Fuzzy Mean e-Open and e-Closed Sets

Dr. M. Sankari,

Department of Mathematics, Lekshmipuram College of Arts and Science, Neyyoor-629802, Tamil Nadu

Abstract

The notions of fuzzy mean e-open and e-closed sets is established. Moreover, some comparative study of these with other fuzzy mappings are investigated. Finally, we extend fuzzy mean e-open to fuzzy para e-open sets in fuzzy topology.

Keywords and phrases: Fuzzy minimal e-open, fuzzy mean e-open, fuzzy e-para open.

2010 Mathematics Subject Classification: 54A40, 03E72.

1. **Introduction**

Fuzzy sets were established by Zadeh [10] and the perception of fuzzy topology instigated by Chang [2] in 1968. The ideas of fuzzy minimal (resp. maximal open) [3] sets explored in [3]. Subsequently the concepts of fuzzy mean open set investigated by Swaminathan [9]. On combining fuzzy mean open [9] and fuzzy paraopen open [4] sets, we extend the perception of fuzzy mean open (resp. closed) sets and from which we investigate some results.

The following terminologies “fuzzy e-open (resp. closed), fuzzy e-open (resp. closed), fuzzy minimal e-open (resp. maximal), fuzzy minimal e-closed set, fuzzy e-paraclosed (resp. paraclosed) and fuzzy e-connected topological space respectively abbreviated as Fe-O, Fe-C, FMe-O, FMe-C, FMe-O, FMAe-O, FMAe-C, Fe-PO, Fe-PC and Fe-CTS. Entire paper F stands for fuzzy topology (F, τ).

2. **Preliminaries**

Definition 2.1. A fuzzy subset $\beta \in \wp$ is said to be fuzzy regular open [1] if $\beta = \text{Int} \{ \text{Cl}(\beta) \}$

The union of all fuzzy regular open sets contained in fuzzy subset $\beta \in \wp$ is $F e$-interior of β. If $\beta = \text{Int}\delta(\beta)$ then fuzzy subset β is called $F e$-O [8] such that its complement is called $F e$-C (i.e., $\bar{\beta} = \text{Cl}\delta(\beta)$).

Definition 2.2. [5] A proper nonzero $F e$-O set $\beta \in \wp$ is called (i) FMI e-O if only $F e$-O sets contained in β. are $\bar{\beta}$ and 0 (ii) FMA e-O if only $F e$-O sets containing β are 1 and $\bar{\beta}$.

Definition 2.3. A FO set $\mu \in \wp$ is said to be a FPO [4] set if it is neither FMIO nor FMAO set.

3. **Fuzzy e-Paraopen and e-Paraclosed Sets**

Definition 3.1. A $F e$-O set $\zeta \subset \wp$ which is neither FMI e-O nor FMA e-O set is said to be $F e$-PO set.

Definition 3.2. A $F e$-C set $\alpha \subset \wp$ is said to be a $F e$-PC set iff its complement $1 - \alpha$ is $F e$-PO set.

Remark 3.1. The converse of the statement: Every $F e$-PO set (resp. $F e$-PC) is a FO set (resp. FC set). Need not to be true proven by following example.

Example 3.2.

Remark 3.3. Union (resp. intersection) of $F e$-PO (resp. $F e$-PC) sets need not be $F e$-PO (resp. $F e$-PC) set.

Theorem 3.4. Let \wp be a FTS and α be a nonempty proper $F e$-PO subset of \wp, then $\exists \mu$ FMI e-O set ζ with $\zeta < \alpha$.

Proof. Clearly $\zeta < \alpha$ as per the FMI e-O set definition.

Theorem 3.5. Let α be a nonempty proper $F e$-PO subset of a FTS \wp, then $\exists \psi$ FMA e-O set with $\alpha < \psi$.

Proof. Clearly $\alpha < \psi$ as per the FMA e-O set definition.
Theorem 3.6. Suppose that \(p \) is a FTS, then

(i) \(\zeta \land \zeta = 0 \) or \(\zeta < \zeta \) for any \(F \)-\(e \)-PO \(\zeta \) and a FMI \(e \)-O set \(\zeta \). (ii) \(\zeta \lor \lambda = 1 \) or \(\zeta < \lambda \) for any \(F \)-\(e \)-PO \(\zeta \) and a FMA \(e \)-O set \(\lambda \). (iii) Intersection of \(F \)-\(e \)-PO sets is either \(F \)-\(e \)-PO or FMI \(e \)-O set.

