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Abstract 

The problem considered is the selection of at least one subset from a set (array) of distinct positive 

integers, such that the sum of the subset's elements exactly matches a given target sum (target 

certificate). According to R. M. Karp, this problem belongs to the class of NP-complete problems. 

Diophantine equations and an auxiliary problem, which facilitates the solution of the original problem 

and has independent scientific interest, have been introduced. A novel method has been developed, 

which includes proven lemmas and theorems. These results enable the development of efficient and 

straightforward algorithms for solving the subset sum problem. The time and space complexity for 

selecting the required subsets do not exceed the square of the length of the original set. An analytical 

framework has been proposed for managing indices within the original set. These algorithms are 

applicable to solving problems related to the independent set of cardinality k and the k-vertex cover 

problem. Additionally, we present examples to confirm claimed results. 

It should be noted that the time complexity of sorting an array of integers is proportional to the square 

of the array's size, and this problem belongs to class P. Therefore, based on the newly developed 

method, it can be inferred that the subset sum problem, originally classified as NP-complete within 

the NP class, also belongs to P.  
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Introduction 
 

In 1971, S. Cook [1] introduced the NP-complete class, which included the Boolean circuit 

satisfiability problem, the Boolean formula satisfiability problem, and the conjunctive normal form 

(CNF) satisfiability problem. In 1972, R. M. Karp, in his work [2] proved the NP-completeness of the 

k-independent set problem in directed graphs, the k-vertex cover problem, the Hamiltonian path 

problem in directed graphs, and the subset sum problem. The class NP contains problems that can be 
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verified quickly; in other words, there exists an algorithm that can verify a positive solution to the 

problem in polynomial time. It has been shown that within the NP class, there exist "hardest" 

problems, meaning those to which all other NP problems can be reduced. This implies that if even 

one of these hardest problems can be solved in polynomial time, then every problem in NP can be 

solved in polynomial time, thus establishing that P=NP.  The Boolean circuit satisfiability problem 

[1], the independent set problem [2], the vertex cover problem [2], the Hamiltonian path problem [2], 

the subset sum problem [2], and many others belong to the class of NP-complete problems. In general, 

the NP-completeness of these problems has been proven through reductions involving Boolean 

circuits, Boolean formulas, conjunctive normal forms, and graphs. It should be noted that the proof of 

the NP-completeness of the aforementioned problems also includes algorithms for their solution. 

However, in practical terms, these algorithms are challenging to implement. Therefore, this work is a 

continuation of the research presented in [3], which investigates an alternative approach to studying 

combinatorial problems in the NP-complete class, based on set theory, Diophantine equations, and 

properties of arithmetic means. 

 Currently, the primary methods for investigating this problem include exponential algorithms 

that examine subsets of the original set with cardinalities ranging from one to the length of the input 

[4,5], and the brute force method [6], which explores subsets with cardinalities from one to a constant 

value that is smaller than an independent of the input length. The computational complexity of the 

subset sum problem depends on two parameters: the cardinality n and the precision p (defined as the 

number of binary digits in the numbers comprising the set). 

  In [7], this constant and the algorithm execution time were reduced by half, while [8] 

established an upper bound on the cardinality of the selected subset. A US patent [9] has been 

acquired. Worth to note that these parameters have been leveraged to improve the efficiency of pseudo 

polynomial algorithms [10-12]. Therefore, the key factor for the time complexity is the cardinality of 

the original set and the specific subsets required to solve the given problem. 

 

Problems’ statement 

Reduction of the subset sum problem to the auxiliary problem  

 

A sorted set of distinct positive integers 𝑋𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛} with cardinality 𝑛 = |𝑋𝑛|, 
and an integer 𝑆𝑘 are given. It is required to determine whether it is possible to select at least one 

subset 𝑋𝑘 with cardinality 𝑘 = |𝑋𝑘| such that the sum of its elements exactly equals the target 

certificate 𝑆𝑘.  
Henceforth, the superscript of all variables and other quantities will correspond to the 

cardinality of the set 𝑋𝑛 or the subset 𝑋𝑘 .  
Then, the formal statement of the subset sum problem in parameterized form is as follows: 

𝑆𝑘: ∃𝑋𝑘⊆𝑋𝑛, ∑ 𝑥𝑖𝑥𝑖∈𝑋
𝑘 = 𝑆𝑘,                                                                                                                              (1) 

where 𝑘 = 2𝑚 ∨ 2𝑚 + 1, 𝑘 ≤ 𝑛,  for even (𝑘 = 2𝑚) and odd (𝑘 = 2𝑚 + 1). 
 Subsets 𝑋𝑘 are selected based on the combination function: 
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С𝑛
𝑘 =

𝑛!

𝑘!(𝑛−𝑘)!
=

𝑛(𝑛−1)(𝑛−2)…(𝑛−𝑘+1)

𝑘!
 .                                                                                                               (2) 

 It should be noted that, in addition to the selected subsets 𝑋𝑘, there remain unselected subsets 

𝑋𝑛−𝑘 with cardinality 𝑛 − 𝑘 = |𝑋𝑛−𝑘|. By the symmetry property С𝑛
𝑘 = С𝑛

𝑛−𝑘 it follows that: 

𝑋𝑛−𝑘 = 𝑋𝑛 ∖ 𝑋𝑘.                                                                                                                                 (3) 

Based on the properties of the combination function(2), we will find the partial sums 𝑧𝑘 =
∑ 𝑥𝑘 , 𝑥𝑘 ∈ 𝑋

𝑛 𝑘  and the discrete range:  

𝑧𝑘 ∈ [𝑧𝑚𝑖𝑛
𝑘 , 𝑧𝑚𝑎𝑥

𝑘 ],                                                                                                                                 (4) 

where 𝑧𝑚𝑖𝑛
𝑘 = ∑ 𝑥𝑖 , 𝑧𝑚𝑎𝑥

𝑘 = ∑ 𝑥𝑖 
𝑛
𝑖=𝑛−𝑘+1 ,𝑘

𝑖=1  𝑥𝑖 ∈ 𝑋
𝑛.  

