Research Article

Results On Generalized Regular And Strongly Regular Near-Rings

SowjanyaMarisetti^{1*}, Gangadhara rao Ankata², Radharani Tammileti³

¹Dept. of Mathematics, Eluru College of Engineering & Technology, Eluru, India.
²Dept. of Mathematics, VSR & NVR College, Tenali, India.
³Dept. of Mathematics, Lakireddy Balireddy College of Engineering, Mylavaram, India.
<u>sowjanyachallari@gmail.com</u>¹

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract: Some results on r-regular (r-RN) and also in s-weakly regular (s-WRN)near-rings were established in this article. It is proved that for a near-ring $\mathcal{H} \in \eta_0$ is s-WRN, then \mathcal{H} is simple iff \mathcal{H} is integral. And also proved that for an r-RN \mathcal{H} with unity and satisfies IFP, then \mathcal{H} has the strong IFP iff \mathcal{H} is a PSN.

Keywords: s-weakly regular, r-regular, strong IFP, IFP.

1. INTRODUCTION

Near-rings, an advanced concept, was highly influenced by the Ring-theory. Von-Neumann regular rings give vital information in the structure theory of rings which was first named by VON-NEUMANN. "Generalization of rings "which are familiar with "Near-rings" plays a major part in the development of Mathematics. Several mathematicians studied and developed various concepts in this area, namely, DheenaP [3], B Elavarasan [4] developed the regularity concept by introducing near-rings *s*-weakly regular and strong IFP. This regularity concept was researched by Mason [7], [8], ReddyYV, and MurthyCVLN [10], Groenewald, and Argac [2].Recently, Wendt Gerhard [13], T Manikantan, and S Ram Kumar [6] researched and established several results.

2. **PRELIMINARIES**

Definition 2.1.1. [9] Let (H, +, .), a non-empty set is designated as R-NR (Right Near-ring) if

(i) *H* holds the "Group" axioms under addition

(ii) *H*holds the "Semigroup" axioms under multiplication

(iii) $(l+t) \cdot p = l \cdot p + t \cdot p$ for all, l, t, $p \in \mathcal{H}(\text{Right distributive law})$

Moreover, we assume that an R-NR is $(\mathcal{H}, +, .)$ and we designate it as \mathcal{H} except and otherwise mentioned. We write 'lp' to denote 'l.p' for any two elements 'l' and 'h' in \mathcal{H} . For basic definitions and other related theories, we refer the reader to [9]. We recall the following.

Definition 2.1.2. A near-ring \mathcal{H} is demonstrated as "ZSN (Zero-Symmetric Near-ring)" provided go = 0 for all g is in \mathcal{H} .e., $\mathcal{H} = \mathcal{H}_0$.

Example 2.1.3. Let $(\mathcal{H}, +)$ where $\mathcal{H} = \{l, t, p, s\}$ be the Klein's four group. Then $(\mathcal{H}, +, .)$ represents an example for ZSN and expressed it as $\mathcal{H} \in \eta_0$. [9, p408, (13) (0, 7, 13, 9)]

Table 1 Addition table								
+	l	t	р	S				
l	l	t	р	S				
t	t	l	S	р				
р	р	S	l	t				
S	S	р	t	l				

 Table 2 Product table

•	l	t	р	S
l	l	l	l	l
t	l	t	р	s
р	l	l	l	l
S	l	t	р	s

Definition 2.1.4. A subgroup \wp of \mathscr{H} is known as \mathscr{H} -subgroup, if $\mathscr{H}\wp \subseteq \wp$. **Definition 2.1.5.** An element '*l*' of \mathscr{H} is known as *the left identity* of \mathscr{H} if lx = x for all $x \in \mathscr{H}$. **Definition 2.1.6.** An element 'p' of \mathscr{H} is known as *the right identity* of \mathscr{H} if yp = y for all $y \in \mathscr{H}$.

Definition 2.1.7. An element 't' of \mathcal{H} is known as *a two-sided identity or an identity element* of \mathcal{H} if 't' holds both left and right identities in \mathcal{H} .