Proof. (i) For any \(F \)-\(e \)-PO set \(\zeta \) and a FMI \(e \)-O open set \(\zeta \) in \(p \). Then \(\zeta \land \zeta = 0 \) or \(\zeta \land \zeta \neq 0 \). If \(\zeta \land \zeta = 0 \), then proof could be over. Assume \(\zeta \land \zeta
eq 0 \). Then we write \(\zeta \land \zeta \) is a FO set and \(\zeta \land \zeta < \zeta \). Hence \(\zeta < \zeta \).

(ii) For any \(F \)-\(e \)-PO set \(\zeta \) and a FMA \(e \)-O set \(\xi \) in \(p \). Then \(\zeta \lor \xi = 1 \) or \(\zeta \lor \xi \neq 1 \). If \(\zeta \lor \xi = 1 \), then proof could be over. Assume \(\zeta \lor \gamma \neq 1 \). Clearly, \(\zeta \lor \gamma \) is a FO set and \(\gamma < \zeta \lor \gamma \). Hence \(\gamma \) is a FMA \(e \)-O set, \(\zeta \lor \gamma = \gamma \) implies \(\zeta < \gamma \).

(iii) Let \(\zeta \) and \(\xi \) be a \(F \)-\(e \)-PO sets in \(p \). If \(\zeta \land \xi \) is a \(F \)-\(e \)-PO set, then proof could be over. Suppose \(\zeta \land \xi \) is not a \(F \)-\(e \)-PO set. By definition, \(\zeta \land \xi \) is a FMI \(e \)-O or FMA \(e \)-O set. If \(\zeta \land \xi \) is a FMI \(e \)-O set, then proof could be over. Suppose \(\zeta \land \xi \) is a \(F \)-\(e \)-O set. Now \(\zeta \land \xi < \zeta \) and \(\zeta \land \xi < \xi \) contradicting the fact that \(\zeta \) and \(\xi \) are \(F \)-\(e \)-PO sets. Hence, \(\zeta \land \xi \) is not a FMA \(e \)-O set. (i.e.) \(\zeta \land \xi \) is a FMI \(e \)-O set.

Theorem 3.7. A subset \(\lambda \) of a FTS \(p \) is \(F \)-\(e \)-PC iff it is neither \(FMI \) \(e \)-C nor \(FMI \) \(e \)-C set.

Proof. The complement of FMI \(e \)-O set and FMA \(e \)-O set are FMA \(e \)-C set and FMI \(e \)-C set respectively.

Theorem 3.8. Let \(\lambda \) be a nonempty \(F \)-\(e \)-PC subset of a FTS \(p \). Then \(\exists \) a FMI \(e \)-C set \(\psi \) with \(\psi < \lambda \).

Proof. Clearly by FMI \(e \)-C set definition, it follows that \(\psi < \lambda \).

Theorem 3.9. Suppose that \(\lambda \) is a nonempty \(F \)-\(e \)-PC subset of FTS \(p \) then \(\exists \) a FMI \(e \)-C set \(\kappa \) such that \(\lambda < \kappa \).

Proof. Clearly by FMA \(e \)-C set definition, it follows that \(\lambda < \kappa \).

Theorem 3.10. Suppose that \(p \) is a FTS then

(i) \(\kappa \land \eta = 0 \) or \(\eta < \kappa \) for any \(F \)-\(e \)-PC set \(\kappa \) and FMI \(e \)-C set \(\eta \). (ii) \(\kappa \lor \xi = 1 \) or \(\kappa < \xi \) for any \(F \)-\(e \)-PC set \(\kappa \) and FMA \(e \)-C set \(\xi \).

(iii) Intersection of \(F \)-\(e \)-PC sets is either \(F \)-\(e \)-PC or FMI \(e \)-C set.

