
Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

 CC BY 4.0 Deed Attribution 4.0 International
This article is distributed under the terms of the Creative Commons CC BY 4.0 Deed Attribution
4.0 International attribution which permits copy, redistribute, remix, transform, and build upon
the material in any medium or format for any purpose, even commercially without further
permission provided the original work is attributed as specified on the Ninety Nine Publication
and Open Access pages https://turcomat.org

Angular Ivy: Revolutionizing Rendering in Angular Applications
Nikhil Kodali

Software Engineer, Tennessee Valley Authority, Chattanooga, TN

Abstract

This paper examines the Angular introduced Ivy, a groundbreaking rendering engine that
marked a significant milestone in the framework's evolution. Ivy enhances application
performance and reduces bundle sizes by enabling more efficient tree-shaking and code
generation. Its architecture facilitates faster compilation and improves debugging capabilities,
offering clearer error messages and more straightforward code inspection. By introducing a
new approach to handling templates and components, Ivy makes them more flexible and
easier to understand. Additionally, it supports features like local and global components and
improved dynamic component loading. This paper explores the innovations Ivy brings to
Angular development, its impact on performance, and how it enhances the developer
experience.

Keywords: Angular Ivy, Rendering Engine, Tree-Shaking, Code Optimization, Component
Compilation.

1. Introduction

Angular has been a prominent framework for building dynamic web applications since its
inception. With the web development landscape continually evolving, performance
optimization and developer experience have become paramount. In response to these
demands, the Angular team introduced Ivy, a next-generation rendering engine designed to
address the limitations of its predecessor, View Engine.

Angular introduced Ivy, a next-generation rendering engine that revolutionized the
development of web applications by enhancing performance, optimizing bundle sizes, and
improving the overall developer experience. Since its inception, Angular has been a
prominent framework for building dynamic single-page applications (SPAs), offering
powerful tools for component-based development, dependency injection, and reactive
programming. However, as the web development landscape evolved, performance
optimization, smaller bundle sizes, and an improved developer experience became paramount
requirements for modern applications. To address these needs, Angular's core team developed
Ivy, a rendering engine designed to overcome the limitations of its predecessor, the View
Engine, and usher in a new era of efficiency and flexibility in Angular development.

Vol.10 No.2(2019),2009-2017
DOI: https://doi.org/10.61841/turcomat.v10i2.14925

2009

https://creativecommons.org/licenses/by/4.0/
https://turcomat.org/

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

Before Ivy, Angular used the View Engine for rendering components and templates. While
the View Engine was functional, it had several limitations that affected the performance and
scalability of applications. One of the main issues was the inability to effectively eliminate
unused code, also known as tree-shaking. Inefficient tree-shaking led to larger bundle sizes,
which in turn affected the load time and performance of applications. Additionally, the
compilation process with the View Engine was complex and time-consuming, often requiring
developers to perform multiple steps to compile templates and components. Debugging was
also a challenge, as the error messages generated by the View Engine were often cryptic and
difficult to interpret, making the debugging process cumbersome.

The introduction of Ivy aimed to address these challenges by fundamentally rethinking the
rendering architecture of Angular. One of Ivy's core innovations is its efficient tree-shaking
capabilities. Tree-shaking is the process of eliminating unused code from the final JavaScript
bundle, which helps reduce the size of the application and improve load times. Ivy generates
code that is more tree-shakable, ensuring that only the code used in the application is
included in the final bundle. This results in significantly smaller bundle sizes, making
applications faster and more efficient. Additionally, Ivy uses the "locality principle" for code
generation, which means that each component is compiled independently of its dependencies.
This approach simplifies the compilation process, reduces interdependencies between
components, and makes the overall build process more efficient.

Another key feature of Ivy is its faster and more incremental compilation process. Unlike the
View Engine, which required a two-phase compilation process involving both template and
application compilation, Ivy compiles each component individually, reducing duplication and
speeding up the build process. This incremental compilation approach is particularly
beneficial during the development phase, as it allows developers to quickly see the effects of
their changes without needing to recompile the entire application. Ivy also improves Ahead-
of-Time (AOT) compilation, making it viable for development builds and providing faster
load times and earlier error detection.