Definition 2.1.8. An element 'q' of \mathcal{H} is designated as *left invertible* of \mathcal{H} , if there exists an element $b \in \mathcal{H}$ such that bq = 1. The element 'b' is referred to as the *left inverse* of q.

Definition 2.1.9. An element 's' of \mathcal{H} is designated as *right invertible* of \mathcal{H} , if there exists an element $c \in \mathcal{H}$ such that sc = 1. The element 'c' is referred to as the *left inverse* of *s*.

Definition 2.1.10. An element 'a' of \mathcal{H} is said to be *invertible(unity)* of \mathcal{H} , if 'a' satisfies both the definitions 2.1.8 and 2.1.9.

Notation 2.1.11. If $\mathscr{B}, \mathfrak{C} \subseteq \mathscr{H}$ then we can define $\mathscr{B} \mathfrak{C} = \{ bc \mid b \in \mathscr{B}, c \in \mathscr{H} \}$

Further, we fix the word *HSG* to refer to "Normal subgroup".

Definition 2.1.12. Suppose that \mathfrak{S} be a \mathscr{H} SG of $(\mathscr{H}, +)$ and is termed as the "Left ideal" of \mathscr{H} , provided that $\forall l, p \in \mathscr{H}, \forall s \in \mathfrak{S}, l(p + s) - lp \in \mathfrak{S}$.

Definition 2.1.13. Suppose that \mathfrak{S} be a $\mathscr{H}SG$ of $(\mathscr{H}, +)$ termed as the "Right ideal" of \mathscr{H} provided that, $\mathfrak{S} \mathscr{H} \subseteq \mathfrak{S}$.

Definition 2.1.14. Suppose that \mathfrak{S} be a $\mathscr{H}SG$ of $(\mathscr{H}, +)$ is denoted as an ideal (two-sided ideal) provided that if it follows the conditions both left (right) of \mathscr{H} .

Theorem 2.1.15. For a near-ring $\mathcal{H} \in \eta_0$, every ideal is a \mathcal{H} -subgroup of \mathcal{H} .

Definition 2.1.16. Consider a family of left ideals which contains a non-empty subset \mathscr{F} in \mathscr{H} . Then the smallest left ideal which is obtained by the intersection of all left ideals containing \mathscr{F} is termed as "left ideal generated by \mathscr{F} "

Definition 2.1.17. The term" Principal ideal" is referred to as an ideal that is generated by a single element say 'j' denoted by $\langle j \rangle$.

If \mathfrak{J} be a left ideal and is generated by a single element 'j', then \mathfrak{J} is symbolized by $\langle j |$.

Definition 2.1.18. An element 'k' is termed as an idempotent of \mathscr{H} if $k^2 = k$, for $k \in \mathscr{H}$.

Definition 2.1.19. A zero divisor of \mathcal{H} is a component $f \neq 0$ of \mathcal{H} which satisfies ft = 0 for some nonzero 't' in \mathcal{H} .

Definition 2.1.20. Let *H* is termed to an integral near-ring if it has no non-zero divisors.

Definition 2.1.21. Let \mathscr{H} is termed to a **simple** near-ring if \mathscr{H} is not having non-trivial ideals.

Definition 2.1.22. Let Δ be a subset of a \mathcal{H} . Then the set $(\mathbf{0}: \Delta) = \{h \in N \mid hx = \mathbf{0}, for all x \in \Delta\}$ is called the annihilator of Δ .

Note 2.1.23. If $\Delta = \{ \delta \}$, then $(0: \Delta)$ is denoted by $(0: \delta)$.

Theorem 2.1.24. For any $\delta \in \mathcal{H}$, (0: δ) is a left ideal of \mathcal{H} .

Definition 2.1.25. Let \mathscr{H} is referred to as" *Insertion of Factors Property (in short, IFP)*", assuming that $jb=0 \Rightarrow jpb=0, \forall j, b, p \in \mathscr{H}$.

Theorem 2.1.26. The following conditions are equivalent:

(i) \mathscr{H} has the IFP - property.

(ii) (0: h) is an ideal of $\mathcal{H}, \forall h \in \mathcal{H}.$

(iii) (0: \mathfrak{H}) is an ideal of \mathscr{H} , for all subsets \mathfrak{H} of \mathscr{H} .

