Fuzzy Mean *e*-Open and *e*-Closed Sets

Dr. M. Sankari,

Department of Mathematics, Lekshmipuram College of Arts and Science, Neyyoor-629802, Tamil Nadu

Abstract

The notions of fuzzy mean e -open and e -closed sets is established. Moreover, some comparative study of these with other fuzzy mappings are investigated. Finally, we extend fuzzy mean e -open to fuzzy para e -open sets in fuzzy topology.

Keywords and phrases: Fuzzy minimal e-open, fuzzy mean e-open, fuzzy e- para open.

2010 Mathematics Subject Classification:54A40,03E72.

1. Introduction

Fuzzy sets were established by Zadeh [10] and the perception of fuzzy topology instigated by Chang [2] in 1968. The ideas of fuzzy minimal (resp. maximal open) [3] sets explored in [3]. Subsequently the concepts of fuzzy mean open set investigated by Swaminathan [9]. On combining fuzzy mean open [9] and fuzzy paraopen open [4] sets, we extend the perception of fuzzy mean open (resp. closed) sets and from which we investigate some results.

The following terminologies "fuzzy *e*-open (resp.closed), fuzzy *e*-mean open(resp.closed), fuzzy minimal *e*-open(resp.maximal), fuzzyminimal *e*-closed set, (resp.maximal), fuzzy *e*-paraopen(resp.paraclosed) and fuzzy *e*-connected topological space respectively abbreviated as F*e*-O, FME*e*-O, FME*e*-C, FMI*e*-O, FMA*e*-O, FMI*e*-C, FMA*e*-C, FMA*e*-C, Fe-PO, F*e*-PC and F*e*-CTS. Entire paper *F* stands for fuzzy topology (*F*, τ)".

2. Preliminaries

Definition 2.1. A fuzzy subset $\beta \in F$ is said to be fuzzy regular open [1] if $\beta = Int [Cl(\beta)]$

The union of all fuzzy regular open sets contained in fuzzy subset $\beta \in F$ is F e-interior of β . If $\beta = Int\delta(\beta)$ then fuzzy subset β is called F e-O [8] such that its complement is called F e-C (i.e, $\beta = Cl\delta(\beta)$).

Definition 2.2. [5] A proper nonzero F e - O set $\beta \in F$ is called (i) FMI e - O if only F e - O sets contained in β . are β and 0 (ii)FMA e - O if only F e - O sets containing β are 1 and β .

Definition 2.3. A FO set $\mu \in F$ is said to be a FPO [4]set if it is neither FMIO nor FMAO set.

3. Fuzzy e-Paraopen and e-Paraclosed Sets

Definition 3.1. A F e -O set $\zeta \subset_F$ which is neither FMI e -O nor FMA e -O set is said to be F e -PO set.

Definition 3.2. A $F \in -C$ set $\alpha \subset F$ is said to be a $F \in -PC$ set iff its complement $1 - \alpha$ is $F \in -PO$ set.

Remark 3.1. The converse of the statement: Every F e -PO set (resp.F e -PC) is a FO set(resp.FC set). Need not to be true proven by following example.

Example 3.2.

Remark 3.3. Union (resp.intersection) of F e -PO (resp. F e -PC) sets need not be F e -PO

(resp. F e -PC) set.

Theorem 3.4. Let F be a FTS and α be a nonempty proper F *e* -PO subset of F, then $\exists a \text{ FMI } e$ -O set ζ with $\zeta < \alpha$.

Proof. Clearly $\zeta < \alpha$ as per the FMI *e* -O set definition.

Theorem 3.5. Let α be a nonempty proper F *e* -PO subset of a FTS F, then $\exists a \psi$ FMA *e* -O set with $\alpha < \psi$.

Proof. Clearly $\alpha < \psi$ as per the FMA *e* -O set definition.

Theorem 3.6. Suppose that _F is a FTS, then

(i) $\varsigma \land \zeta = 0$ or $\zeta < \varsigma$ for any F *e* -PO ς and a FMI *e* -O set ζ . (ii) $\varsigma \lor \lambda = 1$ or $\varsigma < \lambda$ for any F *e* -PO ς and a FMA *e* -O set λ . (iii)Intersection of F *e* -PO sets is either F *e* -PO or FMI *e* -O set.

