
Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

 CC BY 4.0 Deed Attribution 4.0 International
This article is distributed under the terms of the Creative Commons CC BY 4.0 Deed Attribution
4.0 International attribution which permits copy, redistribute, remix, transform, and build upon
the material in any medium or format for any purpose, even commercially without further
permission provided the original work is attributed as specified on the Ninety Nine Publication
and Open Access pages https://turcomat.org

NgRx and RxJS in Angular: Revolutionizing State Management
and Reactive Programming

Nikhil Kodali

UI Developer, CVS Health, Charlotte, NC.

Abstract

In the realm of modern web development, Angular has established itself as a robust
framework for building dynamic applications. Central to enhancing Angular's capabilities are
two pivotal libraries: NgRx and RxJS. NgRx provides a Redux-inspired state management
architecture, leveraging RxJS to handle asynchronous data flows through Observables. This
paper explores how NgRx and RxJS synergistically enable developers to manage application
state predictably and efficiently, promoting scalability and maintainability. By examining the
principles of unidirectional data flow and reactive programming, we highlight the
indispensability of these tools in modern Angular development.

Keywords: NgRx, RxJS, State Management, Reactive Programming, Observables.

1. Introduction

The complexity of web applications has escalated, necessitating more sophisticated tools for
state management and asynchronous operations. Angular, a widely-used framework, offers a
solid foundation but relies on external libraries to handle state and reactivity efficiently.
NgRx and RxJS have emerged as essential companions to Angular, addressing these needs.

• NgRx: A library that implements a Redux-inspired state management pattern in
Angular applications.

• RxJS: A reactive programming library that facilitates the handling of asynchronous
data streams using Observables.

In the realm of modern web development, Angular has emerged as a robust and popular
framework for building dynamic, scalable, and maintainable single-page applications (SPAs).
As web applications have grown in complexity, developers have increasingly turned to more
sophisticated tools for managing state and handling asynchronous operations. Two such tools
that have become indispensable in the Angular ecosystem are NgRx and RxJS, which
together revolutionize state management and reactive programming. With the introduction of
NgRx and the seamless integration of RxJS in Angular, developers can leverage powerful
patterns that enhance predictability, scalability, and maintainability of their applications.

Vol.12 No.06 (2021), 5745-5755
DOI: https://doi.org/10.61841/turcomat.v12i6.14924

5745

https://creativecommons.org/licenses/by/4.0/
https://turcomat.org/

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

NgRx is a library that provides a Redux-inspired state management pattern specifically
designed for Angular applications. It aims to provide a single source of truth for the
application state, enforcing a unidirectional data flow that makes it easier to manage and
debug. This approach to state management is crucial for large applications where multiple
components may need to access or modify shared state, leading to potential inconsistencies if
not handled correctly. By using NgRx, developers can maintain a consistent application state,
improve the predictability of state changes, and ensure that every part of the application has
access to the most current data. This consistency is key to building applications that are easy
to maintain and scale.

RxJS, on the other hand, is a library for reactive programming that allows developers to
handle asynchronous operations with ease. In a world where web applications increasingly
rely on data from APIs, user interactions, and real-time updates, RxJS provides the tools
necessary to manage these data flows efficiently. RxJS introduces the concept of
Observables, which represent data streams that can emit multiple values over time, and offers
a suite of operators that enable developers to manipulate, filter, and combine these streams.
By integrating RxJS into Angular, developers can implement reactive programming
principles, which not only simplify the handling of asynchronous operations but also promote
a more declarative approach to managing data flows.

The combination of NgRx and RxJS brings several key benefits to Angular development.
One of the most significant advantages is the introduction of a unidirectional data flow,
which ensures that state changes are predictable and traceable. In a typical NgRx architecture,
state is stored in a central repository known as the Store, which acts as the single source of
truth for the entire application. Components can dispatch actions to initiate state changes, and
these actions are handled by pure functions called Reducers, which update the state in a
predictable manner. By leveraging RxJS, NgRx can manage the flow of actions and state
changes through the use of Observables, which allows developers to handle asynchronous
operations, such as API calls or user interactions, without complicating the flow of data.