Definition 2.1.27. For each element $d \in \mathcal{H}$, if $d^2 = 0 \Rightarrow d = 0$, then \mathcal{H} is referred as *reduced* near-ring.

Theorem 2.1.28. For each element k, l in reduced near-ring, $\mathcal{H} \in \eta_0$, then klh = khl where h² = h, h is in \mathcal{H} Definition 2.1.29. For each element $\in \mathcal{H}$, if $\mathcal{H} \ l = \mathcal{H} \ l^2$ then \mathcal{H} is termed as" *left bi potent*".

Definition 2.1.30. For each element $c \in \mathcal{H}$, there is an element 1 in \mathcal{H} such that c = clc, then \mathcal{H} is called as *"regular near-ring (RN)*".

Example 2.1.31. Let $\mathscr{H} = \{0, a, b, c\}$ be Klein's four group under addition and multiplication tables 3 & 4 as follows.

Table 3 Addition table

+	0	а	b	С
0	0	а	b	С
а	а	0	С	b
b	b	С	0	а
С	С	b	а	0

 Table 4 Product table

	0	а	b	С
0	0	0	0	0

а	а	а	а	а
b	0	а	b	С
С	а	0	С	b

Then $(\mathcal{H}, +, .)$ is an example for RN.

Definition 2.1.32. For each $r \in \mathcal{H}$, there is component 1 in \mathcal{H} such that $r = lr^2$, then \mathcal{H} is demonstrated as" *left strongly regular near-ring (left SRN)*".

Note2.1.33. [9, p288]. Let *H* has the strong IFP provided every homomorphic image of *H* has IFP.

Note 2.1.34 [10]. \mathcal{H} has strong IFP if and only if for every ideal \mathcal{L} in \mathcal{H} and $ft \in \mathcal{L}$ implies $fpt \in \mathcal{L}$ for every $f, p, t \in \mathcal{H}$.

2.2. r-REGULAR NEAR-RINGS

Definition 2.2.1. [11][12] For each element $p \in \mathcal{H}$, there is an element 'h' such that $p = ph, h \in \langle p |$, where h is an idempotent in \mathcal{H} then \mathcal{H} is demonstrated as" r -Regular Near-ring(r-RN)".

Example 2.2.2. Any RN is an r - RN but the converse need not be true.

(i) Let a near-ring \mathscr{H} defined on Z₆ = {0, 1, 2, 3, 4, 5} with operations '+'and '.' given below Tables 5 & 6 as follows.

 Table 5 Addition table

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

 Table 6 Product table

•	0	1	2	3	4	5
0	0	0	0	0	0	0
1	3	5	5	3	1	1
2	0	4	4	0	2	2
3	3	3	3	3	3	3
4	0	2	2	0	4	4
5	3	1	1	3	5	5

This near-ring is RN and also r - RN.

(ii) Let a near-ring \mathscr{H} defined on $Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ with addition is modulo 8 and product table is given below Tables 7.

Table 7 Product table

•	0	7	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	3	3	0	1	1	3
2	0	2	6	6	0	2	2	6
3	0	3	1	1	0	3	3	1
4	0	4	4	4	0	4	4	4
5	0	5	7	7	0	5	5	7
6	0	6	2	2	0	6	6	2
7	0	7	5	5	0	7	7	5

The ideals of this near-ring are $\{0\}$ and \mathcal{H} itself. This near-ring is r-RN but not RN (For all x, $4 \neq 4.x.4$). Theorem 2.2.3. [11] If \mathscr{H} is r-RN with unity and has IFP then q = ql implies q = lq where 'l' is idempotent. Theorem 2.2.4.[11] If \mathscr{H} is r - regular near-ring with 1 and has IFP then \mathscr{H} is reduced.

Theorem 2.2.5.If $\mathscr{H} \in \eta_0$ is r - regular near-ring with 1 and has IFP then \mathscr{H} has strong IFP.