Proof. (i) For any F *e* -PO set ς and a FMI *e* -O open set ζ in F. Then $\varsigma \land \zeta = 0$ or $\varsigma \land \zeta \neq 0$. If $\varsigma \land \zeta = 0$, then over. Assume Λ ζ proof could be ς ¥ 0 Then we write . $\varsigma \land \zeta$ is a FO set and $\varsigma \land \zeta < \zeta$. Hence $\zeta < \varsigma$.

(ii) For any F *e* -PO set ς and a FMA *e* -O set ξ in F. Then $\varsigma \lor \xi = 1$ or $\varsigma \lor \xi \neq 1$. If $\varsigma \lor \xi = 1$, then proof could be over. Assume $\varsigma \lor \xi \neq 1$. Clearly, $\varsigma \lor \gamma$ is a FO set and $\gamma < \varsigma \lor \gamma$. Hence γ is a FMA *e* -O set, $\varsigma \lor \gamma = \gamma$ implies $\varsigma < \gamma$.

(iii)Let ς and ξ be a F *e* -PO sets in F. If $\varsigma \land \xi$ is a F *e* -PO set, then proof could be over. Suppose $\varsigma \land \xi$ is not a F *e* -PO set. By definition, $\varsigma \land \xi$ is a FMI *e* -O or FMA *e* -O set. If $\varsigma \land \xi$ is a FMI *e* -O set, then proof could be over. Suppose $\varsigma \land \land \xi$ is a F a FMA *e* -O set. Now $\varsigma \land \xi < \varsigma$ and $\varsigma \land \xi < \xi$ contradicting the fact that ς and ξ are F *e* -PO sets. Hence, $\varsigma \land \xi$ is not a FMA *e* -O set. (i.e.) $\varsigma \land \xi$ is a FMI *e* -O set.

Theorem 3.7. A subset λ of a FTS F is F *e* -PC iff it is neither FMA *e* -C nor FMI *e* –C set.

Proof. The complement of FMI e -O set and FMA e -O set are FMA e -C set and FMI e -

C set respectively.

Theorem 3.8. Let λ be a nonempty F *e* -PC subset of a FTS F. Then \exists a FMI *e* -C set ψ with $\psi < \lambda$.

Proof. Clearly by FMI *e* -C set definition , it follows that $\psi < \lambda$.

Theorem 3.9. Suppose that λ is a nonempty F *e* -PC subset of FTS F then \exists a FMA *e* -C set κ such that $\lambda < \kappa$.

Proof. Clearly by FMA *e* -C set definition, it follows that $\lambda < \kappa$.

Theorem 3.10. Suppose that F is a FTS then

(i) $\kappa \wedge \eta = 0$ or $\eta < \kappa$ for any F *e* -PC set κ and FMI *e* -C set η . (ii) $\kappa \vee \zeta = 1$ or $\kappa < \zeta$ for any F *e* -PC set κ and FMA *e* -C set ζ .

(iii) Intersection of F e -PC sets is either F e -PC or FMI e -C set.

Proof. (i) Suppose that κ is a F *e* -PC and η is a FMI *e* -C set in F. Then $(1 - \kappa)$ is F *e* -PO and $(1 - \eta)$ is FMA *e* -O set in F. Then by Theorem 3.6 (ii) $(1 - \kappa) \lor (1 - \eta) = F$ or $(1 - \kappa) < (1 - \eta)$ implying $1 - (\kappa \land \eta) = 1$ or $\eta < \kappa$. Hence, $\kappa \land \eta = 0$ or $\eta < \kappa$.

(ii) Suppose that κ is a F *e* -PC and ζ is a FMA *e* -C set in F. Then $(1 - \kappa)$ is F *e* -PO and $(1 - \zeta)$ is FMI *e* -O sets in F. Then by Theorem 3.6(i) $(1 - \kappa) \wedge (1 - \zeta) = 0$ or $1 - \zeta < 1 - \kappa$ implying $1 - (\kappa \vee \zeta) = 0$ or $\kappa < \zeta$. Hence, $\kappa \vee \zeta = 1$ or $\kappa < \zeta$.

