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Abstract: In this paper, we introduce three forms of locally closed sets called �̃�-ℐ-locally closed sets, �̃�-ℐ-
lc  sets 

and �̃�-ℐ-
lc  sets and various properties of �̃�-ℐ-locally closed sets, �̃�-ℐ-

lc  sets and �̃�-ℐ-
lc  sets and relation 

between the above three set and another sets.  
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1. INTRODUCTION 

M. Ganster and I. L. Reilly studied Locally closed sets and LC-continuous functions in the year 1989. 

Following this attempts, modern mathematics generalized this concept and are being found many generalizations of 

locally closed sets. R. Vaidyanathaswamy studied the localization theory in set topology in 1945. D. Jankovic and 

T. R. Hamlett studied new topologies from old via ideals in 1990. 

In this paper, we introduce three forms of locally closed sets called �̃�-ℐ-locally closed sets, �̃�-ℐ-
lc  sets 

and �̃�-ℐ-
lc  sets. Properties of these new concepts are studied as well as their relations to the other classes of 

locally closed sets are investigated. 

 

2. PRELIMINARIES 

Definition 2.1  

A subset S of X is called  

(i) locally closed [6] (briefly, lc) if S = U  F, where U is open and F is closed in X. 

(ii) �̂�-closed set [19] if cl(A)⊆U whenever A⊆U and U is semi-open. The complement of �̂�-closed set is 

�̂�-open. 

(iii) *g-closed set [12] if cl(A)⊆U whenever A⊆U and U is �̂�-open. The complement of *g-closed set is 

*g-open. 

(iv) #gs-closed set [21] if scl(A)⊆U whenever A⊆U and U is *g-open. The complement of #gs-closed set 

is #gs-open. 

(v) �̃�s-closed set [15] if scl(A)⊆U whenever A⊆U and U is #gs-open. The complement of �̃�s -closed set 

is �̃�s-open. 

(vi) gs-closed set if scl(A)⊆U whenever A⊆U and U is open. The complement of gs -closed set is gs-open. 

The collection of all �̃�s-open sets is denoted by �̃�SO(X). 

Definition 2.2  

A subset S of a space X is called:  

(i) generalized locally closed (briefly, glc) [19] if S = V F, where V is g-open and F is g-cld.   

(ii) semi-generalized locally closed [11] (briefly, sglc)  if S = V F, where V is sg-open and F is sg-

cld.    
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(iii) regular-generalized locally closed [1] (briefly, rg-lc)  if S = V F, where V is rg-open and F is rg-

cld.    

(iv) generalized locally semi-closed (briefly, glsc) if S = V F, where V is g-open and F is semi-cld. 

(v) locally semi-closed (briefly, lsc)  if S = V F, where V is open and F is semi-cld.    

(vi)   -locally closed (briefly,  -lc)  if S = V F, where V is  -open and F is  -cld.   

(vii)   -locally closed (briefly,  -lc)  if S = V F, where V is  -open and F is  -cld.     

The class of all generalized locally closed (resp. generalized locally semi-closed, locally semi-closed,  -

locally closed) sets in X is denoted by GLC (X) (resp. GLSC (X), LSC (X),  -LC(X)). 

An ideal  on a topological space (X,τ) is a non -empty collection of subsets of X which satisfies the following 

properties:  

(i) A∈I and B⊂A implies B∈I  

(ii) A∈I and B∈I implies A∪B∈I.  

An ideal topological space (or An ideal space) is a topological space (X,τ ) with an ideal I on X and is denoted by 

(X,τ ,I). For a subset A⊆X, A*(I,τ)={x∈X : A∩U∉I for every U∈τ(X,x)} is called  the local function of A with 

respect to I and τ. We simply write A* incase there is no chance for confusion. A Kuratowski closure operator cl*(.) 

for a topology τ *(I, τ) called the *-topology, finer than τ is defined by cl*(A)=A∪A*. 

 

Definition 2.3 

1) A subset S of X is called Ö-ℐ-closed (briefly, Ö-ℐ-cld) if S* P whenever S P and P is gs-open. The 

complement of Ö-ℐ-cld is called Ö-ℐ-open. 

