Fuzzy Maximal and Minimal A-Clopen Sets

M. Sankari

Department of Mathematics, Lekshmipuram College of Arts and Science, Neyyoor, Kanyakumari, Tamil Nadu-629 802, India.

*Corresponding Author: sankarisaravanan1969@gmail.com

Abstract

The aim of the paper is to introduce the notions of fuzzy maximal and fuzzy minimal α -clopen sets in fuzzy topological spaces. The notions of fuzzy maximal and minimal α -clopen sets are respectively independent to the notions of fuzzy maximal and fuzzy minimal α -open (resp.closed) sets. Further, fuzzy maximal α -clopen and fuzzy minimal α -clopen sets are discussed using fuzzy α -disconnectedness.

2010 Mathematics Subject Classification: 54A40, 03E72.

1 Introduction

The idea of fuzzy sets introduced by Zadeh[7]. Chang introduced the notion of fuzzy topology in [1]. The notions of minimal open, maximal open, minimal closed, maximal closed sets introduced by Nakaoka and Oda in [3] and [4]. The notion of fuzzy minimal open[6] set explored by Swaminathan and Sivaraja. In [5], Sankari discussed some properties of fuzzy minimal α -open and fuzzy maximal α -open sets and shown that if a fuzzy topological space having both fuzzy minimal α -open and fuzzy maximal open set, then it may be fuzzy α -disconnected. With respect to the theorem 2.9 of this current paper, it reveals that a fuzzy set which is both fuzzy maximal α -clopen and fuzzy minimal α -clopen and fuzzy minimal α -clopen and fuzzy minimal.

 α -clopen and these are the only fuzzy α -clopen sets in the fuzzy space. It is the odd behavior observed among the notions of fuzzy minimal α -open and fuzzy maximal α -open with respect to fuzzy minimal α -clopen and fuzzy maximal α -clopen and it is the finest of its own.

2 Fuzzy Maximal and Minimal α-clopen Sets

To proceed main results, we recall basic definitions and results:

Definition 2.1. ([5]) A proper fuzzy α -open set μ of *X* is said to be a fuzzy maximal α -open set if λ is an fuzzy α -open set such that $\mu < \lambda$, then $\lambda = \mu$ or $\lambda = 1_X$

Definition 2.2. ([5]) A proper fuzzy open set μ of *X* is said to be a fuzzy minimal α -open set if λ is an fuzzy α -open set such that $\lambda < \mu$, then $\lambda = \mu$ or $\lambda = 0_X$

Definition 2.3. ([5]) A proper fuzzy closed set γ of *X* is said to be a fuzzy minimal α -closed set if α is an fuzzy α -closed set such that $\alpha < \gamma$, then $\alpha = \gamma$ or $\alpha = 0_X$

Definition 2.4. ([5]) A proper fuzzy closed set γ of *X* is said to be a fuzzy maximal α -closed set if α is an fuzzy α -closed set such that $\gamma < \alpha$, then $\alpha = \gamma$ or $\alpha = 1_X$.

Theorem 2.1. ([5]) If ϑ is a fuzzy maximal α -open set and α is a fuzzy minimal α -open set in a fuzzy topological space X with $\alpha < \vartheta$, then $\vartheta = 1_X - \alpha$

Definition 2.5. A proper fuzzy α -clopen set α of a fuzzy topological space X is said to be fuzzy minimal α - clopen if β is a fuzzy α -clopen set such that $\beta < \alpha$, then $\beta = \alpha$ or $\beta = 0_X$

Example 2.2. Let $X = \{a, b, c, d\}$. Then fuzzy sets $\gamma 1 = \frac{0}{a} + \frac{1}{b} + \frac{1}{c} + \frac{0}{d}$; $\gamma 2 = \frac{0}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 2 = \frac{0}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 3 = \frac{0}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$ and $\gamma 4 \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{0}{d}$ are defined as follows: Consider the fuzzy $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 3 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$; $\gamma 4 = \frac{1}{a} + \frac{1}{a} + \frac{1}{c} + \frac{1}{d} + \frac{1}{c} + \frac{$