(iii)Suppose that κ and ξ is a F *e* -PC sets in F. If $\kappa \wedge \xi$ is a F *e* -PC set, then proof could be over. Suppose $\kappa \wedge \xi$ is not a F *e* -PC set. Then clearly, $\kappa \wedge \xi$ is FMI *e* -C or FMA *e* -C set. Suppose $\kappa \wedge \xi$ is a FMI *e* -C set, then proof could be over. Suppose $\kappa \wedge \xi$ is a FMA *e* -C set. Now $\kappa < \kappa \wedge \xi$ and $\xi < \kappa \wedge \xi$ a contradiction for κ and ξ are F e -PC set. Hence, $\kappa \wedge \xi$ is not a FMA *e* -C set. (i.e.) $\kappa \wedge \xi$ is a FMI *e* -C set.

4. Fuzzy Mean e-Open and e-Closed Sets

Definition 4.1. A F e -O set $\psi \subset_F$ is said to be a FME e -O set if $\exists \omega 1, \omega 1 (\neq \psi)$ two distinct proper F e -O sets such that $\omega 1 < \psi < \omega 2$.

Remark 4.1. It could be understood from the succeding example that the union and

intersection of FME e -O need not be FME e -O sets.

Example 4.2. Let F = $\{x, y, z, w\}$. Then fuzzy sets (0.4, ω1 $\{(0.5,$ *x*), y), (0.4,*z*), (0.5, $w)\}$ = ω2 $\{(0.5,$ (0.4, (0.6, (0.5, = *x*), y), z), $w)\}$ $\{(0.5,$ (0.4, (0.5,ω3 *x*), (0.6,y), z), =

;

w)

and $\omega 4 = \{(0.5, x), (0.6, y), (0.6, z), (0.5, w)\}$ of the fuzzy topology $\tau = \{0, \omega 1, \omega 2, \omega 3, \omega 4, 1\}$. Hence $\omega 2$ and $\omega 3$ are FME *e* -O sets but their union $\omega 2 \vee \omega 3 = \omega 4$ and intersection $\omega 2 \wedge \omega 3 = \omega 1$ are not FME *e* -O sets.

Definition 4.2. A F e - C set $v \subset F$ is said to be a FME e - C set if two F e - C sets $\xi 1 \neq \xi 1 (\neq v)$ such that $\xi 1 < v < \xi 2$.

Definition 4.3. A $F \in O$ set $\zeta \subset F$ which is neither FMI e -O nor FMA e -O set is said to be F e -PO set where its complement is known to be F e -PC set.

Theorem 4.3. A F e -O set of a fts is a FME e -O set iff its complement is a FME e -C set.

Proof. By deploying definition 4.1 for any FME *e* -O set ψ in F we have $\omega 1 < \psi < \omega 2$

implying that $1 - \omega 2 < 1 - \psi < 1 - \omega 1$. Clearly $1 - \omega 2 \neq 0$, $1 - \psi$ and $1 - \omega 1 \neq 1 - \psi$, 1. Hence $1 - \psi$ is a FME *e* -C set.

Conversly, Let $1 - \psi$ is a FME *e* -C set for any FME *e* -O set ψ in F. By definition 4.2, F *e* -C sets $\xi 1 \neq \neq 0, 1 - \psi$ and $\xi_2 \neq 1, 1 - \psi$ such that $\xi 1 < 1 - \psi < \xi 2$ implying that $1 - \xi 2 < \psi < 1 - \xi 1$. As $\xi 2 \neq 0, \psi$ and $1 - \xi 1 \neq \psi, 1$; ψ is a FME *e* -O set.

Theorem 4.4. A proper F e -PO set is a FME e -O set and vice-e-versa.

Proof. The proof of necessary part is obvious by theorem 1.7 [9].

Conversely, let ψ be a proper FME e -O set in F. Then two F e -O sets $\zeta 1 \neq \zeta 2$ such that $\zeta 1 < \psi < \zeta 2$. Clearly ψ is neither FMI e -O nor FMA e -O set as $\zeta 1 \neq 0$, ψ and $\zeta 2 \neq \psi$, 1. As $\psi \neq 0, 1$, ψ is a proper F e -PO set.

Theorem 4.5. A proper F e -PC set is a FME e -C set and vice-e-versa.

Proof. The proof of necessary part is obvious by theorem 1.10 [9].