2) A subset S of X is called Ö-ℐ-locally closed (briefly, Ö-ℐ-lc) if S = H  G, where H is Ö-ℐ-open and G is 

Ö-ℐ-cld.  

 

3. �̃�-𝓘-LOCALLY CLOSED SETS 

We introduce the following definition. 

Definition 3.1 

1) A subset S of X is called �̃�-ℐ-closed (briefly, �̃�-ℐ-cld) if S* P whenever S P and P is �̃�s-open. The 

complement of �̃�-ℐ-cld is called �̃�-ℐ-open. 

2) A subset S of X is called �̃�-ℐ-locally closed (briefly, �̃�-ℐ-lc) if S = H  G, where H is �̃�-ℐ-open and G is 

�̃�-ℐ-cld.  

The class of all �̃�-ℐ-locally closed sets in X is denoted by �̃�-ℐ-LC(X). 

Proposition 3.2 

Each �̃�-ℐ-cld (resp. �̃�-ℐ-open) is �̃�-ℐ-lc set but not reverse. 

Proof 

This follows from Definition 3.1. 

Example 3.3 

Let X = {1, 2, 3} and  = {, {1}, {1, 3}, X} with ℐ = {}. Then the set {2} is �̃�-ℐ-lc set but it is not �̃�-ℐ-

cld and the set {3} is �̃�-ℐ-lc set but it is not �̃�-ℐ-open in X. 

 

Proposition 3.4 

Each lc set is �̃�-ℐ-lc set but not reverse. 
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Proof 

This follows from Proposition 3.2.  

Example 3.5 

Let X = {1, 2, 3} and = {, {2, 3}, X} with ℐ = {}. Then the set {2} is �̃�-ℐ-lc set but it is not lc set in X. 

Proposition 3.6 

Each Ö-ℐ-lc set is �̃�-ℐ-lc set but not reverse. 

Proof 

This follows from the fact that every �̃�s-open set is gs-open set 

Example 3.7  

Let X = {1, 2, 3, 4} and = {, X, {1}, {4}, {1, 4}} with ℐ = {}. Then the set {2, 3} is Ö-ℐ-lc set but it is 

not �̃�-ℐ-lc set. 

Proposition 3.8 

Each �̃�-ℐ-lc set is a (i)  -lc set, (ii) glc set and (iii) sglc set. However the separate reverse is not true. 

Proof 

It is obviously.   

Example 3.9 

Let X = {1, 2, 3} and = {, {1}, X} with ℐ = {}. Then the set {1, 2} is glc set and sglc set but it is not �̃�-

ℐ-lc set in X.  

Example 3.10 

Let X = {1, 2, 3} and  = {, {2}, {1, 3}, X} with ℐ = {}. Then the set {1} is  -lc set but it is not �̃�-ℐ-lc 

set in X. 

Remark 3.11 

The concepts of  -lc sets and �̃�-ℐ-lc sets are independent of each other. 

Example 3.12 

The set {2, 3} in Example 3.3 is  -lc set but it is not a �̃�-ℐ-lc  set in X and the set {1, 2} in Example 3.5 

is �̃�-ℐ-lc  set but it is not an  -lc set in X.  

Remark 3.13 

The concepts of lsc sets and �̃�-ℐ-lc sets are independent of each other. 

Example 3.14 

The set {1} in Example 3.3 is lsc set but it is not a �̃�-ℐ-lc set in X and the set {1, 2} in Example 3.5 is �̃�-ℐ-

lc set but it is not a lsc set in X.  

Remark 3.15 

The concepts of �̃�-ℐ-lc sets and glsc sets are independent of each other. 

Example 3.16 

The set {2, 3} in Example 3.3 is glsc set but it is not a �̃�-ℐ-lc set in X and the set {1, 2} in Example 3.5 is 

�̃�-ℐ-lc set but it is not a glsc set in X.  

Remark 3.17 

The concepts of �̃�-ℐ-lc sets and 
sglc  sets are independent of each other. 
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Example 3.18 

The set {2, 3} in Example 3.3 is 
sglc  set but it is not a �̃�-ℐ-lc set in X and the set {1, 2} in Example 3.5 

is �̃�-ℐ-lc set but it is not a 
sglc  set in X.  

Definition 3.19 A space X is said to be an �̃�-𝓘-space if every �̃�-𝓘-open set is open. 