Let’s introduce the set of consecutive natural numbers 𝑁𝑛 ={1,2,3,…,n} with cardinality 𝑛 =
|𝑁𝑛| (without loss of generality, zero can be included in the set 𝑁𝑛, resulting in 𝑁𝑛 ={0,1,2,3,…,n-

1}). Then, the parameterized formulation of the subset sum problem for 𝑁𝑘⊆𝑁𝑛 with cardinality 𝑘 =
|𝑁𝑘| and a given index certificate 𝑠𝑘 is as follows:  

𝑠𝑘: ∃𝑁𝑘⊆𝑁𝑛, ∑ 𝑛𝑖𝑛𝑖∈𝑁
𝑘 = 𝑠𝑘.                                                                                                                           (5)                                                                          

Note that this set of consecutive natural numbers 𝑁𝑘⊆ 𝑁𝑛 are the indices of the elements of 

the initial set. Accordingly, 𝑠𝑘 is the corresponding index certificate for certificate 𝑆𝑘 , i.e., the sum 

of the indices of the elements in the subset 𝑋𝑘 whose sum equals 𝑆𝑘. 

The auxiliary problem(5) eliminates the precision parameter p (defined as the number of binary 

digits in the numbers comprising the original set) from the computational complexity of problem(1), 

thereby simplifying the solution of problem(1). The auxiliary problem (5) is of independent scientific 

interest.   Elements of the subset 𝑁𝑘 are determined based on the combination function(2). Each subset 

𝑁𝑘consists of 𝑘 elements from the set 𝑁𝑛. 
Therefore, we find the values 𝑠𝑚𝑖𝑛

𝑘 = ∑ 𝑛𝑖
𝑘
1 , 𝑛𝑖 ∈ 𝑁

𝑛,  𝑠𝑚𝑎𝑥
𝑘 = ∑ 𝑛𝑖

𝑛
𝑛−𝑘+1 ,  𝑛𝑖 ∈ 𝑁

𝑛. The 

possible range of the index certificate  𝑠𝑘,  corresponding to a subset from subsets 𝑁𝑘 ⊆ 𝑁𝑛 is: 

𝑠𝑘 ∈ [𝑠𝑚𝑖𝑛
𝑘 , 𝑠𝑚𝑎𝑥

𝑘 ],                                                                                                                                 (6) 

which is equivalent to: 𝑠𝑖
𝑘 ∈ { 𝑠𝑚𝑖𝑛

𝑘 ,  𝑠𝑚𝑖𝑛
𝑘 + 1,… , 𝑠𝑚𝑎𝑥

𝑘 }. 

Note that the range(6) describes unique index certificates  𝑠𝑖
𝑘.  Next, we find the value: 

 𝑚𝑘 = 𝑠𝑚𝑎𝑥
𝑘 −  𝑠𝑚𝑖𝑛

𝑘 + 1 = 𝑘𝑛 −
(𝑘−1)𝑘

2
−
𝑘(𝑘+1)

2
+ 1 = 𝑘𝑛 − 𝑘2 + 1.                                               (7)                                                                                                                                                                              

Equation(7) defines only the number of unique index certificates: 𝑠𝑖
𝑘, 𝑖 = 1,2, … ,𝑚𝑘.  

Lemma1. Let the certificate 𝑆𝑘 of problem(1) belongs to the discrete range(4). Then, there exists at 

least one subset  𝑁𝑘 ⊆ 𝑁𝑛  with cardinality 𝑘 and an index certificate 𝑠𝑘 such that the auxiliary 

problem(5) is solvable. 

Proof. Satisfying the first condition of the lemma implies that the sum of the k elements of the 

subset 𝑋𝑘 with cardinality 𝑘 in problem(1) is determined as follows: 

𝑥𝑖 + 𝑥𝑗 +⋯+ 𝑥𝑚 + 𝑥𝑙 = 𝑆𝑘, 𝑖 ≠ 𝑗 ≠ ⋯ ≠ 𝑚 ≠ 𝑙; (𝑥𝑖, 𝑥𝑗 , ⋯ , 𝑥𝑚, 𝑥𝑙) ∈ 𝑋
𝑘 ⊆ 𝑋𝑛,                          (8) 

Since the certificate 𝑆𝑘 belongs to the discrete range(4) and all indices 𝑖 ≠ 𝑗 ≠ ⋯ ≠ 𝑚 ≠ 𝑙  of the 

elements of the subset 𝑋𝑘 ⊆ 𝑋𝑛 are chosen based on the combination function(2), we have, 
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∑ 𝑥𝑖𝑥𝑖∈𝑋
𝑘 = 𝑆𝑘. From equation(8), the index certificate 𝑠𝑘 for the auxiliary problem(5) is easily 

determined as follows: 

𝑛𝑖 + 𝑛𝑗 +⋯+ 𝑛𝑚 + 𝑛𝑙 = 𝑠
𝑘 ,                                                                                                             (9)  

where in case of a sorted set 𝑁𝑛, the indices can be written as: 

𝑖 = 𝑛𝑖 , 𝑗 = 𝑛𝑗 , … ,𝑚 = 𝑛𝑚, 𝑛𝑙 = 𝑙, (𝑛𝑖 , 𝑛𝑗 , … , 𝑛𝑚, 𝑛𝑙) ∈ 𝑁
𝑘 ⊆ 𝑁𝑛. 

Solving the Diophantine equation(9) with a given index certificate 𝑠𝑘 allows us to find the 

indices of the subset 𝑁𝑘  with cardinality 𝑘.  These indices will coincide with both the indices of the 

elements in the subset 𝑋𝑘 and the indices of the variables in equation(9). Thus, the solvability of the 

original problem(1) implies the solvability of the auxiliary problem(5), specifically, the fulfillment of 

the condition: ∑ 𝑛𝑖𝑛𝑖∈𝑁
𝑘 = 𝑠𝑘. Conversely, if the sum of the elements of a subset 𝑋𝑘 is exactly 𝑆𝑘, 

this implies that the subset contains exactly 𝑘 numbers corresponding to the indices of the subset 𝑁𝑘 

and 𝑘 variables in equation(8). 