 $\gamma 3 = \frac{0}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{a}$ and $\gamma 4 \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{0}{d}$ are defined as follows: Consider the fuzzy topology $\tau = \{0_x^a, \gamma 1, \gamma 2, \gamma 3, \gamma 4, 1_x\}$. Here $\gamma 4$ is fuzzy minimal α -clopen set but it is neither fuzzy minimal α -clopen nor fuzzy minimal α -closed set. It is clear that a fuzzy minimal α -open set or a fuzzy minimal α -closed set need not to be a fuzzy minimal α - clopen set. Hence the notion of fuzzy minimal α -clopen sets is independent to the notions of fuzzy minimal α -open set as well as fuzzy minimal α -closed sets. It is also easy to see that if a set α is both fuzzy minimal α -open and fuzzy minimal α -closed, then α is fuzzy minimal α -clopen. Again, a fuzzy α -clopen set is fuzzy minimal α -clopen or fuzzy minimal α -clopen.

Definition 2.6. A proper fuzzy α -clopen set α of a fuzzy topological space *X* is said to be fuzzy maximal α - clopen if β is a fuzzy α -clopen set such that $\alpha < \beta$, then $\beta = \alpha$ or $\beta = 1_X$

It is evident that a fuzzy maximal α -open or a fuzzy maximal α -closed sets may not be a fuzzy maximal α clopen set. Therefore, it follows that the notion of fuzzy maximal α -clopen sets is independent to the notions of fuzzy maximal α -open as well as fuzzy maximal α -closed sets. It is also easy to see that if a set γ is both fuzzy maximal α -open and fuzzy maximal α -closed, then γ is fuzzy maximal α -clopen. In fact, a fuzzy α clopen set is fuzzy maximal α -clopen if it is either fuzzy maximal open or fuzzy maximal α -closed. In [5], we observed that if a fuzzy topological space has only one proper fuzzy α -open set, then it is both fuzzy maximal α -open and fuzzy minimal α -open. Even we observe that it is neither fuzzy maximal α clopen nor fuzzy minimal α -clopen. If a space has only two proper fuzzy α -open sets such that one is not contained in other, then both are fuzzy maximal α -clopen and fuzzy minimal α -clopen. In addition, fuzzy maximal or fuzzy minimal α -clopen sets can exists only in a fuzzy α -disconnected space. As theorems 2.3 to corollary 2.6 are obvious, the proofs of them are omitted.

Theorem 2.3. If α is a fuzzy minimal α -clopen set and β is a fuzzy α -clopen set in X, then either $\alpha \land \beta = 0_X$ or $\alpha < \beta$

Corollary 2.4. If α and β are distinct fuzzy minimal α -clopen sets in X, then $\alpha \wedge \beta = 0_X$

Theorem 2.5. If α is a fuzzy maximal α -clopen set and β is a fuzzy α -clopen set in X, then either $\alpha \lor \beta = 1_X$ or $\beta < \alpha$

Corollary 2.6. If α and β are distinct fuzzy maximal α -clopen sets in X, then $\alpha \lor \beta = 1_X$.

Lemma 2.7. If α is fuzzy minimal α -clopen in a fuzzy topological space X, then $1_X - \alpha$ is fuzzy maximal α - clopen in X and conversely.

Proof: Let α , β be any two proper fuzzy α -clopen sets such that $1_X - \alpha < \beta$. Now we have $1_X - \beta < \alpha$. As α is being a fuzzy minimal α -clopen, set we have $1_X - \beta = \alpha$ or $1_X - \beta = 0_X$ implies that $1_X - \alpha = \beta$ or $\beta = 1_X$. Hence, $1_X - \alpha$ is a fuzzy maximal α -clopen set. Similarly follows the converse.

Similar to Theorem 3.1 of [5], we have the following theorem.

Theorem 2.8. If α is fuzzy minimal α -clopen and β is fuzzy maximal α -clopen in X, then either $\alpha < \beta$ or $\alpha < 1_X -\beta$.

Proof: Similar to the proof of Theorem 3.1 of [5].

Theorem 2.9. If a fuzzy topological space X contains a fuzzy set α which is both fuzzy maximal and minimal α - clopen, then (i) α and $1_X - \alpha$ are the only fuzzy sets in the space which are both fuzzy maximal and minimal α - clopen and (ii) α and $1_X - \alpha$ are the only proper fuzzy α -clopen sets in the space.