Theorem 3.20 

For a  �̃�-ℐ-space X, the following properties hold: 

(i) �̃�-ℐ-LC(X) = LC (X). 

(ii) �̃�-ℐ-LC(X) GLC (X). 

(iii) �̃�-ℐ-LC(X) GLSC (X). 

(iv) �̃�-ℐ-LC(X)  - LC (X). 

Proof  

(i) Since every �̃�-ℐ-open set is open and every �̃�-ℐ-cld is *-closed, �̃�-ℐ-LC(X)  LC (X) and hence 

�̃�-ℐ-LC(X) = LC (X). 

(ii), (iii) and  (iv) follows from (i), since for any space X, LC (X) GLC (X), LC (X) GLSC (X) and 

LC (X)  - LC (X). 

 

Definition 3.21 

A subset S of a space X is called:  

(i) �̃�-ℐ-
lc  set if S= H G, where H is �̃�-ℐ-open in X and G is *-closed in X. 

(ii) �̃�-ℐ-
lc  set if S= H G, where H is open in X and G is �̃�-ℐ-cld in X. 

The class of all �̃�-ℐ-
lc  (resp. �̃�-ℐ-

lc ) sets in ideal topological space X is denoted by �̃�-ℐ-LC*(X) (resp. 

�̃�-ℐ-LC**(X)). 

Proposition 3.22 

Each lc-set is �̃�-ℐ-
lc  set but not reverse. 

Proof 

It follows from Definition 3.21 (i) and Definition of locally closed set. 

Example 3.23 

The set {2} in Example 3.5 is �̃�-ℐ-
lc  set but it is not a lc set in X. 

Proposition 3.24 

Each lc-set is �̃�-ℐ-
lc  set but not reverse. 

Proof 

It follows from Definition 3.21 (ii) and Definition of locally closed set. 

Example 3.25 

The set {1, 3} in Example 3.5 is �̃�-ℐ-
lc  set but it is not a lc set in X. 

Proposition 3.26 
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Each �̃�-ℐ-
lc set is �̃�-ℐ-lc set but not reverse. 

Proof 

It follows from Definitions 3.1 and 3.21 (i). 

Example 3.27 

The set {1, 2} in Example 3.5 is �̃�-ℐ-lc set but it is not a �̃�-ℐ-
lc  set in X. 

Proposition 3.28 

Each �̃�-ℐ-
lc set is �̃�-ℐ-lc set but not reverse. 

Proof 

It follows from Definitions 3.1 and 3.21 (ii). 

Remark 3.29 

The concepts of �̃�-ℐ-
lc  sets and lsc sets are independent of each other. 

Example 3.30 

The set {3} in Example 3.5 is �̃�-ℐ-
lc  set but it is not a lsc set in X and the set {1} in Example 3.3 is lsc 

set but it is not a  �̃�-ℐ-
lc  set in X.  

Remark 3.31 

The concepts of �̃�-ℐ-
lc sets and  -lc sets are independent of each other. 

Example 3.32 

The set {1, 2} in Example 3.5 is  �̃�-ℐ-
lc  set but it is not a  -lc set in X and the set {1, 2} in Example 

3.3 is   -lc set  but it is not a  �̃�-ℐ-
lc set in X. 

 

 

Remark 3.33 

From the above discussions we have the following implications where A → B (resp. A         B) represents 

A implies B but not conversely (resp. A and B are independent of each other). 

 

�̃�-ℐ-
lc                       lc                       �̃�-ℐ-

lc  

 

 

 

  

 

  lsc       �̃�-ℐ-lc               -lc 

 

 

 

 

 

 glsc       glc  sglc      -lc                sglc* 

 

Theorem 3.34 
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 Assume that �̃�-ℐ-C(X) is closed under finite intersection. For a subset S of X, the following statements are 

equivalent: 

(i) S�̃�-ℐ-LC(X). 

 (ii) S = H�̃�-ℐ-cl(K) for some �̃�-ℐ-open set H. 

(iii) �̃�-ℐ-cl(S) −S is �̃�-ℐ-cld. 

(iv) S (�̃�-ℐ-cl(S))c is �̃�-ℐ-open. 