Another key benefit of using NgRx and RxJS is the enhanced debugging and testing
capabilities they provide. The unidirectional data flow enforced by NgRx makes it easier to
understand how state changes occur, which in turn makes it easier to identify and fix bugs.
Tools such as the Redux DevTools provide time-travel debugging, allowing developers to
step through each action and see how it affects the application state. This level of visibility is
invaluable for maintaining complex applications and ensuring that state changes are
intentional and predictable. Additionally, the use of pure functions for Reducers and the
separation of side effects into Effects makes it easier to test individual parts of the application
in isolation, further enhancing the maintainability of the codebase.

NgRx also facilitates the management of side effects, which are operations that interact with
external systems, such as API requests or browser storage. In a typical Angular application,
side effects can be challenging to manage, especially when they involve multiple
asynchronous operations that need to be coordinated. NgRx addresses this challenge through
the use of Effects, which are specialized services that listen for dispatched actions and
perform asynchronous operations in response. By leveraging RxJS operators, such as

Vol.12 No.06 (2021), 5745-5755
DOI: https://doi.org/10.61841/turcomat.v12i6.14924

5746

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

mergeMap, switchMap, and catchError, Effects can manage complex asynchronous
workflows in a declarative manner, ensuring that side effects are handled consistently and do
not disrupt the unidirectional data flow of the application.

The integration of RxJS into Angular also brings significant advantages in terms of efficiency
and code simplicity. RxJS enables developers to compose multiple streams of data, allowing
them to create complex data transformations with minimal code. For example, RxJS
operators can be used to combine data from multiple sources, filter out unnecessary
information, and react to changes in real time. This compositional nature of RxJS makes it
easier to implement features such as search-as-you-type, real-time updates, and data
synchronization, which would be much more cumbersome to implement using traditional
callback-based or promise-based approaches. By using RxJS, developers can write cleaner,
more readable code that is easier to understand and maintain.

NgRx and RxJS are particularly well-suited for applications that require a high level of
scalability. The modular structure of NgRx, with its clear separation of state, actions,
reducers, and effects, makes it easy to add new features without affecting existing code. This
modularity is essential for large teams working on different parts of an application, as it
promotes consistency and ensures that each part of the application adheres to the same
patterns and practices. The use of RxJS also contributes to scalability by enabling efficient
management of asynchronous operations, which is crucial for applications that need to handle
large volumes of data or support real-time interactions.

Despite the numerous advantages, there are challenges associated with using NgRx and RxJS,
particularly for developers who are new to reactive programming or state management
patterns. One of the main challenges is the steep learning curve. Understanding how to
effectively use Observables, operators, and the various components of NgRx requires a
significant investment of time and effort. The complexity of the NgRx architecture, with its
actions, reducers, effects, and selectors, can be overwhelming for developers who are not
familiar with Redux-style state management. Additionally, the verbosity of the code required
to implement even simple features using NgRx can be a barrier to adoption, leading some
developers to question whether the benefits outweigh the costs.

To address these challenges, it is important to adopt best practices and provide adequate
training for developers who are new to NgRx and RxJS. Incremental adoption, where
developers start by using RxJS for simple asynchronous operations before gradually
introducing NgRx for state management, can help ease the transition. Utilizing Angular's CLI
schematics to generate boilerplate code and leveraging community resources, such as
tutorials and examples, can also reduce the overhead associated with learning these tools. By
providing a structured approach to learning and using NgRx and RxJS, teams can overcome
the initial challenges and fully realize the benefits of these powerful libraries.

Problem Statement

The integration of NgRx and RxJS in Angular applications provides powerful tools for
managing state and handling asynchronous data flows. However, challenges such as the steep
learning curve, verbosity of code, and complexity of the architecture need to be addressed to

Vol.12 No.06 (2021), 5745-5755
DOI: https://doi.org/10.61841/turcomat.v12i6.14924

5747

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

fully leverage their benefits. This study seeks to explore the impact of NgRx and RxJS on
Angular development, focusing on how they enhance state management, scalability, and
maintainability while addressing the challenges associated with their adoption.

2. Methodology

The methodology for this study on the integration of NgRx and RxJS in Angular involved a
combination of literature review, experimental implementation, and developer surveys. This
comprehensive approach allowed for a detailed examination of how these libraries enhance
state management and reactive programming within Angular applications.