 

Solution approaches 

 

Lemma2. Let k=2 and 𝑆𝑘 ∈ [𝑧𝑚𝑖𝑛
𝑘 , 𝑧𝑚𝑎𝑥

𝑘 ]. Then the time to select the subset 𝑋𝑘and the required space 

satisfy the following conditions: 

 𝑇 ≤ 𝑂(𝑘𝑛) < 𝑂(𝑛2), 𝕊 ≤ 𝑂 (
(𝑛−1)∗𝑛

2
).                                                                                                          (10) 

Proof. Based on the combination function(2), subsets 𝑋𝑘 with cardinality 𝑘 = 2 are 

represented as a two-dimensional triangular array of order (n-1)x( n-1): 

𝑋2 =

{
 
 

 
 
𝑥1 + 𝑥2  𝑥1 + 𝑥3……………… . . 𝑥1 + 𝑥𝑛−1    𝑥1 + 𝑥𝑛
                   𝑥2 + 𝑥3 𝑥2 + 𝑥4  ……𝑥2 + 𝑥𝑛−1   𝑥2 + 𝑥𝑛
                                         ………………………………… .
                                                    𝑥𝑛−2 + 𝑥𝑛−1    𝑥𝑛−2 + 𝑥𝑛
                                                                               𝑥𝑛−1 + 𝑥𝑛 }

 
 

 
 

.                                                   (11) 

Here, each subset 𝑋2 consists of two elements: 𝑋2 = {𝑥𝑖, 𝑥𝑗}. Algorithm for generating the array (11): 

It is sufficient to add the element 𝑥1  to the elements of the set 𝑋𝑛 (which is represented as a one-

dimensional array), starting from the second element, resulting in pairs  (𝑥1 + 𝑥2) ∈ 𝑋2 through (𝑥1 +
𝑥𝑛)  ∈ 𝑋

2. Then, add the element 𝑥2  to the elements of the set 𝑋𝑛 starting from the third element, 

producing pairs (𝑥2 + 𝑥3) ∈ 𝑋2 through (𝑥𝑛−2 + 𝑥𝑛−1    𝑥𝑛−2 + 𝑥𝑛) ∈ 𝑋2. Continue this process until 

the last element is reached, resulting in (𝑥𝑛−1 + 𝑥𝑛 ) ∈ 𝑋
2.  

The discrete values in range (4) are directly derived from the values of the elements in array 

(11). The number of elements in array(11) is 𝐶𝑛
2 =

(𝑛−1)𝑛

2
. In particular, 𝑥12 = 𝑥1 + 𝑥2, 𝑖 = 1, 𝑗 =

2,…, 𝑥𝑖𝑗 = 𝑥𝑛−1 + 𝑥𝑛 , 𝑖 = 𝑛 − 1, 𝑗 = 𝑛,  𝑋
2 = {𝑥1 , 𝑥2}, … , 𝑋

2 = {𝑥𝑛−1, 𝑥𝑛 }.   

 Array(11), with respect to the indices 𝑖, 𝑗 of the elements 𝑥𝑖𝑗 in the subset 𝑋2, is structured as 

follows: 
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𝑁2 =

{
 
 

 
 
12  13………………………………1 𝑛 − 1    1 𝑛
                             23  24…… .………2 𝑛 − 1   2 𝑛

                                        …………………… .
                                               𝑛 − 2  𝑛 − 1   𝑛 − 2 𝑛
                                                                           𝑛 − 1 𝑛}

 
 

 
 

.                                                            (12) 

Here, the indices of the two-dimensional triangular array 𝑁2 are selected from the set of consecutive 

natural numbers 𝑁𝑛 = {1,2, … , 𝑛} with cardinality 𝑛 = |𝑁𝑛|. It should be noted that there is a one-to-

one correspondence between arrays(11) and (12). According to the condition 𝑆2 ∈ [𝑧𝑚𝑖𝑛
2 , 𝑧𝑚𝑎𝑥

2 ] stated 

in Lemma1 the certificate 𝑆2 belongs to the discrete range(4), as function(2) generates all the 

combinations necessary to form the complete set of subsets 𝑋2. Otherwise, the problem (1) has no 

solution. This implies that for the given cardinality 𝑘 there exists an element 𝑥𝑖𝑗 in array(6) that equals 

the certificate 𝑥𝑖𝑗 = 𝑆2, 𝑥𝑖𝑗 ∈ 𝑋
2 and the indices 𝑖, 𝑗 are fixed. For this element, the condition  

∑ 𝑥𝑖𝑥𝑖∈𝑋
2 = 𝑥𝑖𝑗 = 𝑥𝑖 + 𝑥𝑗 = 𝑆2, (𝑥𝑖, 𝑥𝑗) ∈ 𝑋

𝑛, is satisfied. Consequently, the subset sum problem (1) 

is resolved.  

Next, we will prove inequalities (10). Based on array (11), we introduce a two-dimensional 

triangular array of index certificates:  

𝑠2 =

{
 
 

 
 
1 + 2  1 + 3………………………………1 + (𝑛 − 1)    1 +  𝑛
                             2 + 3  2 + 4…… .………2 + (𝑛 − 1)   2 + 𝑛

                                        …………………… .
                                                        𝑛 − 2 + (𝑛 − 1)   (𝑛 − 2) + 𝑛
                                                                                        (𝑛 − 1) + 𝑛}

 
 

 
 

.                                         (13) 

From array(13), we extract the unique index certificates:: 3, 4,…, 1 + (𝑛 − 1),   1 +  𝑛, 2 +
𝑛,… , (𝑛 − 1) + 𝑛.                                                                 

Thus, this relationship includes the first row and the last column of array(13), as other elements 

along the diagonal are repeated.  

It has been established that problem(1) is solvable and that there exists a subset 𝑋2. This 

indicates that there exists an element 𝑥𝑖𝑗 = 𝑥𝑖 + 𝑥𝑗 = 𝑆2, 𝑥𝑖𝑗 ∈ 𝑋
2 ∨ (𝑥𝑖 , 𝑥𝑗) ∈ 𝑋

𝑛  with determined 

indices i and j. Consequently, the required index certificate is 𝑠2 = 𝑖 + 𝑗. These indices represent 

solutions to the Diophantine equation(9) for finding elements on one of the diagonals of matrix(12). 