(v) S�̃�-ℐ-int(S (�̃�-ℐ-cl(S))c). 

Proof 

(i)  (ii). Let K�̃�-ℐ-LC(X). Then S = H G where H is �̃�-ℐ-open and G is �̃�-ℐ-cld. Since SG, �̃�-ℐ-

cl(S) G and so H�̃�-ℐ-cl(S) S. Also S H and S�̃�-ℐ-cl(S) implies S H�̃�-ℐ-cl(S) and therefore S = H�̃�-ℐ-

cl(S). 

(ii)  (iii). S = H�̃�-ℐ-cl(S) implies �̃�-ℐ-cl(S) −S = �̃�-ℐ-cl(S)Hc which is �̃�-ℐ-cld since Hc is �̃�-ℐ-cld 

and �̃�-ℐ-cl(S) is �̃�-ℐ-cld. 

 (iii)  (iv). S(�̃�-ℐ-cl(S))c = (�̃�-ℐ-cl(S) −S)c and by assumption, (�̃�-ℐ-cl(S) −S)c is �̃�-ℐ-open and so is S 

(�̃�-ℐ-cl(S))c. 

(iv)  (v). By assumption, S (�̃�-ℐ-cl(S))c = �̃�-ℐ-int(S (�̃�-ℐ-cl(S))c) and hence S�̃�-ℐ-int(S (�̃�-ℐ-

cl(S))c). 

(v)  (i). By assumption and since S�̃�-ℐ-cl(S), K = �̃�-ℐ-int(S (�̃�-ℐ-cl(S))c) �̃�-ℐ-cl(S). Therefore,  

S�̃�-ℐ-LC(X). 

Theorem 3.35 

For a subset S of X, the following statements are equivalent: 

(i) S�̃�-ℐ-LC*(X). 

 (ii) S = H K* for some �̃�-ℐ-open set H. 

(iii) S*−S is �̃�-ℐ-cld. 

(iv) S (S*)c is �̃�-ℐ-open. 

Proof 

(i)  (ii). Let S�̃�-ℐ-LC*(X). There exist an �̃�-ℐ-open set S and a ⋆-closed set G such that S = H G. 

Since  SH and SS*, S HS*. Also, since S*  G, HS*  H G = S. Therefore S = HS *. 

(ii)  (i). Since H is �̃�-ℐ-open and S* is a ⋆-closed set, S = HS*�̃�-ℐ-LC*(X). 

(ii)  (iii). Since S*−S = S * Hc, S*−S is �̃�-ℐ-cld. 

(iii)  (ii). Let H = (S*−S)c. Then by assumption H is �̃�-ℐ-open in X and S = HS*. 

(iii)  (iv). Let G = S*−S. Then Gc = S (S*)c and S (S*)c  is �̃�-ℐ-open. 

(iv)  (iii). Let H = S (S*)c. Then Hc is �̃�-ℐ-cld and Hc =S* −S   and so S*−S is �̃�-ℐ-cld. 

Theorem 3.36 

Let S be a subset of X. Then S�̃�-ℐ-LC**(X) if and only if   S = H�̃�-ℐ-cl(S) for some open set H. 

Proof 

Let S�̃�-ℐ-LC**(X). Then S = H G where H is open and G is �̃�-ℐ-cld. Since S G, �̃�-ℐ-cl(S)  G. We 

obtain S = S�̃�-ℐ-cl(S) = H G �̃�-ℐ-cl(S) = H�̃�-ℐ-cl(S). 

Converse part is trivial. 

Corollary 3.37 
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 Let S be a subset of X. If S�̃�-ℐ-LC**(X), then �̃�-ℐ-cl(S) −S is �̃�-ℐ-cld and S (�̃�-ℐ-cl(S))c is  �̃�-ℐ-open.  

Proof 

Let S�̃�-ℐ-LC**(X). Then by Theorem 3.40, S = H�̃�-ℐ-cl(S) for some open set H and �̃�-ℐ-cl(S) −S = �̃�-

ℐ-cl(S) Hc is �̃�-ℐ-cld in X. If G = �̃�-ℐ-cl(S) −S, then Gc = S (�̃�-ℐ-cl(S))cand Gc is �̃�-ℐ-open and so is  S (�̃�-ℐ-

cl(S))c. 
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