The literature review phase focused on analyzing official Angular documentation, as well as
industry publications and academic articles, to understand the principles behind NgRx and
RxJS. This phase included an examination of state management challenges in modern web
applications and how the adoption of Redux-inspired patterns and reactive programming can
address these issues. By establishing a theoretical foundation, the study aimed to highlight the
motivations behind the use of NgRx and RxJS and their impact on scalability,
maintainability, and code predictability.

The experimental implementation phase involved creating sample Angular applications that
utilized NgRx for state management and RxJS for handling asynchronous data flows. The
goal was to explore the practical aspects of integrating these libraries, including the setup of
the store, defining actions and reducers, and implementing effects for side effects
management. This phase also included performance benchmarking to evaluate the impact of
NgRx and RxJS on application load time, responsiveness, and memory usage. The sample
applications demonstrated the practical benefits of unidirectional data flow, modularity, and
reactive programming, providing concrete examples of how these patterns can be applied to
real-world scenarios.

The developer survey phase aimed to gather qualitative data from Angular developers who
had experience working with NgRx and RxJS. The survey included questions related to the
benefits and challenges of using these libraries, the learning curve associated with reactive
programming, and the impact on productivity and code quality. Developers were also asked
to provide feedback on best practices for integrating NgRx and RxJS into Angular projects,
as well as any recommendations for easing the adoption process. This phase provided
valuable insights into the real-world experiences of developers and highlighted the practical
considerations of using NgRx and RxJS in production environments.

By combining insights from the literature review, experimental implementation, and
developer surveys, the study aimed to provide a comprehensive evaluation of the impact of
NgRx and RxJS on Angular development. The multi-phase methodology allowed for a
balanced assessment of both the theoretical and practical aspects of using these libraries,
highlighting their contributions to state management, reactive programming, and overall
application scalability and maintainability.

2.1 The Challenge of State Management in Angular

Vol.12 No.06 (2021), 5745-5755
DOI: https://doi.org/10.61841/turcomat.v12i6.14924

5748

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

State management in large applications can become unwieldy due to:

• Complex Data Flows: Multiple components may need to access and modify shared
state.

• Asynchronous Operations: Handling data from APIs or user interactions requires
robust mechanisms.

• Predictability: Ensuring that state changes are predictable and traceable.

2.2 Introduction to RxJS

RxJS (Reactive Extensions for JavaScript) is a library for reactive programming using
Observables, allowing for:

• Asynchronous Data Handling: Manage data streams over time.

• Composition: Combine multiple streams.

• Operators: Transform, filter, and manipulate data streams.

2.3 Introduction to NgRx

NgRx extends Angular by providing:

• State Management: Implements a Redux-like pattern with a unidirectional data flow.

• Side Effects Management: Handles asynchronous operations using effects.

• Integration with RxJS: Leverages Observables for state changes and actions.

3. Core Concepts

3.1 Reactive Programming with RxJS

• Observables: Represent data streams that can emit multiple values over time.

• Subscribers: Functions or objects that listen to observables.

• Operators: Functions that enable complex data manipulation.

Example:

import { Observable } from 'rxjs';

const observable = new Observable(observer => {

 observer.next('Hello');

 observer.next('World');

 observer.complete();

Vol.12 No.06 (2021), 5745-5755
DOI: https://doi.org/10.61841/turcomat.v12i6.14924

5749

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

});

observable.subscribe(value => console.log(value));

3.2 NgRx Architecture

NgRx adopts Redux principles adapted for Angular:

• Store: A single source of truth for application state.

• Actions: Plain objects that describe state changes.

• Reducers: Pure functions that specify how the state changes in response to actions.

• Selectors: Functions to select pieces of state.

• Effects: Handle side effects like HTTP requests.

4. NgRx and RxJS Integration

4.1 Actions and Observables

Actions in NgRx are dispatched and observed as streams:

import { createAction } from '@ngrx/store';

export const loadItems = createAction('[Item List] Load Items');

Components can dispatch actions, and effects can listen for them using RxJS operators.