Ivy also brings significant improvements to the debugging process, which enhances the
overall developer experience. One of the most notable changes is the introduction of more
descriptive error messages, which help developers quickly identify and fix issues in their
code. Additionally, Ivy provides better mapping between templates and generated code,
allowing developers to easily inspect and debug the relationships between templates and their
corresponding components. This improved debugging capability not only makes it easier for
developers to troubleshoot issues but also reduces the time and effort required to maintain
and update applications.

The new approach to handling templates and components is another major advancement
introduced by Ivy. Ivy simplifies the syntax for writing components, making it more
straightforward and easier to understand. This simplification not only makes it easier for new
developers to learn Angular but also allows experienced developers to write cleaner and more
maintainable code. Ivy also introduces improved support for dynamic component loading,
allowing developers to load components at runtime more efficiently. This feature is
particularly useful for applications that require dynamic content, such as dashboards, where

Vol.10 No.2(2019),2009-2017
DOI: https://doi.org/10.61841/turcomat.v10i2.14925

2010

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

components need to be loaded based on user interactions or data changes. Additionally, Ivy
supports local components, which can be declared and used within the same file without the
need for NgModules, further simplifying component management and reducing boilerplate
code.

The impact of Ivy on Angular development has been profound, particularly in terms of
performance and developer productivity. One of the most significant benefits of Ivy is the
reduction in bundle sizes, which directly translates to faster load times and improved
application performance. In real-world applications, Ivy has been reported to reduce bundle
sizes by up to 40%, resulting in faster startup times and a better user experience. The
optimized rendering pipeline and more efficient change detection algorithm used by Ivy also
contribute to improved runtime performance, reducing the memory footprint of applications
and ensuring smoother interactions.

Another important aspect of Ivy is its compatibility with existing Angular applications. Ivy
was designed to be backward compatible, allowing developers to migrate to the new
rendering engine without making significant changes to their existing codebases. This ease of
migration has been facilitated by tools and guides provided by the Angular team, which help
developers transition to Ivy while maintaining the stability and functionality of their
applications. The backward compatibility of Ivy has been crucial in ensuring widespread
adoption within the Angular community, as it allows developers to take advantage of the new
features and performance improvements without the risk of breaking their existing projects.

The introduction of Ivy has also enhanced the development workflow by providing faster
builds and improved tooling support. The incremental compilation process reduces build
times during development, allowing developers to iterate more quickly and focus on building
features rather than waiting for long compilation times. The simplified APIs and better
integration with development tools and editors have further improved the productivity of
Angular developers, making it easier to create, test, and maintain components. The positive
reception of Ivy within the developer community is a testament to its effectiveness in
addressing the key challenges of performance, bundle size, and developer experience.

Despite the numerous benefits introduced by Ivy, there are also challenges that developers
need to consider. One of the primary challenges is compatibility with third-party libraries.
Some libraries needed updates to be fully compatible with Ivy, and developers may need to
ensure that the libraries they are using have been updated to work with the new rendering
engine. Additionally, testing existing applications may require adjustments, as the changes in
component rendering introduced by Ivy can affect the way components are tested.
Developers may also need to update their development environments and CI/CD pipelines to
accommodate the changes introduced by Ivy.

Problem Statement

The introduction of Angular Ivy aimed to address the limitations of the previous View Engine
by enhancing application performance, reducing bundle sizes, and improving the developer
experience. However, challenges such as compatibility with third-party libraries, testing
adjustments, and development environment updates need to be addressed to fully realize the

Vol.10 No.2(2019),2009-2017
DOI: https://doi.org/10.61841/turcomat.v10i2.14925

2011

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

benefits of Ivy. This study seeks to explore the innovations introduced by Angular Ivy,
focusing on its impact on performance, development workflow, and the strategies required to
overcome the associated challenges.

2. Methodology

The methodology for this study on Angular Ivy involved a combination of literature review,
experimental implementation, and performance benchmarking. This multi-phase approach
allowed for a comprehensive understanding of the innovations introduced by Ivy, its benefits
over the previous rendering engine, and its impact on Angular development.

The literature review phase focused on analyzing official Angular documentation, industry
publications, and academic articles to understand the motivations behind the introduction of
Ivy and its intended impact on web development. This phase also involved examining the
limitations of the previous View Engine and how Ivy addresses these challenges. The
literature review provided a theoretical foundation for understanding the architectural
changes introduced by Ivy and their implications for performance, bundle size, and developer
experience.