Proof: Suppose $\mathcal{H} \in \eta_0$, r-RN with 1and has IFP. Let $\psi: N \to N^1$ be an epimorphism of r-regular near-ring onto near-ring N^1 . By the definition of r-regular near-ring, l = ld, $d^2 = d$, $d \in < l$ Now, l = ld, $d^2 = d$, $d \in \langle l | \subset \langle l \rangle$ so that $d \in \langle l \rangle$. Consider $\psi(l) = \psi(ld) = \psi(l)\psi(d)$, $\psi(d) = \psi(dd) = \psi(d)\psi(d)$ $\psi(d) \in \psi < l > \subseteq \langle \psi < l \rangle$ which implies $\psi(d) \in \langle \psi < l \rangle$. Thus, we can conclude that the homomorphic image of r-RN is r-RN. By the supposition, and by using the theorem 2.2.4, *H* is reduced. Let qb = 0 then $(bq)^2 = b(qb)q = boq = 0$ Since \mathcal{H} is reduced, we get that bq = 0So, we have that, if qb = 0 then bq = 0----(1) Now, if $\psi(q)\psi(b) = 0$ implies $\psi(qb) = 0$ which implies $\psi(0) = 0$ (using (1)) Then $\psi(b)\psi(q) = \psi(bq) = 0$ Therefore, if $\psi(q)\psi(b) = 0$ then we get $\psi(b)\psi(q) = 0$ ---(2) Consider, $\psi(q)\psi(b) = 0$ Take $\psi(nb)\psi(q) = \psi(nbq) = \psi(no) = \psi(0) = 0$ Using (2), we get that $\psi(q)\psi(nb) = 0$ implies $\psi(qnb) = 0$ which implies $\psi(q)\psi(n)\psi(b) = 0$ for all n in \mathcal{H} . Thus, the homomorphic image of r-RN satisfies IFP. Hence, *H* has a strong IFP.

Definition 2.2.6. A subset $\mathscr{L} \neq \phi$ of \mathscr{H} is called a 'Pseudo Symmetric Subset '(briefly, PSS) of \mathscr{H} if $\forall p, l \in \mathscr{H}$, $pl \in \mathscr{L}$ implies $prl \in \mathscr{L} \forall r \in \mathscr{H}$.

Definition 2.2.7. Let $\mathscr{L} \neq \phi$ of \mathscr{H} is a subset which is indicated as a 'Pseudo Symmetric Ideal' (briefly, PSI) of \mathscr{H} if \mathscr{L} is both a pseudo symmetric subset and an ideal of \mathscr{H} .

Definition 2.2.8. A 'Pseudo Symmetric Near-ring' (briefly, PSN) is a near-ring \mathscr{H} in which each ideal of \mathscr{H} is pseudo symmetric.

Theorem 2.2.9. For an r-RN \mathscr{H} with IFP and holds unity 1 then \mathscr{H} has the strong IFP iff \mathscr{H} is a PSN. Proof. By theorem 2.2.5, \mathscr{H} has a strong IFP.

 $\Leftrightarrow By Proposition 9.2 \text{ of } [9], \text{ for every ideal } \mathscr{L} \text{ of } \mathscr{H}, \forall p, k \in \mathscr{H}, \text{ and } pk \in \mathscr{L} \text{ implies } prk \in \mathscr{L} \forall r \in \mathscr{H} \\ \Leftrightarrow Every \text{ ideal of } \mathscr{H} \text{ is a PSI of } \mathscr{H}$

 $\Leftrightarrow \mathscr{H}$ is a PSN.

2.3. s- WEAKLY REGULAR NEAR-RINGS

The notion of the s-weakly regular ring was first originated by V. Gupta [5] in 1984. Later, Dheena [3] introduced the concept of s-weakly regular near-rings. Recently, Abdullah M. Abdul-Jabbar [1] researched and developed some characteristics in s-weakly regular rings, by studying the above theories, we developed some results on s-weakly regular near-rings.

Definition 2.3.1. Let \mathscr{H} be designated as s - weakly regular (s-WRN) if for each $a \in \mathscr{H}$, a = xa, for some $x \in \langle a^2 \rangle$.