4.2 Reducers and Immutable State

Reducers receive actions and update the state immutably:

import { createReducer, on } from '@ngrx/store';

export const itemsReducer = createReducer(

 initialState,

 on(loadItemsSuccess, (state, { items }) => ({ ...state, items }))

);

4.3 Effects and Side Effects Management

Effects handle asynchronous operations:

import { Actions, createEffect, ofType } from '@ngrx/effects';

Vol.12 No.06 (2021), 5745-5755
DOI: https://doi.org/10.61841/turcomat.v12i6.14924

5750

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

import { mergeMap, map } from 'rxjs/operators';

export class ItemEffects {

 loadItems$ = createEffect(() =>

 this.actions$.pipe(

 ofType(loadItems),

 mergeMap(() => this.itemService.getAll().pipe(

 map(items => loadItemsSuccess({ items }))

))

)

);

 constructor(private actions$: Actions, private itemService: ItemService) {}

}

5. Benefits of Using NgRx and RxJS

5.1 Predictable State Management

• Single Source of Truth: The store holds the entire state, making it easier to track
changes.

• Immutability: State is immutable, preventing unintended side effects.

5.2 Enhanced Debugging and Testing

• Time Travel Debugging: Ability to replay actions and state changes.

• Isolated Testing: Reducers and effects can be tested independently.

5.3 Scalability

• Modular Structure: Easy to scale applications by adding new features without
affecting existing code.

• Team Collaboration: Clear patterns make it easier for multiple developers to work
together.

5.4 Efficient Asynchronous Handling

• Reactive Patterns: RxJS allows for elegant handling of asynchronous data.

Vol.12 No.06 (2021), 5745-5755
DOI: https://doi.org/10.61841/turcomat.v12i6.14924

5751

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

• Composition of Streams: Combine multiple asynchronous operations seamlessly.

6. Implementing NgRx and RxJS in Angular Applications

6.1 Setting Up NgRx

1. Install Packages:

npm install @ngrx/store @ngrx/effects @ngrx/store-devtools

2. Configure the Store:

import { StoreModule } from '@ngrx/store';

import { reducers } from './reducers';

@NgModule({

 imports: [

 StoreModule.forRoot(reducers),

],

})

export class AppModule {}

6.2 Defining Actions

Create actions to represent events:

export const addItem = createAction('[Item List] Add Item', props<{ item: Item }>());

6.3 Creating Reducers

Define how the state changes:

export const itemReducer = createReducer(

 initialState,

 on(addItem, (state, { item }) => ({ ...state, items: [...state.items, item] }))

);

6.4 Setting Up Effects

Handle side effects like API calls:

export class ItemEffects {

 addItem$ = createEffect(() =>

Vol.12 No.06 (2021), 5745-5755
DOI: https://doi.org/10.61841/turcomat.v12i6.14924

5752

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

 this.actions$.pipe(

 ofType(addItem),

 mergeMap(action => this.itemService.addItem(action.item).pipe(

 map(item => addItemSuccess({ item }))

))

)

);

}

7. Case Studies and Real-World Applications

7.1 E-Commerce Platform

An online store uses NgRx and RxJS to manage:

• Shopping Cart State: Ensuring consistency across the application.

• User Authentication: Handling login/logout flows and token management.

• Product Listings: Efficiently loading and updating product data.

7.2 Social Media Application

A social media app leverages these libraries for:

• Real-Time Updates: Streaming new posts and notifications using Observables.

• Complex User Interactions: Managing likes, comments, and shares predictably.

• Offline Support: Synchronizing state when connectivity is restored.

8. Challenges and Best Practices

8.1 Steep Learning Curve

• Complexity: Understanding the full NgRx and RxJS stack can be challenging.

• Recommendation: Incrementally introduce concepts and provide thorough training.

8.2 Boilerplate Code

• Verbose Syntax: Actions, reducers, and effects can lead to repetitive code.

• Recommendation: Utilize schematics and generators to streamline code creation.

8.3 Performance Considerations

Vol.12 No.06 (2021), 5745-5755
DOI: https://doi.org/10.61841/turcomat.v12i6.14924

5753

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

• Overhead: Improper use can lead to performance bottlenecks.

• Recommendation: Optimize selectors and avoid unnecessary state updates.

9. Future Trends

9.1 Integration with Angular Ivy

• Improved Performance: Leveraging Angular's Ivy compiler for better optimization.

• Enhanced Tooling: Development of more intuitive debugging and visualization
tools.

9.2 Expansion of Reactive Programming

• WebSocket Support: More extensive use of RxJS for real-time data.