To find the required subset 𝑁2, it is sufficient to perform a sequential examine of the elements 

along the identified diagonal of matrix(12). The maximum number of solutions to the Diophantine 

equation(9) will be less than or equal to 𝑛/2 - the maximum number of elements on the diagonal of 

matrix(12) with index certificate 𝑠2 = 1 +  𝑛 and 𝑇 ≤ 𝑂 (
𝑛

2
). In other words, the time required to 

select the subset 𝑋2, that describes the subset 𝑁2, is determined by the number of elements on the 

identified diagonal of matrix(12) for a given index certificate 𝑠2. Let’s note that range(6) describes 

only the unique index certificates 𝑠𝑖
𝑘 =  𝑠𝑚𝑖𝑛

𝑘  ∨   𝑠𝑚𝑖𝑛
𝑘 + 1 ∨ …∨ 𝑠𝑚𝑎𝑥

𝑘 . Equation(7) defines only the 

number of unique index certificates: 𝑠𝑖
𝑘, 𝑖 = 1,2, … ,𝑚𝑘 .  In conclusion, taking into account the derived 

inequality 𝑇 ≤ 𝑂 (
𝑛

2
), equation(7), the sequential examination of subsets 𝑁2, we have that 𝑇 ≤
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𝑂 (
𝑛

2
) ≤ 𝑂(𝑚𝑘) = 𝑂((𝑛 − 𝑘)𝑘 + 1) ≤ 𝑂(𝑘𝑛) < 𝑂(𝑛2), 𝕊 ≤ 𝑂 (

(𝑛−1)∗𝑛

2
). These inequalities define 

the time complexity and required space in general terms. 

In addition to describing the subsets 𝑁𝑘 the Diophantine equation (17) also serves as a criterion 

for the existence of duplicate elements within the subset 𝑋2. Thus, it determines one or more subsets 

𝑋𝑘 for problem(1). 

The subsets 𝑋3 and 𝑁3 can be obtained after applying Lemma2 for 𝑘 = 3: 

𝑋3 = 𝑋2 ∪ 𝑥𝑙 , 𝑁
3 = 𝑁2 ∪ 𝑛𝑙 ,  𝑆

3 =  𝑆2 + 𝑥𝑙,  𝑠
3 =  𝑠2 + 𝑛𝑙 ,  

 𝑥𝑙 ∈ 𝑋
𝑛, 𝑛𝑙 ∈ 𝑁

𝑛, 𝑥𝑙 ∉ 𝑋
2, 𝑛𝑙 ∉ 𝑁

2.                                                                                                  (14) 

Next, consider problem(1) with the initial set 𝑋𝑛 of large cardinality. In this case, the 

Vandermonde convolution ∑ 𝐶𝑛
𝑟𝑘

𝑟=0 𝐶𝑚
𝑘−𝑟 = 𝐶𝑛+𝑚

𝑘  is applicable, and we will present some 

transformations. Let the initial set be: 

 𝑋𝑛 = 𝑋𝑛1 ∪ 𝑋𝑛2 , 𝑛1 + 𝑛2 = 𝑛                                                                                                         (15) 

and the problem (1) is then solved. 

Note that the following relationships are valid if: 

𝑘 = 2𝑚 + 1 ≤ 𝑛 ∶  𝑋𝑘 = ⋃ 𝑋𝑚
2

𝑚 ∪ 𝑥𝑙, 𝑁
𝑘 = ⋃ 𝑁𝑚

2
𝑚 ∪ 𝑛𝑙 ,  𝑆

𝑘 = 𝑆2𝑚 + 𝑥𝑙 , 𝑠
𝑘 = 𝑠2𝑚 + 𝑛𝑙  , 𝑥𝑙 ∈

𝑋𝑛, 𝑥𝑙 ∉ ⋃ 𝑋𝑚
2

𝑚 , 𝑛𝑙 ∈ 𝑁
𝑛, 𝑛𝑙 ∉ ⋃ 𝑁𝑚

2
𝑚    ∨  

𝑘 = 2𝑚 ≤ 𝑛: 𝑋𝑘 = ⋃ 𝑋𝑚
2

𝑚 ∖ 𝑥𝑙, 𝑁
𝑘 = ⋃ 𝑁𝑚

2
𝑚 ∖ 𝑛𝑙 ,  𝑆

𝑘 = 𝑆2𝑚 − 𝑥𝑙 , 𝑠
𝑘 = 𝑠2𝑚 − 𝑛𝑙  , 𝑥𝑙 ∈ 𝑋

𝑛, 𝑥𝑙 ∉
⋃ 𝑋𝑚

2
𝑚 , 𝑛𝑙 ∈ 𝑁

𝑛, 𝑛𝑙 ∉ ⋃ 𝑁𝑚
2

𝑚  .                                                                                                      (16)                                

It is essential to ensure the integrity of the values in all the aforementioned formulas. 

Let the cardinality of the subsets 𝑋𝑘 and 𝑁𝑘 be 𝑘 = 2𝑚 ≤ 𝑛. We introduce a Diophantine 

equation: 

𝑁2: 𝑛𝑖 + 𝑛𝑗 = 𝑠2, ( 𝑛𝑖 , 𝑛𝑗) ∈ 𝑁
𝑛                                                                                                        (17) 

and introduce the notations and formulas considering the Diophantine equation (17): 

𝑁𝑚
2 = {(𝑖, 𝑗) ∈ 𝑁𝑛, 𝑖 + 𝑗 = 𝑠2, 𝑠2 ∈ [𝑠𝑚𝑖𝑛

2 , 𝑠𝑚𝑎𝑥
2 ]}                                                                             (18) 

𝑋𝑚
2 = {(𝑥𝑖 , 𝑥𝑗) ∈ 𝑋

𝑛, (𝑖, 𝑗) ∈ 𝑁𝑚
2  , 𝑥𝑖  + 𝑥𝑗 = 𝑆

2, 𝑆2 = 𝑧2 ∈ [𝑧𝑚𝑖𝑛
2 , 𝑧𝑚𝑎𝑥

2 ]},                                    (19) 

where, from the range(6), we have that the unique index certificate 𝑠2 varies from 𝑠𝑚𝑖𝑛
2  to 𝑠𝑚𝑎𝑥

2  in 

steps of one. The subsets 𝑁𝑚
2  and 𝑋𝑚

2 ,  consist of two indices (𝑖, 𝑗) ∈ 𝑁𝑛 and two elements (𝑥𝑖  , 𝑥𝑗) ∈

𝑋𝑛, respectively. The value 𝑚 determines the number of subsets 𝑁𝑚
2  of cardinality 2, and this value 

can take on values 𝑚 = 1 ∨ 2 ∨ …∨𝑚 = 𝑘/2.  
A new solution to problem(1) is proposed, based on unique index certificates 𝑠2 = 𝑠𝑚𝑖𝑛

2 =
1 + 2 ∨ 𝑠2 = 𝑠𝑚𝑖𝑛

2 + 1 ∨ …∨ 𝑠2 = 𝑠𝑚𝑎𝑥
2 = 𝑛 − 1 + 𝑛 and the Diophantine equation(17).  