Proof. (i) Suppose that \(\kappa \) is a \(F \)-\(e \)-PC and \(\eta \) is a FMI \(e \)-C set in \(p \). Then \((1 - \kappa) \) is \(F \)-\(e \)-PO and \((1 - \eta) \) is FMA \(e \)-O set in \(p \). Then by Theorem 3.6 (ii) \((1 - \kappa) \lor (1 - \eta) \neq 1 \) or \((1 - \kappa) < (1 - \eta) \) implying \(1 - (\kappa \land \eta) \) or \(\eta < \kappa \). Hence, \(\kappa \land \eta = 0 \) or \(\eta < \kappa \).

(ii) Suppose that \(\kappa \) is a \(F \)-\(e \)-PC and \(\zeta \) is a FMA \(e \)-C set in \(p \). Then \((1 - \kappa) \) is \(F \)-\(e \)-PO and \((1 - \zeta) \) is FMI \(e \)-O set in \(p \). Then by Theorem 3.6 (ii) \((1 - \kappa) \lor (1 - \zeta) = 0 \) or \(1 - \zeta < 1 - \kappa \) implying \(1 - (\kappa \lor \zeta) = 0 \) or \(\kappa < \zeta \). Hence, \(\kappa \lor \zeta = 1 \) or \(\kappa < \zeta \).

(iii) Suppose that \(\kappa \) and \(\xi \) is a \(F \)-\(e \)-PC set in \(p \). If \(\kappa \land \xi \) is a \(F \)-\(e \)-PC set, then proof could be over. Suppose \(\kappa \land \xi \) is not a \(F \)-\(e \)-PC set. Then clearly, \(\kappa \land \xi \) is a FMI \(e \)-C or FMA \(e \)-C set. Suppose \(\kappa \land \xi \) is a FMI \(e \)-C set, then proof could be over. Suppose \(\kappa \land \xi \) is a FMA \(e \)-C set. Now \(\kappa < \kappa \land \xi \) and \(\xi < \kappa \land \xi \) a contradiction for \(\kappa \) and \(\xi \) are \(F \)-\(e \)-PC sets. Hence, \(\kappa \land \xi \) is not a FMA \(e \)-C set. (i.e.) \(\kappa \land \xi \) is a FMI \(e \)-C set.

4. Fuzzy Mean -Open and -Closed Sets

Definition 4.1. A \(F \)-\(e \)-O set \(\psi \subset p \) is said to be a FME \(e \)-O set if \(\exists \omega_1, \omega_1(\neq \psi) \) two distinct proper \(F \)-\(e \)-O sets such that \(\omega_1 < \psi < \omega_2 \).

Remark 4.1. It could be understood from the succeeding example that the union and intersection of \(FME \) \(e \)-O need not be \(FME \) \(e \)-O sets.

Example 4.2. Let \(p = \{ x, y, z, w \} \). Then fuzzy sets

\[
\begin{align*}
\omega_1 &= \{(0.5, x), (0.4, y), (0.4, z), (0.5, w)\} ; \\
\omega_2 &= \{(0.5, x), (0.4, y), (0.6, z), (0.5, w)\} ; \\
\omega_3 &= \{(0.5, x), (0.6, y), (0.4, z), (0.5, w)\}
\end{align*}
\]
and $\omega_4 = \{(0.5, x), (0.6, y), (0.6, z), (0.5, w)\}$ of the fuzzy topology $\tau = \{0, \omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}$. Hence ω_2 and ω_3 are FME e - O sets but their union $\omega_2 \vee \omega_3 = \omega_4$ and intersection $\omega_2 \cap \omega_3 = \omega_1$ are not FME e - O sets.

Definition 4.2. A F e - C set $v \subset \wp$ is said to be a FME e - C set if two F e - C sets $\xi_1 \neq \xi_2(\neq v)$ such that $\xi_1 \cup \xi_2 \subset v$.

Definition 4.3. A F e - O set $\xi \subset \wp$ which is neither FMI e - O nor FMA e - O set is said to be F e - PO set where its complement is known to be F e - PC set.

Theorem 4.3. A F e - O set of a fits is a FME e - O set iff its complement is a FME e - C set.

Proof. By deploying definition 4.1 for any FME e - O set ψ in \wp we have $\omega_1 < \psi < \omega_2$.

Conversely, let $1 - \psi$ be a FME e - C set for any FME e - O set ψ in \wp. By definition 4.2, F e - C sets $\xi_1 \neq 0$, $1 - \psi$ and $\xi_2 \neq 1$, $1 - \psi$ such that $\xi_1 < 1 - \psi < \xi_2$ implying that $1 - \xi_2 < \psi < 1 - \xi_1$. As $\xi_2 \neq 0$, ψ and $1 - \xi_1 \neq \psi$, 1; ψ is a FME e - O set.