• Server-Side Rendering: Combining NgRx with Angular Universal for SEO benefits.

10. Conclusion

NgRx and RxJS have proven to be indispensable tools in modern Angular development. By
facilitating predictable state management and efficient handling of asynchronous data, they
enable developers to build scalable and maintainable applications. The adoption of
unidirectional data flow and reactive programming principles addresses many challenges
inherent in complex web applications. As the ecosystem evolves, NgRx and RxJS will
continue to play a crucial role in advancing Angular's capabilities.

References

1) Oddie, A., Hazlewood, P., Blakeway, S., & Whitfield, A. (2010). "Introductory
problem solving and programming: Robotics versus traditional approaches."
ITALICS, 9(2), 1–11.

2) Druin, A., & Hendler, J. A. (2000). Robots for kids: Exploring new technologies for
learning. Morgan Kaufmann.

3) Gandy, E. A., Bradley, S., Arnold-Brookes, D., & Allen, N. R. (2010). "The use of
LEGO Mindstorms NXT robots in the teaching of introductory Java programming to
undergraduate students." ITALICS, 9(1), 2–9.

4) Lawhead, P. B., Duncan, M. E., Bland, C. G., Goldweber, M., Schep, M., Barnes, D.
J., & Hollingsworth, R. G. (2003). "A road map for teaching introductory
programming using LEGO Mindstorms robots." SIGCSE Bulletin, 35(2), 191–201.

5) Cleary, A., Vandenbergh, L., & Peterson, J. (2015). "Reactive game engine
programming for STEM outreach." In SIGCSE. ACM, 628–632.

Vol.12 No.06 (2021), 5745-5755
DOI: https://doi.org/10.61841/turcomat.v12i6.14924

5754

Turkish Journal of Computer and Mathematics Education (TURCOMAT) ISSN: 3048-4855

6) Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2004). "The
TeachScheme! project: Computing and programming for every student." Computer
Science Education, 14(1), 55–77.

7) Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., &
Ng, A. Y. (2009). "ROS: An open-source Robot Operating System." OSS@ICRA,
3(3.2).

8) Diprose, J. P., MacDonald, B. A., & Hosking, J. G. (2011). "Ruru: A spatial and
interactive visual programming language for novice robot programming." In VL/HCC.
IEEE, 25–32.

9) Casañ, G. A., Cervera, E., Moughlbay, A. A., Alemany, J., & Martinet, P. (2015).
"ROS-based online robot programming for remote education and training." In ICRA.
IEEE, 6101–6106.

10) Angulo, I., García-Zubía, J., Hernández-Jayo, U., Uriarte, I., Rodríguez-Gil, L.,
Orduña, P., & Pieper, G. M. (2017). "RoboBlock: A remote lab for robotics and visual
programming." In exp.at. IEEE, 109–110.

11) Masum, M. H., Rifat, T. S., Tareeq, S. M., & Heickal, H. (2018). "A framework for
developing graphically programmable low-cost robotics kit for classroom education."
In ICETC. ACM, 22–26.

12) Weintrop, D., Afzal, A., Salac, J., Francis, P., Li, B., Shepherd, D. C., & Franklin, D.
(2018). "Evaluating CoBlox: A comparative study of robotics programming
environments for adult novices." In CHI. ACM, 366:1–366:12.

13) Marghitu, D., & Coy, S. (2015). "Robotics rule-based formalism to specify behaviors
in a visual programming environment." In B&B@VL/HCC. IEEE, 45–47.

14) Weintrop, D. (2019). "Block-based programming in computer science education."
Communications of the ACM, 62(8), 22–25.

15) Xu, Z., Ritzhaupt, A. D., Tian, F., & Umapathy, K. (2019). "Block-based versus text-
based programming environments on novice student learning outcomes: A meta-
analysis study." Computer Science Education, 29(2–3), 177–204.

16) Bainomugisha, E., Carreton, A. L., Cutsem, T. V., Mostinckx, S., & De Meuter, W.
(2013). "A survey on reactive programming." ACM Computing Surveys, 45(4), 52:1–
52:34.

Vol.12 No.06 (2021), 5745-5755
DOI: https://doi.org/10.61841/turcomat.v12i6.14924

5755