Conversely, let ϑ be a proper FME e -C set in F. Then two F e -C sets $\upsilon 1 \neq \upsilon 2 \neq \vartheta$ such that $\upsilon 1 < \vartheta < \upsilon 2$. Clearly ϑ is neither a FMI e -C nor a FMA e -C set as $\upsilon 1 \neq 0$, ϑ and $\upsilon 2 \neq 1$, ϑ . As $\vartheta \neq 0$, 1, ϑ is a proper F e -PC set.

Theorem 4.6. ([5]) Let _F be a fts.

(i) If ζ is a FMI *e* -O and ξ is a F *e* -O sets in F, then $\zeta \wedge \xi = 0$ or $\zeta < \xi$. (ii) If ζ and κ are FMI *e* -O sets, then $\zeta \wedge \xi = 0$ or $\zeta = \xi$.

Theorem 4.7. ([5]) Let F be a fts.

(i) If ζ is a FMA *e* -O and ξ is a F *e* -O sets in F, then $\zeta \lor \xi = 1$ or $\xi < \zeta$. (ii) If ζ and κ are FMA *e* -O set, then $\zeta \lor \kappa = 1$ or $\zeta = \kappa$.

Theorem 4.8. If ξ_1 is a FMA e -O set and ξ_2 is a FMI e -O set of a fts F, then either $\xi_2 < \xi_1$ or F is fuzzy e – disconnected.

Theorem 4.9. Let a F *e* -CTS _F contain a FMA *e* -O set $\zeta 2$, a FMI *e* -O set $\zeta 1 \neq \zeta 2$ and a proper F *e* -O set $\xi \neq \zeta 1, \zeta 2$. Then exactly one of the succeeding could be true on _F:

(i) ξ is a FME *e* -O set with $\zeta 1 < \xi < \zeta 2$.

- (ii) $\zeta 1 < 1 \xi < \zeta 2$.
- (iii) $\zeta 1 < \xi$, $\zeta 1 \lor \xi = 1$ and $\zeta 2 \land \xi \neq 0$. (iv) $\xi < \zeta 2$, $\zeta 1 \land \zeta 2 = 0$ and $\zeta 1 \lor \zeta 2 \neq 1$.

Proof. By deploying theorem 4.8, a FMI *e* -O set $\zeta 1 < \zeta 2$ a FMA *e* -O set. This implies either $\zeta 1 < \xi$ or $\zeta 1 \land \xi = 0$ and $\xi < \zeta 2$ or $\zeta 2 \lor \xi = 1$. Hence the feasible combinations are (i) $\zeta 1 < \xi < \zeta 2$, (ii) $\zeta 1 \land \xi = 0$; $\zeta 2 \lor \xi = 1$, (iii) $\zeta 1 < \xi < \zeta 2$.

Clearly $\zeta 1 < 1 - \xi < \zeta 2$ if (ii) is true. Also, $0 \neq \zeta 1 < \zeta 1 \land \xi$ as $\zeta 1 < \zeta 2$ and (iii) is true. Again $\zeta 1 \lor \xi < \zeta 2 \neq 1$ as $\zeta 1 < \zeta 2$ and (iv) is true.

Case(II): As both (i),(iii) are true, then $\xi < \zeta 2$ and $\zeta 2 \lor \xi = 1$ gives $\zeta 2 = 1$, an absurd result.

Case(III): As both (i),(iv) are true, then $\zeta 1 < \xi$ and $\zeta 1 \land \xi = 0$ gives $\zeta 1 = 0$, an absurd result.

Case(IV): As both (ii),(iii) are true, then $\zeta 1 < 1 - \xi$ and $\zeta 1 < \xi$ gives $\zeta 1 = 0$, an absurd result.

Case(V): As both (ii),(iv) are true, then $1 - \xi < \zeta 2$ and $\xi < \zeta 2$ gives $\zeta 2 = 1$, an absurd result.

Case(VI): As both (iii),(iv) are true, then $\zeta 1 < \xi < \zeta 2$, $\zeta 2 \lor \xi = 1$ and $\zeta 1 \land \xi = 0$. Clearly $\zeta 2 = 1$ as $\xi < \zeta 2$ and $\zeta 2 \lor \xi = 1$ a contradiction. Similarly, we get $\zeta 1 = 0$ as $\zeta 1 < \xi$ and $\zeta 1 \land \xi = 0$ a contradiction.