The experimental implementation phase involved creating sample applications using both the
View Engine and Ivy to compare their performance and development workflows. This phase
aimed to explore the practical aspects of using Ivy, including the process of transforming
existing components, optimizing bundle sizes, and managing dependencies. By building
applications with both rendering engines, the study aimed to identify the specific areas where
Ivy provided significant improvements and to document best practices for migrating to Ivy.

The performance benchmarking phase involved measuring key metrics such as bundle size,
load time, and memory usage to assess the efficiency of Ivy compared to the View Engine.
Tools like Chrome DevTools, Lighthouse, and Angular CLI's build analysis features were
used to collect data on the performance of applications built with Ivy. The benchmarking
focused on evaluating the impact of Ivy on both development builds and production builds,
highlighting the improvements in build times, runtime performance, and resource utilization.

By combining insights from the literature review, experimental implementation, and
performance benchmarking, the study aimed to provide a comprehensive evaluation of
Angular Ivy's impact on web development. This multi-phase methodology allowed for a
balanced analysis of both the theoretical and practical aspects of Ivy, highlighting the
opportunities and challenges associated with adopting this next-generation rendering engine.

2.1. The Need for a New Rendering Engine

Before Ivy, Angular used the View Engine for rendering components and templates. While
functional, the View Engine had limitations:

• Large Bundle Sizes: Inefficient tree-shaking led to larger bundles, affecting load
times.

• Complex Compilation: The compilation process was slower and less efficient.

Vol.10 No.2(2019),2009-2017
DOI: https://doi.org/10.61841/turcomat.v10i2.14925

2012

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

• Limited Flexibility: Handling of templates and components lacked the desired
flexibility.

• Debugging Challenges: Error messages were often cryptic, making debugging
difficult.

2.2. Introduction to Angular Ivy

Ivy was introduced to overcome these challenges by:

• Optimizing Bundle Sizes: Leveraging more efficient tree-shaking.

• Enhancing Compilation: Providing faster and more incremental compilation.

• Improving Debugging: Offering better error messages and code inspection.

• Simplifying Components: Introducing a new way of handling templates and
components.

3. Architectural Innovations in Ivy

3.1. Efficient Tree-Shaking and Code Generation

Tree-Shaking:

• Definition: The process of eliminating unused code from the final bundle.

• Ivy's Approach: Generates code that is more tree-shakable, ensuring that only the
code used in the application is included.

Code Generation:

• Locality Principle: Ivy compiles components independently, meaning each
component's compilation depends only on its own code, not on that of its
dependencies.

• Benefits:

o Reduces interdependencies between components.

o Simplifies the compilation process.

3.2. Faster Compilation

• Incremental Compilation: Ivy compiles only the components that have changed,
speeding up the build process.

• Ahead-of-Time (AOT) Compilation: Improved AOT performance makes it viable
for development builds, offering faster load times and earlier error detection.

3.3. Improved Debugging Capabilities

Vol.10 No.2(2019),2009-2017
DOI: https://doi.org/10.61841/turcomat.v10i2.14925

2013

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

• Enhanced Error Messages: Ivy provides more descriptive error messages, helping
developers quickly identify and fix issues.

• Template Debugging: Better mapping between templates and generated code allows
for easier inspection and debugging.

3.4. New Template and Component Handling

• Simplified Syntax: Ivy introduces a more straightforward way to write and
understand component code.

• Flexibility:

o Dynamic Component Loading: Improved support for loading components at
runtime.

o Local Components: Components can be declared and used locally without the
need for NgModules.

4. Key Features of Angular Ivy

4.1. Smaller Bundle Sizes

• Per-Component Compilation: Only the necessary code for each component is
included.

• Elimination of Unused Code: Unreferenced components and modules are excluded
from the bundle.

4.2. Improved Performance

• Runtime Efficiency: Faster rendering and change detection due to optimized code.

• Memory Usage: Reduced memory footprint during application execution.

4.3. Compatibility and Migration

• Backward Compatibility: Ivy is designed to be compatible with existing Angular
applications.

• Ease of Migration: Tools and guides are provided to help developers transition to Ivy
without significant code changes.

4.4. Enhanced Developer Experience

• Simplified APIs: Cleaner and more intuitive APIs for component and directive
creation.

• Better Tooling Support: Improved integration with development tools and editors.