Proof: (i) By Lemma 2.7, $1_X - \alpha$ is both fuzzy maximal and minimal α -clopen for any fuzzy maximal and minimal α -clopen set α in *X*. Let there exist fuzzy maximal and minimal α -clopen set β in *X* distinct from α . By Lemma 2.7, $1_X - \beta$ is also both fuzzy maximal and minimal α -clopen. As α , β both being fuzzy minimal and maximal α -clopen, by corollary 2.4, and 2.6, we have $\alpha \land \beta = 0_X$ and $\alpha \lor \beta = 1_X$. Hence $\beta = 1_X - \alpha$. If for any $\alpha \neq \beta$, β and $1_X - \beta$ are identical to $1_X - \alpha$ and α respectively. Hence, the result follows for all possible combinations of α , β , $1_X - \alpha$ and $1_X - \beta$.

(ii) Let γ be a proper fuzzy α -clopen set in X. For a fuzzy maximal α -clopen set α , we have $\alpha \lor \gamma = 1_X$ or $\gamma < \alpha$. . For a fuzzy minimal α -clopen set α we have $\alpha \land \gamma = 0_X$ or $\alpha < \gamma$. $\alpha \lor \gamma = 1_X$ and $\alpha \land \gamma = 0_X$ implies that $\gamma = 1_X - \alpha$. $\alpha \lor \gamma = 1_X$ and $\alpha \land \gamma = 0_X$ implies that $\gamma = 1_X \cdot \gamma < \alpha$ and $\alpha \land \gamma = 0_X$ implies that $\gamma = 0_X$.

Theorem 2.10. In a fuzzy topological space X, fuzzy maximal α -clopen and minimal α -clopen sets appear in pairs.

Proof: By Theorem 2.9, if α is both fuzzy maximal and minimal α -clopen in fuzzy topological space *X*, then $1_X - \alpha$ is also both fuzzy maximal and minimal α -clopen, also such pairs of sets in *X* are unique. By Lemma 2.7, if α is fuzzy maximal (resp.minimal) α -clopen in *X*, then $1_X - \alpha$ is fuzzy minimal (resp.maximal) α -clopen in *X*.

Theorem 2.11. If α is a fuzzy maximal open set and β is a fuzzy minimal α -open set of fuzzy topological space *X* with $\alpha < \beta$, then α is a fuzzy maximal α -clopen and β is a fuzzy minimal α -clopen set.

Proof: On deploying maximality of α by 2.1 $\alpha = 1_X - \beta$. Hence both α , β are fuzzy α -clopen. Since α is both fuzzy α -clopen and fuzzy maximal α -open (resp. fuzzy minimal α -open), it is easy to see that α is fuzzy maximal α -clopen. Similarly β holds.

On combining this result, we obtain another result whose proof is same and omitted.

Theorem 2.12. If γ is a fuzzy maximal α -clopen set in X, then $\gamma \vee \mu$ is not a proper fuzzy α -clopen set distinct from γ for any proper fuzzy open or fuzzy closed set μ in X.

Proof: Let $\gamma \lor \mu$ be a proper fuzzy α -clopen set in *X*. As γ is a fuzzy maximal $\gamma < \gamma$ $\lor \mu$, either $\gamma \lor \mu = 1_X$ or $\gamma = \gamma \lor \mu$. Then $\gamma = \gamma \lor \mu$ implies that γ **Theorem 2.13.** If γ is a fuzzy minimal α -clopen set in X, then $\gamma \wedge \mu$ is not a proper fuzzy α -clopen set distinct from γ for any proper fuzzy α -open or fuzzy α -closed set μ in X.

From 2.12, Theorem 2.13 it is observed that the form of fuzzy α -clopen sets in fuzzy topological space consists of a fuzzy maximal or minimal α -clopen set.

Theorem 2.14. If Λ is a collection of distinct fuzzy maximal α -clopen sets and $\alpha \in \Lambda$, then $\Lambda \quad \beta \neq 0_X$. If Λ is a finite collection, then $\Lambda \quad \beta$ is a fuzzy minimal

 $\beta \in \Lambda - \{\alpha\}$ α -clopen if and only if $1_X - \alpha = \Lambda \beta$.

 $\beta \in \Lambda - \{\alpha\}$

 $\beta \in \Lambda - \{\alpha\}$

Proof: As $\beta \in \Lambda - \alpha$ is a fuzzy maximal α -clopen set, $1_X - \beta$ is a fuzzy minimal α - clopen set. Then by Theorem 2.8, $1_X - \beta < \alpha$. Hence we get, $1_X - \Lambda \quad \beta < \alpha$ which

implies $\alpha = 1_X$ if $\Lambda \quad \beta = 0_X$. This is a contradiction to our assumption that α is a $\beta \in \Lambda - \{\alpha\}$

fuzzy maximal α -clopen set. Hence, $\Lambda - \{\alpha\} \beta 0_X$.