Theorem 4.10. Let a F *e* -CTS _F contain a FMA *e* -C set v2, a FMI *e* -C set v1 with $v1 \neq v2$ and a proper F *e* -C set $\beta \neq v1$, v2. Then any one of them could be true on _F:

- (i) β is a FME *e* -C set such that $v1 < \beta < v2$.
- (ii) $\upsilon 1 < 1 \beta < \upsilon 2$.
- (iii) $\beta < \upsilon 2$, $\upsilon 1 \land \beta = 0$ and $\upsilon 1 \lor \beta \neq 1$
- (iv) $\upsilon 1 < \beta$, $\upsilon 2 \lor \beta = 1$ and $\upsilon 2 \land \beta \neq 0$.

Proof. Let F be a F *e* -CTS containing $1 - \upsilon 1$, a FMA *e* -O set; $1 - \upsilon 2$ a FMI *e* -O set and $1 - \beta$ a proper F *e* -O set such that $1 - \upsilon 1 \neq 1 - \upsilon 2$ and $1 - \beta \neq 1 - \upsilon 1$, $1 - \upsilon 2$. By deploying Theorem 4.9, any one of them could be true:

- (i) For any FME e -O set 1- β we get v1 < β < v2 as 1-v2 < 1- β < 1-v1 , Hence, β is a FME e -C set.
- (ii) Clearly, $v1 < 1 \beta < v2$. as $1 v2 < 1 (1 \beta) < 1 v1$
- (iii) If $1-\upsilon 2 < 1-\beta$; $(1-\upsilon 1) \lor (1-\beta) = 1$ and $(1-\upsilon 1) \land (1-\beta) \neq 0$ then $\beta < \upsilon 2$; $\upsilon 1 \land \beta = 0$ and $\upsilon 1 \lor \beta \neq 1$.

(iv) If $1-\beta < 1-\upsilon 1$; $(1-\upsilon 2)\land(1-\beta) = 0$ and $(1-\upsilon 2) \lor (1-\beta) \neq 1$ then $\upsilon 1 < \beta$; $\upsilon 2\lor \beta = 1$ and $\upsilon 2 \land \beta \neq 0$.

Theorem 4.11. Let two distinct FMA e -O and FME e -O sets in F. Then intersection of

the two FMA e -O sets is nonzero.

Proof. By deploying theorem 4.7, $\kappa 1 \vee \kappa^2 = 1$ for any two distinct FMA e -O sets $\kappa 1$ and $\kappa 1$ in F. Let σ be a FME e -O set in a fts F then σ is neither FMA e -O nor FMI e –O such that, $\sigma \neq \kappa 1$, κ^2 and $\sigma \neq 1$. By Theorem 4.7, we get ≨ к1 or σ V κ1 = 1 and σ ≨ κ2 σ or $\sigma \vee \kappa 2 = 1$. The feasible combinations are (i) $\sigma \nleq \kappa 1$ and $\sigma \gneqq \kappa 2$, (ii) $\sigma \gneqq \kappa 1$ and $\sigma \vee \kappa 2 = 1$, (iii) $\sigma \gneqq \kappa 2$ and σ $\vee \kappa 1 = 1$ and (iv) $\sigma \vee \kappa 1 = 1$ and $\sigma \vee \kappa 2 = 1$. Case (I): Obviously true.

Case (II): By assuming $\sigma \wedge \kappa 2 \neq 0$, we have to prove that $\kappa 1 \wedge \kappa 2 \neq 0$. As $\sigma \wedge \kappa 2 \neq 0$ and $\sigma \lneq \kappa 1$, then *there* exists $x\alpha \in \kappa 1$ such that $x\alpha \neq \kappa 2$. Since $\sigma \vee \kappa 2 = 1$, $x\alpha \in \kappa 2$. So, $\kappa 1 \wedge \kappa 2 \neq 0$.

Case (III): Similar to previous case.

Case (IV): As $\sigma \vee \kappa 1 = 1$; $\sigma \vee \kappa 2 = 1$ imply that $\sigma \vee (\kappa 1 \wedge \kappa 2) = 1$ then $\sigma = 1$ if $\kappa 1 \wedge \kappa 2 = 0$. Again $\kappa 1 \wedge \kappa 2 \neq 0$ as $\sigma \neq 1$.