Theorem 4.4. A proper F e - PO set is a FME e - O set and vice-versa.

Proof. The proof of necessary part is obvious by theorem 1.7 [9].

Conversely, let ψ be a proper FME e - O set in \wp. Then two F e - O sets $\xi_1 \neq \xi_2$ such that $\xi_1 < \psi < \xi_2$. Clearly ψ is neither FMI e - O nor FMA e - O set as $\xi_1 \neq 0$, ψ and $\xi_2 \neq \psi$, 1. As $\psi \neq 0$, 1, ψ is a proper F e - PO set.

Theorem 4.5. A proper F e - PC set is a FME e - C set and vice-versa.

Proof. The proof of necessary part is obvious by theorem 1.10 [9].

Conversely, let 9 be a proper FME e - C set in \wp. Then two F e - C sets $\psi_1 \neq \psi_2 \neq 9$ such that $\psi_1 < \psi < \psi_2$. Clearly 9 is neither a FMI e - C nor a FMA e - C set as $\psi_1 \neq 0$, 9 and $\psi_2 \neq 1$, 9. As $9 \neq 0$, 1, 9 is a proper F e - PC set.

Theorem 4.6. ([5]) Let \wp be a fits.

(i) If ξ is a FMI e - O and ξ is a F e - O sets in \wp, then $\xi \wedge \xi = 0$ or $\xi \neq \xi$. (ii) If ξ and κ are FMI e - O sets, then $\xi \wedge \kappa = 0$ or $\xi = \kappa$.

Theorem 4.7. ([5]) Let \wp be a fits.

(i) If ξ is a FMA e - O and ξ is a F e - O sets in \wp, then $\xi \lor \xi = 1$ or $\xi \neq \xi$. (ii) If ξ and κ are FMA e - O set, then $\xi \lor \kappa = 1$ or $\xi = \kappa$.

Theorem 4.8. If ξ_1 is a FMA e - O set and ξ_2 is a FMI e - O set of a fits \wp, then either $\xi_2 < \xi_1$ or \wp is fuzzy e - disconnected.

Theorem 4.9. Let a F e - CTS \wp contain a FMA e - O set ξ_2, a FMI e - O set $\xi_1 \neq \xi_2$ and a proper F e - O set $\xi \neq \xi_1$, ξ_2. Then exactly one of the succeeding could be true on \wp:

(i) ξ is a FME e - O set with $\xi_1 < \xi < \xi_2$.

(ii) $\xi_1 < 1 - \xi < \xi_2$.

(iii) $\xi_1 < \xi, \xi_1 \lor \xi = 1$ and $\xi_2 \land \xi \neq 0$.

(iv) $\xi < \xi_2, \xi_1 \land \xi_2 = 0$ and $\xi \lor \xi_2 \neq 1$.

Proof. By deploying theorem 4.8, a FMI e - O set $\xi_1 \neq \xi_2$ a FMA e - O set. This implies either $\xi_1 < \xi$ or $\xi_1 \land \xi = 0$ and $\xi < \xi_2$ or $\xi_2 \lor \xi = 1$. Hence the feasible combinations are (i) $\xi_1 < \xi < \xi_2$; (ii) $\xi_1 \land \xi = 0$; $\xi_2 \lor \xi = 1$; (iii) $\xi_1 < \xi < \xi_2$; $\xi_2 \lor \xi = 1$; (iv) $\xi_1 \land \xi = 0$ and $\xi \lor \xi_2$. Clearly $\xi_1 < 1 - \xi < \xi_2$ if (ii) is true. Also, $0 \neq \xi_1 < \xi_1 \land \xi$ as $\xi_1 < \xi_2$ and (iii) is true. Again $\xi_1 \lor \xi \neq \xi_2 \neq 1$ as $\xi_1 < \xi_2$ and (iv) is true.

Case (I): As (i) and (ii) are true, then $\xi_1 < \xi < (1 - \xi) < \xi_2$ and $\xi_1 < \xi \land (1 - \xi) < \xi_2$. As $\xi_1 < \xi \lor (1 - \xi) < \xi_2 < 1 < \xi_2$ then $\xi_2 = 1$, an absurd result.