Example 2.3.2. Assume \mathcal{H} as a near-ring in Klein four group {0, a, b, c} with the operations '+' and '.' shown in table 8 & 9 mentioned below:

+	0	а	b	С		
0	0	а	b	С		
a	а	0	с	b		
b	b	с	0	а		
С	с	b	а	0		

Table 8 Addition table

Table 9 Product table

•	0	а	b	с
0	0	0	0	0

а	0	b	с	а
b	0	С	а	b
с	0	а	b	С

The ideals and \mathscr{H} -subgroups of \mathscr{H} are $\{0\}$ and \mathscr{H} itself. Then $(\mathscr{H}, +, .)$ is an example for s-WRN.

Theorem 2.3.3: If a near-ring $\mathscr{H} \in \eta_0$ is an s-WRN, then \mathscr{H} is reduced near-ring.

Proof: Suppose $q \in \mathscr{H}$ such that $q^2 = 0$.

Since \mathscr{H} is *s* - weakly regular near-ring, then q = xq for some $x \in \langle q^2 \rangle = 0$.

So that q = 0.

Thus $q^2 = 0$ implies q = 0 for every q in \mathcal{H} .

Hence \mathscr{H} is reduced.

THEOREM2.3.4: If a near-ring $\mathscr{H} \in \eta_0$ is s-WRN, then \mathscr{H} has IFP.

Proof: Suppose qb = 0, $(bq)^2 = bqbq = b(qb)q = b0q = b0 = 0$. By theorem 2.3.3, \mathscr{H} is reduced so that bq = 0. There fore if qb = 0 then bq = 0. For all $n \in \mathscr{H}$, $(nb)q = n(bq) = n0 = 0 \implies qnb = q(nb) = 0$. Therefore, \mathscr{H} has IFP.

THEOREM 2.3.5: For a near-ring $\mathscr{H} \in \eta_0$ is s-WRN, \mathscr{H} is simple iff \mathscr{H} is integral.

Proof: Suppose *H* is simple. Let $q, b \in \mathscr{H}$ and qb = 0 and $q \neq 0 \Longrightarrow q \in (0; b)$. By using theorems 2.3.3 and 2.3.4, we have \mathcal{H} is reduced and has IFP. Therefore (0:b) is a two-sided ideal. Since by our supposition, \mathcal{H} is simple, $(0: b) = \mathcal{H}$. $b \in \mathscr{H} = (0; b) \Longrightarrow b^2 = 0 \Longrightarrow b = 0.$ Therefore, \mathcal{H} is integral. Conversely, suppose that \mathcal{H} is integral. Let $0 \neq I \triangleleft \mathcal{H}, q \neq 0, q \in I$. $q = xq, x \in \langle q^2 \rangle \subset \langle q \rangle \subset I.$ $(1 - x) q = 0 \implies 1 - x = 0 \implies 1 = x \in I.$ Therefore $\mathscr{H} = I$. Therefore, *H* is simple. DEFINITION 2.3.6.[2] Let H is denoted as left quasi duo near-ring (in short, LQD) of H if every maximal left ideal(M-L-I) of \mathscr{H} is a two-sided ideal. THEOREM 2.3.7. If a near-ring \mathcal{H} is a LQD having left unity, then \mathcal{H} is s-WRN if and only if $\mathcal{H} = \langle q^2 \rangle$ + (0: q) for every $q \in \mathcal{H}$. Proof: Suppose *H* is s-WRN. Then q = xq, $x \in \langle q^2 \rangle \Longrightarrow q \in \langle q^2 \rangle q$. $\mathscr{H}q \subseteq \mathscr{H} < q^2 > q \subseteq < q^2 > q$ and $< q^2 > q \subseteq < q > q \subseteq \mathscr{H}q$. Therefore, $\mathscr{H}q = \langle q^2 \rangle q$. Assume that $\mathscr{H} \neq \langle q^2 \rangle + (0; q)$. Then there is a M-L-I \mathscr{B} such that $\langle q^2 \rangle + (0; q) \subseteq \mathscr{B}$. By the definition of LQD, \mathcal{B} is a two-sided ideal. Since $q^2 \in \mathcal{B}, < q^2 > q \subseteq \mathcal{B} q \subseteq \mathcal{H} q = < q^2 > q$ There exists $f \in \langle q^2 \rangle$ such that (1 - f) q = 0. \Rightarrow (1 - f) \in (0: q). $1 = f + (1 - f) \in \mathcal{B}$. It is a contradiction. Therefore $\mathscr{H} = \langle q^2 \rangle + (0; q)$. Conversely suppose that $\mathcal{H} = \langle q^2 \rangle + (0; q)$. Now, $l \in \mathscr{H} = \langle q^2 \rangle + (0; q) \Longrightarrow l = t + l, t \in \langle q^2 \rangle, l \in (0; q) \Longrightarrow lq = 0.$ $q = 1q = (t + l) q = tq + lq \Longrightarrow q = tq, t \in \langle q^2 \rangle.$ Therefore, *H* is s-WRN. **Definition 2.3.8.** Let \mathscr{H} is designated to *strongly reduced* if $l \in \mathscr{H}, l^2 \in \mathscr{H}_c$ implies $l \in \mathscr{H}_c$. Note 2.3.9. A near-ring \mathcal{H} is strongly reduced near-ring if and only if for each element $a \in \mathcal{H}$ and any positive integer $n, a^n \in \mathscr{H}_c$ implies $a \in \mathscr{H}_c$

