All the plot below discuss 
visual insightsinto the dynamics of each population compartment over time. 

 

 

Fig. 7. Dynamics of 𝐒𝐄𝐈𝑳𝒄𝑹  model when only treatment control (𝒖𝟐) is employed as optimal control. 

. 

364 



Turkish Journal of Computer and Mathematics Education (TURCOMAT)  ISSN: 3048-4855 

365 
 

 
                          Vol. 15No. 3(2024):350-368 

 

 

 

Fig. 8. Dynamics of recovered individuals when only treatment control (𝒖𝟐) is employed as optimal control. 

Again, numerical simulations of the optimal model (2) are performed considering both the two controls: 
vaccination control (i.e.  𝒖𝟏 ), and treatment control (i.e. 𝒖𝟐 ) and also the results are shown in Fig. 8-9. 
Considering the vaccination and treatment controls at a great extent,(𝒊. 𝒆. 𝒖𝟏 = 𝟎. 𝟏, 𝒖𝟐 = 𝟎. 𝟏). 
 

 
 
Fig. 9. Dynamics of  𝐒𝐄𝐈𝑳𝒄𝑹 model when both vaccination control (𝒖𝟏) and treatment control (𝒖𝟐) is employed 

as optimal control. 

 
 
Fig. 10. Dynamics of  susceptible individuals when both vaccination control (𝒖𝟏) and treatment control (𝒖𝟐) is 

employed as optimal control. 
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Fig. 11. Dynamics of  recovered individuals when both vaccination control (𝒖𝟏) and treatment control (𝒖𝟐) is 

employed as optimal control. 
 
In Figs. 7-11 represent the effects of vaccination as a control measure on the susceptible, exposed, infected, liver 
cirrhotic and recovered individuals for 100 days timeline from 160 days observation. It has been noticed that the 
control measure slightly influences the susceptible individuals, but significantly controls the exposed, infected, 
liver cirrhotic and recovered individuals. As expected, both the infected and liver cirrhotic individuals have 
increased in the absence of vaccination than the individuals with having the control measure. Here, both the 
infected and liver cirrhotic individuals have decreased noticeably for the presence of treatment control than the 
individuals without having the control measure. It has been observed that the control measure slightly influences 
the susceptible population, but significantly controls the exposed, infected, liver cirrhotic and recovered 
individuals. 
 
5. Conclusions 
 
This paper presents an optimal control model incorporating two control variables, developed using Pontryagin's 
maximum principle. Numerical simulations were conducted to validate the analytical findings. The results 
demonstrate that implementing optimal vaccination and treatment strategies significantly reduces the number of 
exposed, infected, and liver cirrhotic individuals while maximizing the number of recovered individuals and 
minimizing the costs associated with these interventions. Given the availability of vaccination strategies for 
hepatitis B a condition that often progresses to chronic liver cirrhosis—the simulations confirm that an optimal 
combination of vaccination and treatment is highly effective in controlling disease progression. To curb infections, 
it is crucial to initiate hepatitis B vaccination immediately after birth. Liver cirrhosis, a leading global cause of 
morbidity and mortality, impacts millions of individuals regardless of age, sex, region, or race. Addressing this 
life-threatening disease is an urgent global priority. 
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