Theorem1: Let 𝑆𝑘 ∈ [𝑧𝑚𝑖𝑛
𝑘 , 𝑧𝑚𝑎𝑥

𝑘 ], and set 𝑋𝑛 be a set with cardinality 𝑘 = 2𝑚. The subsets  𝑁𝑚
2  , 

corresponding to each index certificate 𝑠2 ∈ [𝑠𝑚𝑖𝑛
2 , 𝑠𝑚𝑎𝑥

2 ], are solutions to the Diophantine 

equation(17). Then, for a given value of 𝑚 there exist subsets 𝑁𝑘 = ⋃ 𝑁𝑚
2𝑚

𝑚=1 , 𝑋𝑘 = ⋃ 𝑋𝑚
2𝑚

𝑚=1   such 

that: ∑ (𝑥𝑖 + 𝑥𝑗)(𝑥𝑖,𝑥𝑗)∈⋃ 𝑋𝑚
2

𝑚
= 𝑆𝑘 ≡ ∑ 𝑥𝑖𝑥𝑖∈𝑋

𝑘   with 𝑆𝑘 falling within the range(4). The time 

complexity and space requirements are as follows: 𝑇 ≤ 𝑂(𝑚𝑘) ≤ 𝑂(𝑘𝑛) < 𝑂(𝑛2), 𝕊 ≤ 𝑂 (
(𝑛−1)∗𝑛

2
).  
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Proof. The sequential application of relations(18) for each index certificate 𝑠2 and each subset 𝑁𝑚
2 , 

associated with each solution of the Diophantine equation(17) and subset 𝑋𝑚
2  forms the subsets 

⋃ 𝑁𝑚
2

𝑚 , ⋃ 𝑋𝑚
2

𝑚  and the following equality holds: ∑ (𝑥𝑖 + 𝑥𝑗)(𝑥𝑖,𝑥𝑗)∈⋃ 𝑋𝑚
2

𝑚
= 𝑆𝑘. Here, the indices of 

the found subsets 𝑁𝑚
2  are distinct. This property follows from the characteristics of the solutions to 

the Diophantine equation (17). Due to certificate 𝑆𝑘 belongs to the range(4), and considering Lemma1 

and the last equality, we obtain the solution to the original problem(1). As noted above, sequentially 

examining the subsets 𝑁𝑚
2   allows us to determine the time and space requirements, which are given 

by the formulas: 𝑇 ≤ 𝑂(𝑚𝑘) ≤ 𝑂(𝑛𝑘) ≤ 𝑂(𝑛2), 𝕊 ≤ 𝑂 (
(𝑛−1)∗𝑛

2
).     

Corollary 1: 1. If the Diophantine equation (17) is unsolvable for a given index certificate 𝑠𝑘, from 

the symmetry property of the combination function(2), there will always be a certificate ∑ 𝑥𝑖
𝑛
𝑖=1 −𝑆𝑘 

with the possibility of applying the formulas(3). 2. If the relations(16) hold, then the theorem is 

applicable for odd 𝑘 when using the estimates 𝑇 ≤ 𝑂(𝑚𝑘) ≤ 𝑂(𝑘𝑛) ≤ 𝑂(𝑛2). 
For a clear demonstration of the results of Theorem1, it is sufficient to consider the selection 

of subsets 𝑋𝑘, 𝑁𝑘 with cardinality 𝑘 = 2 in problems(1), (5) and their combination ⋃ 𝑋𝑚
2

𝑚 , ⋃ 𝑁𝑚
2

𝑚   

when taking into account the relations(16).  

The theorem is valid for odd 𝑘. For an odd 𝑘 = 2𝑚 + 1, the certificate 𝑆3 is defined 

as 𝑆3= 𝑆2 + 𝑥𝑙 , where 𝑥𝑙 ∈ 𝑋
𝑛, 𝑥𝑙 ∉ 𝑋

𝑘 is added to the certificate [
 𝑆𝑘

𝑚
]. Note that the integer 

divisibility of the quantities is always taken into account  𝑆𝑘/𝑚, 
𝑠𝑘

2
/𝑚 and, without loss of generality, 

subtraction can also be used instead of division. 

Theorem 2: Let the conditions of Theorem1 be satisfied, and let the Vandermonde convolution hold. 

Then, considering the partition(15), the subset 𝑋𝑘 ⊂ 𝑋𝑛 is determined based on the formula: 

∑ 𝐶𝑛1
𝑟𝑘

𝑟=0 𝐶𝑛2
𝑘−𝑟 = 𝐶𝑛1+𝑛2

𝑘 = 𝐶𝑛
𝑘 . 

Proof. Indeed, for each set 𝑋𝑛1  and 𝑋𝑛2 , Theorem1 holds with certificates 𝑆𝑘1 and  𝑆𝑘2 (where 𝑆𝑘 =
𝑆𝑘1 + 𝑆𝑘2 , 𝑘1 + 𝑘2 = 𝑘), respectively. Moreover, 𝑋𝑘1 ⊆ 𝑋𝑛1 , 𝑋𝑘2 ⊆ 𝑋𝑛2 ,  𝑋𝑘1 ∪ 𝑋𝑘2 = 𝑋𝑘. 

The simplest way to partition the original set 𝑋𝑛 into two subsets 𝑋𝑛1 , 𝑋𝑛2  with cardinalities 

𝑛1, 𝑛2 is to divide 𝑛 by 2. Similarly, to partition the subset 𝑋𝑘 into two subsets 𝑋𝑘1 , 𝑋𝑘2 with 

cardinalities 𝑘1 ≤ 𝑛1, 𝑘2 ≤ 𝑛2, one should divide 𝑘 by 2, taking into account their evenness and 

oddness.  