Similarly, for $\xi_1 < \xi \land (1 - \xi) < \xi_2$ we get $\xi_1 = 0$, an absurd result.
Case (II): As both (i), (iii) are true, then $\xi < \zeta$ and $\zeta \lor \xi = 1$ gives $\zeta = 1$, an absurd result.

Case (III): As both (i), (iv) are true, then $\zeta_1 < \xi$ and $\zeta_1 \land \xi = 0$ gives $\zeta_1 = 0$, an absurd result.

Case (IV): As both (ii), (iii) are true, then $\zeta_1 < 1 - \xi$ and $\zeta_1 < \xi$ gives $\zeta_1 = 0$, an absurd result.

Case (V): As both (ii), (iv) are true, then $1 - \xi < \zeta$ and $\xi < \zeta$ gives $\zeta = 1$, an absurd result.

Case (VI): As both (iii), (iv) are true, then $\zeta_1 < \xi < \zeta_2$, $\zeta_2 \lor \xi = 1$ and $\zeta_1 \land \xi = 0$. Clearly $\zeta_2 = 1$ as $\xi < \zeta_2$ and $\zeta_2 \lor \xi = 1$ a contradiction. Similarly, we get $\zeta_1 = 0$ as $\zeta_1 < \xi$ and $\zeta_1 \land \xi = 0$ a contradiction.

Theorem 4.10. Let a F e -CTS \wp contain a FMA e -C set u_2, a FMI e -C set u_1 with $u_1 \neq u_2$ and a proper F e -C set $\beta \neq u_1, u_2$. Then any one of them could be true on \wp:

(i) β is a FME e -C set such that $u_1 < \beta < u_2$.

(ii) $u_1 < 1 - \beta < u_2$.

(iii) $\beta < u_2$, $u_1 \land \beta = 0$ and $u_1 \lor \beta \neq 1$.

(iv) $u_1 < \beta$, $u_2 \lor \beta = 1$ and $u_2 \land \beta \neq 0$.

Proof. Let \wp be a F e -CTS containing $1 - u_1$, a FMA e -O set; $1 - u_2$ a FMI e -O set and $1 - \beta$ a proper F e -O set such that $1 - u_1 \neq 1 - u_2$ and $1 - \beta \neq 1 - u_1, 1 - u_2$. By deploying Theorem 4.9, any one of them could be true:

(i) For any FME e -O set $1 - \beta$ we get $u_1 < \beta < u_2$ as $1 - u_2 < 1 - \beta < 1 - u_1$. Hence, β is a FME e -C set.

(ii) Clearly, $u_1 < 1 - \beta < u_2$, as $1 - u_2 < 1 - (1 - \beta) < 1 - u_1$.

(iii) If $1 - u_2 < 1 - \beta$, $(1 - u_1) \lor (1 - \beta) = 1$ and $(1 - u_1) \land (1 - \beta) \neq 0$ then $\beta < u_2$; $u_1 \land \beta = 0$ and $u_1 \lor \beta \neq 1$.

(iv) If $1 - \beta < 1 - u_1$; $(1 - u_2) \land (1 - \beta) = 0$ and $(1 - u_2) \lor (1 - \beta) \neq 1$ then $u_1 < \beta$; $u_2 \lor \beta = 1$ and $u_2 \land \beta \neq 0$.

Theorem 4.11. Let two distinct FMA e -O and FME e -O sets in \wp. Then intersection of the two FMA e -O sets is nonzero.

Proof. By deploying theorem 4.7, $\kappa_1 \lor \kappa_2 = 1$ for any two distinct FMA e -O sets κ_1 and κ_1 in \wp. Let σ be a FMA e -O set in a fts \wp then σ is neither FMA e -O nor FMI e -O such that, $\sigma \neq \kappa_1, \kappa_2$ and $\sigma \neq 1$. By Theorem 4.7, we get $\sigma \not\subseteq \kappa_1$ or $\sigma \supseteq \kappa_2$ or $\sigma \kappa_2 = 1$. The feasible combinations are (i) $\sigma \not\subseteq \kappa_1$ and $\sigma \not\subseteq \kappa_2$, (ii) $\sigma \supseteq \kappa_1$ and $\sigma \not\subseteq \kappa_2 = 1$, (iii) $\sigma \subseteq \kappa_2$ and $\sigma \not\subseteq \kappa_1 = 1$ and (iv) $\sigma \not\subseteq \kappa_1 = 1$ and $\sigma \not\subseteq \kappa_2 = 1$. Case (I): Obviously true.