Theorem 2.3.10. For a near-ring $\mathscr{H} \in \eta_0$ be an s-WRN, then \mathscr{H} is strongly reduced near-ring.

Proof: By definition of s-WRN, l = xl, $x \in < l^2 >$. If $l^2 \in \mathscr{H}_c$ implies $< l^2 > \subseteq \mathscr{H}_c$.
$$\begin{split} l &= xl, \ \mathbf{x} \in < l^2 > \subseteq \mathscr{H}_{c}.\\ l &\in \mathscr{H}_{c} \mathscr{H} \subseteq \mathscr{H}_{c} \Longrightarrow l \in \mathscr{H}_{c}.\\ \text{Therefore, } \mathscr{H} \text{ is strongly reduced near-ring.} \end{split}$$

3. CONCLUSIONS

In this article, we developed some characteristics on r-RN and in generalized strongly regular near-rings

ACKNOWLEDGMENTS

The author wishes a special thanks to the honorable referees for their referring to the manuscript and valuable suggestions to improve this publication.

REFERENCES

- Abdul-Jabbar AM. (2015) A New Generalization of s-Weakly Regular Rings. Gen. Math. Notes, 27:92-106.
- 2. Argac N, GroenewaldNJ.(2005) Weakly and Strongly Regular Near-rings. Algebra colloq. ,12:121-130.
- 3. Dheena P. (1989) A generalization of strongly regular near-rings. Indian J. Pure Appl. Math., 20:58-63.
- 4. Dheena P, Elavarasan B. (2013)On strong ifp near-rings. Int. J. Pure Appl. Math., 87:809-815.
- 5. Gupta V. (1984) A generalization of strongly regular rings. Acta. Math. Hung., 43:57-61.
- 6. Manikantan T, RamkumarS.(2020) Pseudo Symmetric Ideals and Pseudo Symmetric Near-rings. Int. J. Math. Comput. Sci.,15:597-609.
- 7. MasonG. (1980) Strongly regular near-rings. Proc. Edinb. Math. Soc., 23:27-35.
- 8. MasonG. (1998)A note on strong forms of regularity for near-rings. Indian J. Math., 40:149-153.
- 9. Pilz G. (1983) Near-rings, North-Holland, Amsterdam.
- 10. ReddyYV, MurtyCVLN.(1984) On strongly regular near- rings. Proc. Edinb. Math. Soc., 27:61-64.
- 11. Sowjanya M, Gangadhara Rao A, Anjaneyulu A, Radha Rani T. (2018) r-Regular Near-Rings. International Journal of Engineering Research and Application., 8:11-19.
- 12. Sowjanya M, Gangadhara Rao A, Radha Rani T,Padmaja V.(2020) Results on r-Regular Near-rings. Int. J. Math. Comput. Sci., 15:1327-1336.
- 13. WendtG. (2019) Minimal Ideals and Primitivity in Near-rings. Taiwanese J. Math., 23:799-820.