The advantage of Theorem2 lies in the ability to generate all subsets 𝑁𝑚
2  and 𝑋𝑚

2  without using 

the certificate 𝑆𝑘, as well as in its ability to utilize the certificate 𝑆𝑘 for the combined sets 

⋃ 𝑁𝑚
2

𝑚 , ⋃ 𝑋𝑚
2

𝑚 . 
Thus, it is important to note that the correspondence between the certificate 𝑆𝑘  and the index 

certificate 𝑠𝑘 must be represented as a functional relationship  𝑠𝑘 = 𝑓(𝑆𝑘) for 𝑘 ≥ 3, while  𝑘 < 3 

this unambiguous relationship is established through matrices(11) and (12).  

Based on the theorems of means (the properties of the arithmetic mean and the combination 

function(2)), we introduce the following formulas with standard rounding rules to the nearest integer, 
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considering that the certificate 𝑆𝑘 and the index certificate 𝑠𝑘 belong to the discrete ranges(4) and (6), 

respectively: 

𝑘 =
(𝑠𝑚𝑖𝑛
𝑘 +𝑠𝑚𝑎𝑥

𝑘 )/2

∑ 𝑖𝑛
𝑖=1

𝑛 ∨  𝑘 =
(𝑧𝑚𝑖𝑛
𝑘 +𝑧𝑚𝑎𝑥

𝑘 )/2

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛,                                                                                 (20) 

 𝑠𝑘 =
𝑆𝑘 ∑ 𝑖𝑛

𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1

 ∨  𝑠𝑘 =
(∑ 𝑖)𝑛
𝑖=1 ∗(𝑧𝑚𝑖𝑛

𝑘 +𝑧𝑚𝑎𝑥
𝑘 )/2

∑ 𝑥𝑖
𝑛
𝑖=1

.                                                                                    (21) 

In formulas (20) and (21), the arithmetic means can be replaced by the certificate 𝑆𝑘 and the index 

certificate 𝑠𝑘. However, the precise determination of the cardinality 𝑘 and the index certificate 𝑠𝑘 is 

obtained through solving the Diophantine equation(9). 

The proven lemmas and theorems demonstrate the practical applicability of the new method 

(new algorithm) for solving the subset sum problem, in comparison to existing exponential [4,5], 

pseudo polynomial [10,11,12] algorithms, and brute-force methods [6]. 

 

Practical implementation of the novel method for solving the Subset Sum Problem 

 

Example1. Given the sets 𝑋8 = {10,14,17,20,36,38,43,47}, 𝑁8  =
{1,2, … ,8}  (one−dimensional arrays), and the certificate  𝑆2 = 57. The index certificate 𝑠2 for 𝑆2 =
57 can be computed as follows: since 𝑆2 ∈ [24, 90] and 𝑘 = 2, we have 𝑠2 = 9. We verify the results: 

according to formulas(20), (21) and range(6) 𝑠2 ∈ [3, 15], we find 𝑘 =
(𝑧𝑚𝑖𝑛
𝑘 +𝑧𝑚𝑎𝑥

𝑘 )/2

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛 =
(24+90)2

225
8 =

2,02 or =
(𝑠𝑚𝑖𝑛
𝑘 +𝑠𝑚𝑎𝑥

𝑘 )/2

∑ 𝑖𝑛
𝑖=1

𝑛 =
(3+15)/2

36
8 = 2, 𝑠2 =

3+15

2
= 9. Thus, for this index certificate 𝑠2 the 

solution to the Diophantine equation(17) defines the subsets 𝑁2 = {1,8} ∨ {2,7} ∨ {3,6} ∨ {4,5}.  By 

sequentially examining the identified subsets 𝑁2,  we find subsets 𝑁2 = {1,8}, {2,7} ↔  𝑥1+ 𝑥8 =

57 ∨  𝑥2+ 𝑥7 = 57 , 𝑋2 = {𝑥1, 𝑥8} ∨ {𝑥2, 𝑥7},  𝑇 ≤ 𝑂 (
𝑛

2
) = 𝑂(4) ≤ 𝑂(𝑚2) = 𝑂(15) ≤ 𝑂(𝑛𝑘) =

𝑂(16) < 𝑂(64),    𝕊 ≤ 𝑂 (
(𝑛−1)∗𝑛

2
) = 28.   

Example2. Given same set 𝑋8 with the certificate 𝑆𝑘 = 100. The index certificate 𝑠3  for 𝑆3 =
100 can be computed as follows: since 𝑆3 ∈ [41, 128] and 𝑘 = 3,  we have 𝑠3 = 𝑠2 + 𝑙. We verify 

the results: according to formulas(20), (21) and range (6)  𝑠3 ∈ [6, 21], we find 𝑘 =
(𝑧𝑚𝑖𝑛
𝑘 +𝑧𝑚𝑎𝑥

𝑘 )/2

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛 =

(41+128)

2

225
8 = 3,004 or =

(𝑠𝑚𝑖𝑛
𝑘 +𝑠𝑚𝑎𝑥

𝑘 )/2

∑ 𝑖𝑛
𝑖=1

𝑛 =
6+21

2

36
8 = 3. The solutions to equation(17) are the subsets 

𝑁2,  where 𝑠2 = 8. According to relation(16), by sequentially examining the identified subsets 𝑁2,  
we find subsets 𝑁2 = {1,7} ∨  {3,5} → 𝑋2 = {𝑥1, 𝑥7} ∨ {𝑥3, 𝑥5} → 𝑆2 = 53 → 𝑆3 = 𝑆2 + 𝑥𝑙 = 53 +
47 = 100. Answer: 𝑁3 = 𝑁1

2 + 𝑙 ↔ 𝑋3 = {𝑥1, 𝑥7, 𝑥8} ∨ {𝑥3, 𝑥5, 𝑥8},  

𝑇 ≤ 𝑂(𝑛𝑘) = 𝑂(24) < 𝑂(64),    𝕊 ≤ 𝑂 (
(𝑛−1)∗𝑛

2
) = 28.   