5. Technical Deep Dive

Vol.10 No.2(2019),2009-2017
DOI: https://doi.org/10.61841/turcomat.v10i2.14925

2014

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

5.1. Compilation Process in Ivy

Comparison with View Engine:

• View Engine: Used a two-phase compilation (template and application), leading to
duplication.

• Ivy: Compiles components individually, reducing duplication and improving build
times.

Incremental Builds:

• Benefit: Only modified components are recompiled, significantly speeding up
development cycles.

5.2. Rendering and Change Detection

Rendering Pipeline:

• Ivy's Renderer: More lightweight and efficient, with less overhead.

• Change Detection: Uses a more efficient algorithm to detect and render changes.

5.3. Dynamic Components and Lazy Loading

Dynamic Components:

• Improved API: Simplifies the creation and insertion of components at runtime.

Lazy Loading:

• Optimized Loading: Components can be loaded on demand, reducing initial load
times.

6. Impact on Angular Development

6.1. Performance Gains

• Real-World Applications: Reports indicate bundle size reductions of up to 40%.

• Startup Times: Faster application startup due to smaller bundles and efficient
rendering.

6.2. Development Workflow

• Faster Builds: Incremental compilation reduces build times during development.

• Easier Debugging: Enhanced error messages and debugging tools improve
productivity.

6.3. Adoption and Community Response

• Positive Reception: Developers appreciate the performance improvements and better
tooling.

Vol.10 No.2(2019),2009-2017
DOI: https://doi.org/10.61841/turcomat.v10i2.14925

2015

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

• Learning Curve: Minimal, as Ivy maintains compatibility with existing Angular
syntax and patterns.

7. Challenges and Considerations

7.1. Compatibility Issues

• Third-Party Libraries: Some libraries needed updates to be fully compatible with
Ivy.

• Testing: Existing tests might require adjustments due to changes in component
rendering.

7.2. Migration Efforts

• Potential Refactoring: Although designed to be backward compatible, some
applications may require minor code changes.

• Tooling Updates: Development environments and CI/CD pipelines might need
configuration updates.

8. Future Developments

8.1. Continued Optimization

• Further Bundle Size Reduction: Ongoing efforts to make applications even leaner.

• Enhanced Features: New capabilities leveraging Ivy's flexible architecture.

8.2. Integration with Other Technologies

• Web Components: Improved support for integrating Angular components with web
components.

• Server-Side Rendering: Better performance and ease of use with Angular Universal.

9. Conclusion

Angular Ivy represents a significant advancement in Angular's evolution, addressing critical
performance and developer experience challenges. By overhauling the rendering engine,
Angular has provided developers with a tool that not only enhances application performance
but also simplifies development and debugging. Ivy's introduction marked a new era for
Angular applications, positioning the framework to meet the demands of modern web
development.

Vol.10 No.2(2019),2009-2017
DOI: https://doi.org/10.61841/turcomat.v10i2.14925

2016

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

References

1) Perez, I., Bärenz, M., & Nilsson, H. (2016). "Functional reactive programming,
refactored." In Haskell. ACM, 33–44.

2) Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2009). "A functional
I/O system or, fun for freshman kids." In ICFP. ACM, 47–58.

3) Breitner, J., & Smith, C. (2017). "Lock-step simulation is child’s play (experience

report)." PACMPL, 1(ICFP), 3:1–3:15.
4) Almeida, J., Cunha, A., Macedo, N., Pacheco, H., & Proença, J. (2018). "Teaching

how to program using automated assessment and functional Glossy games
(experience report)." PACMPL, 2(ICFP), 82:1–82:17.

5) Peterson, J., Hudak, P., & Elliott, C. (1999). "Lambda in motion: Controlling
robots with Haskell." In PADL, LNCS, vol. 1551, Springer, 91–105.

6) Hudak, P., Courtney, A., Nilsson, H., & Peterson, J. (2002). "Arrows, robots, and
functional reactive programming." In Advanced Functional Programming, LNCS,
vol. 2638, Springer, 159–187.

7) Pembeci, I., Nilsson, H., & Hager, G. D. (2002). "Functional reactive robotics: An
exercise in principled integration of domain-specific languages." In PPDP. ACM,
168–179.

8) Cowley, A., & Taylor, C. J. (2011). "Stream-oriented robotics programming: The
design of ROSHASK." In IROS. IEEE, 1048–1054.

Vol.10 No.2(2019),2009-2017
DOI: https://doi.org/10.61841/turcomat.v10i2.14925

2017