Theorem 4.12. Let two distinct FMI e -O and FME e -O sets in F. Then union of the two

FMI e -O sets is not equal to 1.

Proof. By deploying theorem 4.6, we have $\kappa 1 \vee \kappa^2 = 0$ for any two distinct FMI *e* -O sets $\kappa 1$, κ^2 in a fts F. Let σ being a FME *e* -O set in F, then it is neither FMA *e* -O nor FMI *e* -O. Hence, $\sigma \neq \kappa 1$, κ^2 and $\sigma \neq 0$, 1. By theorem 4.6, we get $\kappa 1 \leqq \sigma$ or $\sigma \wedge \kappa 1 = 0$ and $\kappa^2 \leqq \sigma$ or $\sigma \wedge \kappa^2 = 0$. The possible combinations are (I) $\kappa 1 \leqq \sigma$ and $\kappa^2 \leqq \sigma$, (II) $\kappa 1 \gneqq \sigma$ and $\sigma \wedge \kappa^2 = 0$, (III) $\kappa^2 \gneqq \sigma$ and $\sigma \wedge \kappa 1 = 0$ and $\sigma \wedge \kappa 2 = 0$ as $\sigma \neq 1$.

Case I: Obviously, if $\kappa 1 \leqq \sigma$ and $\kappa 2 \leqq \sigma$ then $\kappa 1 \lor \kappa 2 \neq 1$.

Case II: Suppose that $\sigma \lor \kappa 2 \neq 1$. Since $\kappa 1 \leqq \sigma$, then there exists $x \alpha \in \sigma$ such that $x \alpha \neq \kappa 1$.

As $\sigma \wedge \kappa^2 = 0$; clearly $x\alpha \neq \kappa^2$. Hence, $x\alpha \neq \kappa^1$, κ^2 imply that $\kappa^1 \vee \kappa^2 \neq 1$. Case III: Similar to previous case.

Case IV: As $\sigma \wedge \kappa 1 = 0$; $\sigma \wedge \kappa 2 = 0$ imply that $\sigma \wedge (\kappa 1 \vee \kappa 2) = 0$ then $\sigma = 0$ if $\kappa 1 \vee \kappa 2 = .$

Clearly $\kappa 1 \vee \kappa 2 \neq 1$ as $\sigma \neq 0$.

"On combining theorems 4.11 and 4.12, we get theorems 4.13 and 4.14 and the proofs succeeded by theorems 4.11 and 4.12."

Theorem 4.13. Let κ and ϱ be distinct FMA *e* -C and FME *e* -C sets in a FTS respectively. Then the intersection of two FMA *e* -O sets is nonzero.

Theorem 4.14. Let ζ and ξ be distinct FMI *e* -C and FME *e* -C sets in a FTS respectively. Then the union of two FMI *e* -C sets is not equal to 1.

References

[1]. K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82(1981), 14-32.

[2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190. [3] B. M. Ittanagi and R. S. Wali, On fuzzy minimal open and fuzzy maximal open sets in FTSs, International J. of Mathematical Sciences and Applications, 1(2), 2011.

[4] S. Joseph, R. Balakumar and A. Swaminathan, On Fuzzy Paraopen Sets and Maps in Fuzzy Topological Spaces (submitted).

[5] M. Sankari and C. Murugesan, Fuzzy minimal *e* -open and maximal *e* -open sets in fuzzy topological space (Submitted).

[6] M. Sankari and C. Murugesan, Fuzzy *e* -paraopen sets and maps in fuzzy topological space(submitted).

[7] V. Seenivasan and K. Kamala, Fuzzy e -continuity and F e –O sets. Annals of Fuzzy Mathematics and Informatics, 8(1)(2014), 141-148.

[8] Supriti Saha, Fuzzy δ -continuous mappings, J. Math. Anal. Appl. 126 (1987) 130-142.

[9] A. Swaminathan, Fuzzy mean open and mean closed sets, J. Appl. Math. and Inform. Vol. 38(2020), No.5-6, 463-468, 2020.

[10] L. A. Zadeh, Fuzzy sets, Information and control 8 (1965), 338-353