Case (II): By assuming $\sigma \land \kappa_2 \neq 0$, we have to prove that $\kappa_1 \land \kappa_2 \neq 0$. As $\sigma \land \kappa_2 \neq 0$ and $\sigma \not\subseteq \kappa_1$, there exists $\chi_\sigma \in \kappa_1$ such that $\chi_\sigma \neq \chi_2$. Since $\sigma \lor \kappa_2 = 1$, $\chi_\sigma \in \kappa_2$. So, $\kappa_1 \land \kappa_2 \neq 0$.

Case (III): Similar to previous case.

Case (IV): $\sigma \lor \kappa_1 = 1$; $\sigma \lor \kappa_2 = 1$ imply that $\sigma \lor (\kappa_1 \land \kappa_2) = 1$ then $\sigma = 1$ if $\kappa_1 \land \kappa_2 = 0$. Again $\kappa_1 \land \kappa_2 \neq 0$ as $\sigma \neq 1$.

Theorem 4.12. Let two distinct FMI e -O and FME e -O sets in \wp. Then union of the two

FMI e -O sets is not equal to 1.

Proof. By deploying theorem 4.6, we have $\kappa_1 \lor \kappa_2 = 0$ for any two distinct FMI e -O sets κ_1, κ_2 in a fts \wp. Let σ being a FME e -O set in \wp, then it is neither FMA e -O nor FMI e -O. Hence, $\sigma \neq \kappa_1, \kappa_2$ and $\sigma \neq 0, 1$. By theorem 4.6, we get $\kappa_1 \not\subseteq \sigma$ or $\sigma \not\subseteq \kappa_1 = 0$ and $\kappa_2 \not\subseteq \sigma$ or $\sigma \not\subseteq \kappa_2 = 0$. The possible combinations are (I) $\kappa_1 \not\subseteq \sigma$ and $\kappa_2 \not\subseteq \sigma$, (II) $\kappa_1 \not\subseteq \sigma$ and $\sigma \land \kappa_2 = 0$, (III) $\kappa_2 \not\subseteq \sigma$ and $\sigma \land \kappa_1 = 0$ and (IV) $\sigma \not\subseteq \kappa_1 = 0$ and $\sigma \not\subseteq \kappa_2 = 0$ as $\sigma \neq 1$.

Case (I): Obviously, if $\kappa_1 \not\subseteq \sigma$ and $\kappa_2 \not\subseteq \sigma$ then $\kappa_1 \lor \kappa_2 \neq 1$.

Case II: Suppose that $\sigma \lor \kappa_2 \neq 1$. Since $\kappa_1 \not\subseteq \sigma$, there exists $x_\sigma \in \sigma$ such that $x_\sigma \neq \kappa_1$.

As $\sigma \land \kappa_2 = 0$; clearly $x_\sigma \neq \kappa_2$. Hence, $x_\sigma \neq \kappa_1, \kappa_2$ imply that $\kappa_1 \lor \kappa_2 \neq 1$.

Case III: Similar to previous case.

Case IV: As $\sigma \land \kappa_1 = 0$; $\sigma \land \kappa_2 = 0$ imply that $\sigma \land (\kappa_1 \lor \kappa_2) = 0$ then $\sigma = 0$ if $\kappa_1 \lor \kappa_2 = 1$.

2924
Clearly $\kappa_1 \lor \kappa_2 \neq 1$ as $\sigma \neq 0$.

"On combining theorems 4.11 and 4.12, we get theorems 4.13 and 4.14 and the proofs succeeded by theorems 4.11 and 4.12."

Theorem 4.13. Let κ and σ be distinct FMA e-C and FME e-C sets in a FTS respectively. Then the intersection of two FMA e-O sets is nonzero.

Theorem 4.14. Let ζ and ξ be distinct FMI e-C and FME e-C sets in a FTS respectively. Then the union of two FMI e-C sets is not equal to 1.

References