Evidently, $\Lambda - \{\alpha\}\beta$ is a fuzzy minimal α -clopen if $1_X - \alpha = \Lambda - \{\alpha\}\beta$. Now let $\beta \in \Lambda - \{\alpha\}$ $\beta \in \Lambda - \{\alpha\}$ $\Lambda - \{\alpha\}\beta$ be a fuzzy minimal α -clopen set. If Λ is a finite collection, then $\Lambda - \{\alpha\}\beta$ is a $\beta \in \Lambda - \{\alpha\}$ $\beta \in \Lambda - \{\alpha\}$ fuzzy α -clopen set. Since $1_X - \Lambda - \{\alpha\}\beta < \alpha$ we have $1_X - \alpha < \Lambda - \{\alpha\}\beta$. As α is a fuzzy $\beta \in \Lambda - \{\alpha\}$ $\beta \in \Lambda - \{\alpha\}$ maximal α -clopen, then $1_X - \alpha$ is fuzzy minimal α -clopen. If $\Lambda - \{\alpha\}\beta$ is a fuzzy $\beta \in \Lambda - \{\alpha\}$ minimal α -clopen set distinct from $1_X - \alpha$ then by corollary 2.4 we have $(\Lambda - \{\alpha\}\beta)$ $\beta \in \Lambda - \{\alpha\}$ $\wedge(1_X - \alpha) = 0_X$. This implies $\Lambda - \{\alpha\}\beta < \alpha$. So we get, $1X - \alpha < \Lambda - \{\alpha\}\beta < \alpha$ which is $\beta \in \Lambda - \{\alpha\}$ $\beta \in \Lambda - \{\alpha\}$ wrong. Hence, we obtain $1_X - \alpha = \Lambda - \{\alpha\}\beta$. $\beta \in \Lambda - \{\alpha\}$ **Theorem 2.15.** If Λ is a collection of distinct fuzzy minimal α -clopen sets and $\alpha \in \Lambda$, then $\Lambda - \{\alpha\}\beta \neq 1X$. If Λ is a finite collection, then $\Lambda - \{\alpha\}\beta$ is a fuzzy maximal α -clopen if and only $\beta \in \Lambda - \{\alpha\}$ $\beta \in \Lambda - \{\alpha\}$

 $if 1X - \alpha = \Lambda - \{\alpha\}\beta$ $\beta \in \Lambda - \{\alpha\}$

It is observed that if γ is fuzzy α -clopen in (X, τ) , then $\alpha \wedge \gamma$ is fuzzy α -clopen in $(\alpha, \tau \alpha)$. In addition, if α is fuzzy α -clopen in (X, τ) then a set fuzzy α -clopen in $(\alpha, \tau \alpha)$ is also fuzzy α -clopen in (X, τ) .

Theorem 2.16. Let α , ϑ be fuzzy α -clopen sets in X such that $\alpha \land \vartheta \neq 0_X$ then $\alpha \land \vartheta$ is a fuzzy minimal α -clopen set in $(\alpha, \tau \alpha)$ if ϑ is fuzzy minimal α -clopen in (X, τ) .

Proof: Similar to that of Theorem 4.11 in [5].

References

[1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.

[2] B. M. Ittanagi and R. S. Wali, On fuzzy minimal open and fuzzy maximal open sets in fuzzy topological spaces, International J. of Mathematical Sciences and Applications,1(2),2011.

[3] F. Nakaoka and N. Oda, Some Properties of Maximal Open Sets, International Journal of Mathematics and Mathematical Sciences, 21(2003), 1331-1340.

[4] F. Nakaoka and N. Oda, Minimal closed sets and maximal closed sets, International Journal of Mathematics and Mathematical Sciences, (2006), 1-8.

[5] M. Sankari, Fuzzy maximal, minimal α -open and α -closed sets(submitted).

[6] A. Swaminathan and S. Sivaraja, Fuzzy maximal, minimal open and closed sets, Advances in Mathematics: Scientific Journal, 9(2020), no.10, 7741-7747.

[7] L. A. Zadeh, Fuzzy sets, Information and control 8 (1965), 338-353.