The second method follows from relation(16): 𝑆4 = 114 → 𝑆2 = 57, 𝑠2 = 9. We use the 

calculations from Example1: For the index certificate 𝑠2, the solution to the Diophantine equation(17) 
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defines the subsets 𝑁2 = {1,8} ∨ {2,7} ∨ {3,6} ∨ {4,5}. By sequentially examining the identified 

subsets 𝑁2, we find subsets 𝑁2 = {1,8}, {2,7} ↔  𝑥1+ 𝑥8 = 57 ∨  𝑥2+ 𝑥7 = 57 , 𝑋
2 = {𝑥1, 𝑥8} ∨

{𝑥2, 𝑥7}. According to relation(16), we obtain: 𝑘 = 2𝑚 ≤ 𝑛: 𝑋3 = ⋃ 𝑋𝑚
2

𝑚 ∖ 𝑥𝑙, 𝑁
3 = ⋃ 𝑁𝑚

2
𝑚 ∖

𝑛𝑙 ,  𝑆
3 = 𝑆4 − 𝑥𝑙 ,  𝑆

3 = 114 − 14 = 100, 𝑠3 = 𝑠4 − 𝑛𝑙  , 𝑠
3 = 18 − 2 = 16, 𝑥2 = 14, 𝑥2 ∈ 𝑋

𝑛, 𝑥2 ∉
⋃ 𝑋𝑚

2
𝑚 , 𝑛2 = 2, 𝑛2 ∈ 𝑁

𝑛, 𝑛2 ∉ ⋃ 𝑁𝑚
2

𝑚 , 𝑋4 = {𝑥1, 𝑥8} ∪ {𝑥2, 𝑥7}, 𝑁
2 = {1,8} ∪ {2,7}.  

Answer: 𝑋3 = ⋃ 𝑋𝑚
2

𝑚 ∖ 𝑥2 = {𝑥1, 𝑥8, 𝑥7}, 𝑁
3 = ⋃ 𝑁𝑚

2
𝑚 ∖ 𝑛2 = {𝑛1, 𝑛8, 𝑛}, 𝑇 ≤ 𝑂(𝑛𝑘) =

𝑂(24) < 𝑂(64),    𝕊 ≤ 𝑂 (
(𝑛−1)∗𝑛

2
) = 28.   

Example3. Given same set 𝑋8 with the certificate 𝑆𝑘 = 113. First, determine the cardinality k 

of the subset 𝑋𝑘 based on the certificate 𝑆𝑘 = 113 belonging to range(4), where 𝑆𝑘 ∈[61,164] and 

k=4. Alternatively, according to formula(20), we have:  𝑘 =  
(61+164)8

2∗225
 = 4,017, after rounding, 𝑘 =

4. To apply Theorem1 and solve the Diophantine equation(17), 𝑆𝑘 needs to be divided by 2, yielding 

𝑆2 = 57 or 56. Consequently, we have 𝑠2 = 1 + 8 = 9. Solving the Diophantine equation(17) for 𝑠2 

gives: 𝑁2 = {1,8} ∨ {2,7} ∨ {3,6} ∨ {4,5}. Verification of the condition: ∑ (𝑥𝑖 + 𝑥𝑗)(𝑥𝑖,𝑥𝑗)∈𝑋
2 = 𝑆2 =

57 determines: 𝑋2
2 = {10,47} ∨ {14,43}. Perform similar steps for: 𝑆2 = 56, resulting in: 𝑁2

2 = {4,5} 
and ∑ (𝑥𝑖 + 𝑥𝑗)(𝑥𝑖,𝑥𝑗)∈𝑋

2 = 𝑆2 = 56. According to Theorem1, the final result is: 𝑁4 = ⋃ 𝑁2
2 =2

{1,8} ∪ {4,5} ∨ 𝑁4 = ⋃ 𝑁2
2 = {2,7} ∪2 {4,5}. These subsets describe: 𝑋4 = ⋃ 𝑋2

2
2 = {𝑥1, 𝑥8} ∪

{𝑥4, 𝑥5} ∨ {𝑥2, 𝑥7} ∪ {𝑥4, 𝑥5}, 𝑋4 = {𝑥1, 𝑥8, 𝑥4, 𝑥5} ∨ {𝑥2, 𝑥7, 𝑥4, 𝑥5}, 𝑇 ≤ 𝑂(𝑛𝑘) = 𝑂(32) <

𝑂(64),    𝕊 ≤ 𝑂 (
(𝑛−1)∗𝑛

2
) = 28.   

Example4. Given the set 𝑋8 = {10,14,17,20,36,38,43,47} and the certificate 𝑆4 = 120 since 

there is no solution to the Diophantine equation(17) for 𝑠4, an alternative certificate satisfying the 

conditions of Theorem1 must be found. Specifically, ∑ 𝑥𝑖
𝑛
𝑖=1 - 𝑆4 = 225 − 120 = 105. Thus, 𝑆2 =

105

2
, 𝑆2 = 53 ∨ 52. Given that 𝑠2 = 8, 𝑁4 = ⋃ 𝑁2

2 = {1,7} ∪2 {2,6} ∨ 𝑁4 = ⋃ 𝑁2
2 = {3,5} ∪2 {2,6}. 

The result is: 𝑁4 = 𝑁𝑛 ∖ ⋃ 𝑁2
2 = 𝑁𝑛 ∖ ({3,5} ∪2 {2,6}) = {1,4,7,8},  𝑋4 = {𝑥1, 𝑥4, 𝑥7, 𝑥8} ∨ 𝑁

4 =
𝑁𝑛 ∖ ⋃ 𝑁2

2 = 𝑁𝑛 ∖ ({1,7} ∪2 {2,6})  =  {3,4,5,8}:  𝑋4 = {𝑥1, 𝑥4, 𝑥7, 𝑥8}  ∨  𝑋
4 =

{𝑥3, 𝑥4, 𝑥5, 𝑥8}, 𝑇 ≤ 𝑂(𝑛𝑘) = 𝑂(32) < 𝑂(64),    𝕊 ≤ 𝑂 (
(𝑛−1)∗𝑛

2
) = 28.   

Example5. Given the set 𝑋8 = {10,14,17,20,36,38,43,47} and the certificate 𝑆5 = 120. 

According to formula(20), we have: 𝑘 =  
(97+184)8

2∗225
 = 4,99 → 𝑘 = 5, 𝑘 =   

(15+30)/2

36
8 = 5. Solving 

the Diophantine equation(17) for 𝑠2 = 8, gives: 𝑁2 = {1,7} ∨ {2,6} ∨ {3,5} and 𝑁6 = {1,7} ∪
{2,6} ∪ {3,5}, 𝑆6 = 158, 𝑆5 = 𝑆6 − 𝑥6 = 158 − 38 = 120 → 𝑁5 = {1,7} ∪ {3,5} ∪ {2} → 𝑋5 =

{𝑥1, 𝑥7, 𝑥3, 𝑥5, 𝑥2 }, 𝑇 ≤ 𝑂(𝑛𝑘) = 𝑂(40) < 𝑂(64),    𝕊 ≤ 𝑂 (
(𝑛−1)∗𝑛

2
) = 28.   

Example6. Given the set 𝑋8 = {10,14,17,20,36,38,43,47} and the certificate 𝑆6 = 168. Here: 

168/3=56. According to Example3, we have: 𝑆2 = 56 and 𝑠2 = 9,𝑁2 = {1,8} ∨ {2,7} ∨ {3,6} ∨
{4,5}, 𝑁6 = {1,8} ∪ {3,6} ∪ {4,5} ∨ {2,7} ∪ {3,6} ∪ {4,5}, 𝑋6 = {𝑥1, 𝑥8, 𝑥3, 𝑥6, 𝑥4, 𝑥5} ∨ 

{𝑥2, 𝑥7, 𝑥3, 𝑥6, 𝑥4, 𝑥5},  𝑇 ≤ 𝑂(𝑛𝑘) = 𝑂(48) < 𝑂(64),    𝕊 ≤ 𝑂 (
(𝑛−1)∗𝑛

2
) = 28.   
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Example7. Consider the set 𝑋27 = 𝑋13 ∪ 𝑋14 and it is necessary to find a subset 𝑋5 ⊂ 𝑋27. 

 according to formula (2). In this case, the Vandermonde convolution is given by: 

𝐶13
4 𝐶14

1 + 𝐶14
4 𝐶13

1 + 𝐶13
2 𝐶14

3 + 𝐶14
3 𝐶13

2 + 𝐶13
5 𝐶14

0 + 𝐶14
5 𝐶13

0 = 𝐶27
5 . For each combination function, 

Theorem1 can be applied based on the examples provided above. This significantly reduces the 

number of combinations, as the Diophantine equation (17) is used. The Vandermonde formula 

facilitates the parallelization of the computation process with the potential use of Theorem1. 

Example8. The validity of the theoretical and practical results obtained using Theorem1 and 

the Diophantine equation(17) for the sets 𝑋8 = {10,14,17,20,36,38,43,47}, 𝑁8  = {1,2, … ,8} is 

demonstrated by matrix(11), which has elements 𝑥𝑖𝑗 = 𝑥𝑖 + 𝑥𝑗 = 𝑆
2; matrix (12), which contains 

elements  𝑛𝑖𝑗 = (𝑛𝑖, 𝑛𝑗); and matrix(13), which represents the sum of two indices such that 𝑛𝑖 + 𝑛𝑗 =

𝑠2: 

𝑋2 =

{
  
 

  
 
24  27 30  46  48  53  57

      31 34  50  52  57  61

             37  53  55 60  64 

                   56 58  63  67

                            74 79  83  

                                  81 85 

                                      90 }
  
 

  
 

,𝑁2 =

{
  
 

  
 
1,2  1,3 1,4  1,5  1,6 1,7  1,8

       2,3 2,4  2,5  2,6 2,7  2,8

                3,4  3,5 3,6 3,7  3,8 

                       4,5 4,6  4,7  4,8

                                5,6  5,7  5,8  

                                       6,7 6,8 

                                            7,8 }
  
 

  
 

, 𝑠2 =

{
  
 

  
 
3  4 5  6  7 8  9

    5 6  7 8 9  10

         7 8 9 10 11 

          9 1011 12

             11 12 13 

                  13 14

                        15 }
  
 

  
 

.  (22) 

Indeed, the use of matrices (22) facilitates the combined application of Theorem1 and Lemma2 

for certificates 𝑆8 = 225 and 𝑆7 = 189, among others. The sum of the indices of the set  𝑁8 is given 

by: 𝑠8 =
𝑛(𝑛+1)

2
= 36. The solutions to the Diophantine equation(17) with an index certificate 36/4=9  

are the subsets 𝑁𝑚
2 = {1,8} ∨ {2,7} ∨ {3,6} ∨ {4,5}.  Their combination is given by: 𝑁8 = ⋃ 𝑁𝑚

24
𝑚=1 , 

accordingly, the solution to the problem(1) is: 𝑋8 = ⋃ 𝑋𝑚
24

𝑚=1 . From the first matrix of matrices(22), 

by sequential examination, we have: 𝑆8 = 57 + 57 + 55 + 56 = 225.  For 𝑆7 using the 

relationships(16), we get: 𝑋7 = ⋃ 𝑋𝑚
24

𝑚=1 ∖ 𝑥𝑙 = 225 − 36 = 189, 𝑥5 = 36. The complexity is: 𝑇 ≤

𝑂(𝑛𝑘) = 𝑂(64),    𝕊 ≤ 𝑂 (
(𝑛−1)∗𝑛

2
) = 28.   

In some examples, the index m is omitted in the subsets 𝑁𝑚
2  and 𝑋𝑚

2  for simplifying the notation 

of the formulas. 

It is important to emphasize that Theorem1 has been examined for applications involving the 

selection of subsets 𝑋𝑘 with arbitrary cardinalities 𝑘 = 2 ∨  3 ∨  4 ∨  5 ∨  6 ∨ 7 ∨ 8 from an initial set 

with any size 𝑛. This underscores the general applicability of Theorem1 and Lemma2. 

Conclusion 
 

The subset sum problem, classified as NP-complete, is considered. Diophantine equations and 

an auxiliary problem are introduced to facilitate solving the original problem, which also holds 

independent scientific interest. Lemmas and theorems are proven, enabling the development of 

efficient and straightforward algorithms for solving the subset sum problem. The time required to 

select the necessary subsets and the space needed do not exceed the square of the length of the input 

data. An analytical framework for working with indices of the initial set is developed. The proposed 
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algorithms are applicable to solving independent set problems of size k and k-vertex cover problems. 

Examples are provided to illustrate the high efficiency of the new method for solving the subset sum 

problem. 

It should be noted that the time required to sort an array of integers is proportional to the square 

of the dimension of the one-dimensional array describing the initial set of distinct positive integers, 

and this task belongs to the class P. Therefore, based on the newly developed method, it can be 

assumed that the subset sum problem, which is NP-complete and belongs to the NP class, also belongs 

to the P class. 
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